
Towards a Discipline of Software Engineering Forensics Analysis

Paul Bailes1, Christine Cornish1,2, Toby Myers1,2, Lou Rago2, Nick Tate3 and Mal Thatcher4
1School of ITEE, The University of Queensland, St Lucia, QLD 4072, Australia

2BCI Technology, Level 2, 167 Eagle St, Brisbane, QLD 4000, Australia
3RDSI Project, The University of Queensland, St Lucia, QLD 4072, Australia
 4Mater Health Services, Raymond Tce, South Brisbane, QLD 4101, Australia

Keywords: Forensics, Process, Software.

Abstract: Software development and procurement continues to be a source of great disappointment for its social and
economic stakeholders, with literally billions of dollars being expended for little ostensible benefit. But
significant progress can be made in engineering domains that match software for complexity and novelty:
the international regime of aviation accident and incident reporting has been the basis for a wide range of
evidence-based technical and process improvements in applied aeronautical engineering. Accordingly, we
set out to characterise the knowledge, activities and structures that would promise to deliver analogous
benefits to software engineering. While we are hopeful of early positive outcomes, a significant research
agenda lies before us.

1 INTRODUCTION

Despite the near half-century that has elapsed since
the need was explicitly recognised for software
systems to be developed to the same standards as
other engineering artefacts (Naur and Randell,
1969), the procurement of computer-based
information systems remains unsatisfactory. Too
many significant software development projects
continue to fail in one or more of the dimensions of:
on-delivery; within-budget delivery; client
satisfaction; or outright cancellation. It does not
however have to be the case that innovative high-
technology engineering projects are so destined for
failure. Taking aeronautical engineering as our
exemplar - and we are not alone (Charette, 2005) - it
indeed seems possible to accelerate successfully the
inculcation and adoption of the high standards of
performance and conduct in a relatively new
engineering field. Instrumental in this outcome has
been the forensic analysis of departures from these
standards (i.e. across the spectrum from aviation
incidents to disasters), including both the appropriate
technical and sociological apparatus to ensure the
effectiveness and impact of these investigations
(ICAO, 2001).

Consequently, the question arises of how

software engineering can learn from
aviation/aeronautical engineering in this regard.
Accordingly, the goal of this paper is to envision and
strategize the creation of a new branch of software
engineering, which we name at least provisionally
“Software Engineering Forensics Analysis” (SEFA).
Taking both the technical and sociological aspects of
aviation investigations as our broad model, we seek:

 to advance the theory and practice of software
engineering through the analysis of software
development projects by distinguishing between
the characteristics of successful versus failed or
failing projects;

 simultaneously, to develop tools and techniques
to facilitate these analyses;

 equally, to foster the development of social
institutions and practices (both voluntarily and
by regulation/legislation, as appropriate) that will
encourage the adoption and application of the
above;

 thereby engendering improvements in the
timeliness, cost and effectiveness of significant
software procurement exercises;

and thus, to achieve the economic and social benefits
resulting from all the foregoing.

235Bailes P., Cornish C., Myers T., Rago L., Tate N. and Thatcher M..
Towards a Discipline of Software Engineering Forensics Analysis.
DOI: 10.5220/0004970002350240
In Proceedings of the 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2014), pages 235-240
ISBN: 978-989-758-030-7
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

2 SOFTWARE DEVELOPMENT
AND PROCUREMENT FAILS

Despite nearly half a century of research aimed at
performing software development at levels of
effectiveness and efficiency matching those of
established engineering disciplines, software
development (or more generally, procurement)
remains plagued by failures, some of a spectacular
nature. An internet search on terms such as “failed
and overbudget custom software projects” is sadly
fruitful, some highlights of the results of which are
as follows.

 The US Air Force has abandoned 7 years of
development of a new integrated ERP system -
the Expeditionary Combat Support System
(ECSS) - at a cost of US$1B(illion) wasted
(Kanaracus, 2012a). Instead, reversion to the
separate legacy systems that predated ECSS
seems to be the basis for future development.

 The UK government’s “Universal Credit”
consolidated welfare payments system (NAO,
2013) has so far incurred development costs in
excess of UK₤300M(illion) but with a now
indefinitely delayed roll-out and unquantified
value proposition.

 The failed Queensland (Australia) Health
Department’s payroll system (Chesterman, 2013)
is incurring significant costs as a result of the
need to employ manual work-arounds to
compensate for its deficiencies: estimates of
AU$416.6M(illion) for the 2009-12 period; and
further estimates of AU$836.9M from 2012-17
(i.e. total cost of AU$1.2535Billion); and that’s
without costing the required replacement systems
development.

 The UK National Health Service abandoned its
National Programme for IT (NPfIT) in 2011
(Mathieson, 2011) after spending
UK₤12B(illion).

 The US government’s “Obamacare” Health
Insurance Exchange website (healthcare.gov) has
been plagued by start-up problems (Ford, 2013)
but costs are not clear.

 Charette’s (2005) already-cited survey includes a
“Hall of Shame” where nine-figure losses (in
major world currencies) are unexceptional.

Lest we be tempted to think that the above represent
ancient or isolated history, the tale of woe is sadly
contemporary (Kanaracus, 2012b).

3 WHAT IS THE PROBLEM?

At first glance, it seems inexcusable, or at least
inexplicable, why software development should be
so problematic, in view of the long-standing and
extensive educational and research literature on the
subject. From a comprehensive point of view:
Sommerville’s (2011) classic text cites almost every
conceivable technology, technique and process; and
if coverage of individual topics may sometime be a
little sketchy, the extensive bibliography offers a
portal to the fruits of the global effort in the field.

This problem (of practical failure to apply
appropriate software engineering tools techniques
and processes) is definitely not one of professional
community ignorance of the wider, non-technical
aspects that transform computer science into
software engineering. For example, the importance
of management skills (including project planning,
scheduling, risk management and personnel
management) as complementary to technical
expertise is well-established (Sauer and Cuthbertson,
2003), and indeed well-represented by Sommerville.

Our hypothesis is that it’s not the case that there
are too few solutions to the software
development/procurement problem at hand, but
rather that in a sense there are too many. More
specifically, for many if not most generic situations
that arise in a software project, multiple approaches
are possible. Consider the following choices relating
to various aspects of software engineering
(Sommerville, 2011).

 Requirements: structured natural language vs.
mathematical logic vs. graphical languages; in
the latter case examples of choices are between
UML (OMG, 2011) and Behaviour Trees
(Dromey, 2006).

 Specification: examples of choices are between
model-based and abstract, executable and non-
executable, mathematical vs. graphical; for
example Z (Spivey, 1992) is abstract, non-
executable and mathematical; Petri Nets
(Peterson, 1977) are abstract, executable and
graphical.

 Architecture/Design: e.g. transaction processing
vs. event processing vs. object-oriented vs.
client-server vs. distributed.

 Implementation: e.g. choice of programming
language C++ vs. Java vs. Scala etc etc etc.

 Verification and Validation: formal methods vs.
testing; in the latter case black box vs white box.

 Overall process: waterfall vs. iterative (including
“agile”).

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

236

Under such circumstances, the status quo of
confusion and under-performance is not surprising.

4 THE CHARACTERISTICS OF A
SOLUTION

The simple way to address the above “too much
information” problem is to clarify the situations
under which one is applicable over the alternatives.
Developing our hypothesis, the current position in
the professional development of software engineers
is all too much one of a lack of evidence-based
authority about the circumstances under which one
software development options (tool, technique,
process, etc.) is more applicable than the
alternatives.

4.1 Evidence-based

The aeronautical engineering precedent is, as above,
evidently attractive to software engineering because
of its complexity and relative novelty. More
fundamental however is the distinctive way in which
aeronautical engineering failures, as represented by
aviation accidents and incidents, are treated. Most
distinctively, the accidents/incidents are the subjects
of (depending upon severity) extensive and
disciplined forensic investigations that yield hard
evidence about the appropriateness or otherwise of
various aeronautical engineering techniques to
operational circumstances. For example:

 square-shaped windows are acceptable in
unpressurised aircraft, but pose unacceptable
metal fatigue risks in pressurised aircraft
(MTCA, 1955)

 gyroscopic precession of propellors (“whirl
mode”) has a risk of resonating with the natural
frequency of the wing, leading to catastrophic
flutter (Job, 2001);

 incorrect attachment of pod-type jet engine
mounts to wing pylons can lead to engine
separation and collision with airframe leading to
loss of control and destruction (Job, 1998a).

4.2 Transcending the Technical

There is however a potential objection to the validity
to software engineering of the aviation precedent, in
that aeronautical engineering is dominated by
physical science, viz. the above examples. The
corresponding class of software engineering
examples might be concerned with correctness

against specifications, but in the above-cited
examples of software project failures, simple coding
errors are evidently sparsely-represented. Rather,
even a cursory reading of failed software project
reports reveals process failures far beyond the
implementation/coding stage (or its equivalent in
non-waterfall processes). What example does
aviation forensics have to show for this class of
software engineering problem?

We are able to give a strong positive response to
this question, because the scope of aviation forensic
investigations is indeed considerably wider than the
above examples indicates. From ICAO (1991), we
read:

FORMAT OF THE FINAL REPORT
…
1.17 Organizational and management
information.
Pertinent information concerning the
organizations and their management involved
in influencing the operation of the aircraft.
The organizations include, for example, the
operator;
the air traffic services, airway, aerodrome
and weather service agencies; and the
regulatory authority. The information could
include, but not be limited to, organizational
structure and functions, resources, economic
status, management policies and practices,
and regulatory framework.
…
3. CONCLUSIONS
List the findings and causes established in the
investigation. The list of causes should
include both the immediate and the deeper
systemic causes.

It is thus abundantly clear that aviation accident and
incident investigations cover the full range of the
aviation “process model” (as we might put it in
software engineering terms), including the many
accidents/incidents whose prime technical causes
can be traced back to broader systemic issues,
including “organizational structure and functions,
resources, economic status, management policies
and practices, and regulatory framework”.

For example:

 in the above-cited example of incorrect
attachment of pod-type jet engine mounts, the
inherent risk entailed in a somewhat unforgiving
pylon design was realised by ill-considered
modifications to maintenance procedures
introduced by the operator;

 the Air New Zealand airliner lost by collision in

Towards�a�Discipline�of�Software�Engineering�Forensics�Analysis

237

1979 with Mt Erebus in Antarctica was in perfect
aeronautical condition throughout, but
management of the aircraft’s computerised
navigation system led to an unknown departure
from the expected course (Job, 1998b);

 in several fatal disasters suspicion has come
upon perfectly-functioning flight control systems
but with ill-designed human interfaces leading to
command confusion and loss of control (Job,
1998c).

4.3 Engineering Forensics Summary

In summary then, generalising from the aviation
example, successful engineering forensics (including
software) requires a combination of the authority to
effect changes in engineering practice resulting from
a basis in evidence regarding the processes and
techniques that succeed vs. those that fail, combined
with a complete process view that transcends the
narrow scientific/technical subdomain.

5 THE SHAPE OF A SOLUTION

Consequently, faithfully following the aeronautical
precedent, our nascent SEFA discipline cannot be
divorced from either its technical fundamentals or
the social context in which it operates. The mode of
operation and structures by which we apply SEFA
knowledge are just as important as the knowledge
itself.

5.1 SEFA Knowledge

Three basic kinds of knowledge are required.
First obviously is basic software engineering

development/technical and management knowledge,
including:

 overall software process(es)

 individual stages of and artefacts from the above

 tools supporting the above.

From our experience to date, the priority software
process issue is likely to concern the problems
encountered in ensuring the development proceeds
according to clients’ actual requirements.

Second is knowledge of the legal context of
software development (which may differ from
jurisdiction to jurisdiction), as the fundamental basis
that establishes (and in extremis enforces)
development partners and clients’ mutual
obligations.

Finally are meta-level software engineering

research skills: as is evident, SEFA is at an early
even nascent stage, and discernment of the meta-
processes by which forensic analyses are conducted
will be as important as the discovery of the evidence
bases for the applicability or not of the various
extant software engineering tools, techniques and
processes.

5.2 SEFA Operational Mode

We expect SEFA to be applicable in the following
modes of operation before, during and after a
software development project.

 Before: preventive assurance (i.e. avoiding the
mistaken adoption of tools, techniques or
processes that SEFA evidence has demonstrated
to be inappropriate in a particular project’s
context).

 During: corrective assurance/disaster recovery
(i.e. determining the causes of an impending
failure and if possible identifying a rectification
pathway based on SEFA evidence).

 After: providing expert witness to post-failure
investigations.

In all the above, each engagement represents an
opportunity to expand the SEFA knowledge base.

5.3 SEFA Operational Structure

A critical factor in the success of air
accident/incident investigations may be the
formally-established status of the various national
investigation organisations. While an international
organised counterpart to ICAO leading to such a
situation may sound far-fetched, the impact of
software on lives, prosperity and property would
seem to justify such an ambitious goal.

In the interval however, a worthwhile enterprise
will be to establish, by purely private means if
necessary, an integrated organisation (“Software
Forensics Institute” or some such) both to conduct
SEFA operations and to nurture the growth of SEFA
knowledge, as characterised above.

6 CHALLENGES

Firm establishment of SEFA as a viable contributory
discipline to software engineering will require the
satisfaction of many social and technical
prerequisites. Among the technical prerequisites are
the following:
a. how do we establish conveniently a “narrative

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

238

record” of a particular software development
project from whatever evidentiary trail exists?

b. then, how do we evaluate/assess/critique such a
narrative against the prevailing understanding of
correct/canonical software process(es)?

c. likewise, how do we evaluate/assess/critique
artefacts produced at each stage e.g. requirement
specs, designs, code, test plans, etc.

Hopefully “big data” analysis solutions may be
discovered that can be applied to this domain.

Chief among the social prerequisites is how to
inculcate as far as possible a blame-free culture that
is conducive to open self-criticism by software
developers in the aftermath of a failed project, e.g.
as with the UK Civil Aviation Authority Mandatory
Occurrence Reporting (MOR) Scheme (CAA, 2011).

7 CONCLUSIONS

While being frank about the challenges, we propose
SEFA development as a worthwhile undertaking.
Generally, the goals as per our Introduction above
are worthwhile, and we have established the
plausibility of the precedent from
aeronautics/aviation.

Specifically, SEFA raises hopes for the
following:

 an evidence-based, more specific understanding
of the different circumstances under which
different software processes and tools are more
or less appropriate;

 hopefully including a rubric when “agile”
methods are appropriate (or not)!

 similarly for other variations from canonical
process(es);

 meta-level tools and techniques to enable the
above;

 more specific directions in software engineering
education and training;

 incidentally, because software systems dominate
aeronautical engineering, a formally-established
“Software Forensics Institute” would discharge
implicit ICAO obligations in software dimension
of air accident investigations.

REFERENCES

CAA, 2011. CAP 382 Mandatory Occurrence Reporting
Scheme (9th ed.), TSO.

Charette, R., 2005. Why Software Fails. IEEE Spectrum.

http://spectrum.ieee.org/computing/software/why-soft
ware-fails

Chesterman, N., 2013. Queensland Health Payroll System
Commission of Inquiry Report.
http://www.healthpayrollinquiry.qld.gov.au/__data/ass
ets/pdf_file/0014/207203/Queensland-Health-Payroll-
System-Commission-of-Inquiry-Report-31-July-
2013.pdf

Dromey, R.G., 2006. Formalizing the Transition from
Requirements to Design. In Mathematical
Frameworks for Component Software – Models for
Analysis and Synthesis, Jifeng He, and Zhiming Liu
(Eds.), World Scientific Series on Component-Based
Development, pp. 156-187

Ford, P., 2013. The Obamacare Website Didn't Have to
Fail. How to Do Better Next Time. Bloomberg
Businessweek. http://www.businessweek.com/articles/
2013-10-16/open-source-everything-the-moral-of-the-
healthcare-dot-gov-debacle.

ICAO, 2001. Aircraft Accident and Incident Investigation.
Annex 13 to the Convention on International Civil
Aviation. International Civil Aviation Organization.

Job, M., 1998a. American 191, do you want to come back.
In Air Disaster Volume 2. Aerospace Publications.

Job, M., 1998b. I don’t like this. In Air Disaster Volume 2.
Aerospace Publications.

Job, M., 1998c. Air Disaster Volume 3. Aerospace
Publications.

Job, M., 2001. The Lockheed Electra Saga. In Air Disaster
Volume 4 The Propellor Era. Aerospace Publications.

Kanaracus, C., 2012a. Air Force scraps massive ERP
project after racking up $1 billion in costs. CIO.
http://www.cio.com/article/721628/Air_Force_scraps_
massive_ERP_project_after_racking_up_1_billion_in
_costs

Kanaracus, C., 2012b. The scariest software project horror
stories of 2012. Computerworld.
http://www.computerworld.com/s/article/9234581/The
_scariest_software_project_horror_stories_of_2012

Mathieson, S., 2011. Scrapping the National Programme
for IT: a journey not a destination. The Guardian.
http://www.theguardian.com/healthcare-
network/2011/sep/22/npfit-ends-cfh-andrew-lansley-
bt-csc?newsfeed=true

MTCA, 1955. Report of the Public Inquiry into the causes
and circumstances of the accident which occurred on
the 10th January, 1954, to the Comet aircraft G-
ALYP, London: HMSO

NAO, 2013. Universal Credit: early progress. National
Audit Office. http://www.nao.org.uk/report/universal-
credit-early-progress/

Naur, P. and Randell, B. (Ed.) 1969. Software
Engineering: Report on a Conference sponsored by
the NATO Science Committee, Garmisch, Germany,
7th to 11th October 1968. Brussels, Scientific Affairs
Division, NATO.

OMG, 2011. Documents Associated With Unified
Modeling Language (UML), V2.4.1.
http://www.omg.org/spec/UML/2.4.1/

Peterson, J., 1977. Petri Nets. ACM Computing Surveys

Towards�a�Discipline�of�Software�Engineering�Forensics�Analysis

239

vol. 9 no. 3 pp. 223–252.
Sauer, C. and Cuthbertson, C., 2003. The State of IT

Project Management in the UK 2002-2003. Computer
Weekly Project/Programme Management Survey.
http://www.bestpracticehelp.com/The_State_of_IT_Pr
oject_Management_in_the_UK_2003_2004.pdf

Sommerville, I., 2011. Software engineering (9th ed.).
Pearson.

Spivey, J.M., 1992. The Z Notation: A reference manual.
International Series in Computer Science (2nd ed.).
Prentice Hall.

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

240

