
On-demand Cloud Architecture for Academic Community Cloud
Another Approach to Inter-cloud Collaboration

Shigetoshi Yokoyama and Nobukazu Yoshioka
National Institute of Informatics, Tokyo, Japan

Keywords: Inter-cloud, Community Cloud, Cluster as a Service, Bare-metal Provisioning, Academic Cloud.

Abstract: This study describes a new approach to cloud federation architecture for academic community cloud. Two
basic approaches have been proposed to deal with cloud burst, disaster recovery, business continuity, etc., in
community clouds: standardization of cloud services and multi-cloud federation. The standardization
approach would take time; i.e., it would not be effective until there are enough implementations and
deployments following the standard specifications. The federation approach places limitations on the
functionalities provided to users; they have to be the greatest common divisor of the clouds’ functions. Our
approach is “cloud on demand”, which means on-demand cloud extension deployments at remote sites for
inter-cloud collaborations. Because we can separate the governance of physical resources for cloud
deployment and the governance of each cloud by this approach, each organization can have full control on
its cloud. We describe how the problems of the previous approaches are solved by the new approach and
evaluate a prototype implementation of our approach.

1 INTRODUCTION

Private clouds get some benefit from the
consolidations made possible by using virtualization
technology. However an individual organization
cannot reduce IT costs significantly through the use
of its own private cloud because it must have on
hand the maximum IT resources needed to deal with
peak traffic.

In order to better utilize IT resources, a hybrid
cloud solution is feasible in some situations. A
hybrid cloud consists of a private cloud and public
cloud; the private cloud deals with flat traffic and the
public cloud covers peak traffic. However, when
security matters, it is not feasible to send all the peak
traffic to the public cloud.

It is important to think about sharing IT
resources among private clouds to ensure better
utilization and security at the same time. This idea
can be viewed as a private cloud hosting service.

Table 1 describes the characteristics of public,
private and hybrid clouds. Cloud users have to
decide what kind of cloud they want to use,
depending on their applications. A hybrid cloud
integrates private and public clouds vertically. It
assigns peak traffic of applications that do not
necessarily need strong security to the public cloud.

It cannot fit the situation in which all peak traffic
have to be dealt with securely.

On the other hand, a community cloud is a way
to keep clouds independent from one another while
getting flexibility and security at the same time. In
fact, there has been a lot of activity on ways to
establish community clouds. The approaches can be
categorized into two kinds. One is standardization of
cloud services and the other is multi-cloud
federation. The standardization approach would take
time; i.e., it would not be effective until there are
enough implementations and deployments following
the standard specifications. The federation approach
places limitations on the functionalities provided to
users; they have to be the greatest common divisor
of the clouds’ functions.

We propose a new approach, called “cloud on
demand”, which integrates many private clouds
horizontally and shares IT resources among them to
accommodate peak traffic. By applying this solution,
users can get good IT resource utilization like in a
public cloud and have the level of security of a
private cloud.

In this paper, we introduce our cloud on demand
solutions called dodai and colony and describe a real
cloud on demand service that was recently deployed
as the research cloud of our research institute,
National Institute of Informatics (NII).

661Yokoyama S. and Yoshioka N..
On-demand Cloud Architecture for Academic Community Cloud - Another Approach to Inter-cloud Collaboration.
DOI: 10.5220/0004969606610670
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (FedCloudGov-2014), pages 661-670
ISBN: 978-989-758-019-2
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

This paper is organized as follows. Section 2
describes the previous approaches. Section 3
introduces the cloud on demand solution. Section 4
shows a prototype implementation. We summarize
our evaluation of case studies in Section 5 and
conclude in Section 6.

Table 1: Characteristics of cloud solutions.

2 PREVIOUS APPROACHES

In this section, we describe the previous approaches ,
which are cloud standardization and cloud federation.

2.1 Cloud Standardization

One of the famous cloud standardization activities is
the Global Inter-Cloud Technology Forum (GICTF)
(GICTF). Its mission is as follows:
- Promote the development and standardization of

technologies to use cloud systems.
- Propose standard interfaces that allow cloud

systems to interwork with each other.
- Collect and disseminate proposals and requests

regarding the organization of technical
exchange meetings and training courses.

- Establish liaisons with counterparts in the U.S.
and Europe, and promote exchanges with
relevant R&D teams.

GICTF has produced a number of white papers,
including "Use Cases and Functional Requirements
for Inter-Cloud Computing", “Technical
Requirements for Supporting the Intercloud
Networking”, "Intercloud Interface Specification
Draft (Intercloud Protocol)" and "Intercloud
Interface Specification Draft (Cloud Resource Data
Model)."

There are other similar standardization activities
like the Open Cloud Standards Incubator, Cloud

Storage Technical Work Group, Open Cloud test
bed and Open Cloud Computing Interface Working
Group (Hiroshi Sakai, 2011).

The use cases they deal with are as follows:
U1.Guaranteed performance during abrupt

increases in load
U2.Guaranteed performance regarding delay
U3.Guaranteed availability in the event of a

disaster or a large-scale failure
U4.Service continuity
U5.Market transactions via brokers
U6.Enhanced convenience by service cooperation
The clouds maintain independence from one

another and collaborate with each other through
standard interfaces. This approach seems to be the
ultimate solution for community clouds but it will
take time to get a consensus from all the
communities on the standard.

2.2 Cloud Federation

Cloud federation is the practice of interconnecting
the cloud computing environments of multiple
service providers for the purpose of load balancing
traffic and accommodating spikes in demand. Cloud
federation requires one provider to federate the
computing resources of the cloud providers. Cloud
federation consists of the following components:

Application: a set of virtual machines and data
volumes connected by a virtual network to be
deployed at the IaaS level.

Portal: a common entry point for multiple cloud
providers. A user submits an application to the
portal. The portal selects providers to run the
application. Usually, the portal can only offer
functionalities that are the greatest common divisor
of the providers.

This approach tries to cover use cases U1, U2,
U3, U4 and U5. In contrast, we assume that the main
purpose of establishing community clouds is to
accommodate use cases U1, U2, U3 and U4. That is,
our cloud on demand solution focuses on these use
cases.

3 CLOUD ON DEMAND

Our approach is different from the previous ones.
Figure 1 is an overview of our cloud on demand
solution. There are two service components. One is
called Cluster as a Service (Yokoyama and
Yoshioka, 2012a), and the other is called the inter-
cloud object storage service (Yokoyama and
Yoshioka, 2012b), (Yokoyama et al., 2012a). Cluster

Cost Security Ease of
Application
Development

Public Cloud Strong for
peak traffic
pattern

Depends on public
cloud provider policy
and management

Has public cloud
architecture
constraints

Private Cloud Strong for
flat traffic pattern

Depends on
controllable private
cloud management

Can choose
application
architecture

Hybrid Cloud Strong for
flat + peak traffic
pattern

Depends on
controllable
deployment
architecture and private
cloud management

Has hybrid cloud
architecture
constraints

Community Cloud Strong for small to
big and flat to
peak traffic

Depends on
controllable private
cloud management

Can choose
application
architecture

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

662

as a Service is a service by which users create
clusters consisting of physical servers, and it can
deploy software components for building an IaaS.

The inter-cloud object storage service lets users
store objects, like machine images, as if they were
using a local cloud object storage service.
Physically, each cloud is connected to a high-speed
wide area network, such as SINET-4 (SINET). The
network connections are made by using network
functionalities like L2VPN and VPLS. The physical
servers can be located in the same L2 network
segment if the same VLAN–ID is assigned to them.
The physical servers that are assigned different
VLAN-IDs are securely separated from the other
network segments.

Through this design, we can generate physical
machine clusters in inter-cloud environments on
which we can deploy IaaS software like OpenStack,
Eucalyptus, and others in our favourite
configurations for each.

In addition, we configure a distributed inter-
cloud object storage service using open source
software like OpenStack swift for storing machine
images.

To allocate the application execution
environments, we deploy an IaaS cluster on demand
on physical servers and deploy the application
virtual machine cluster on it. In this case, the IaaS
cluster uses the inter-cloud object storage service to
launch virtual machines from machine images that
have been prepared for the application cluster. IaaS
clusters themselves are not necessarily destroyed
after each the application execution. The life cycle
of the IaaS is independently controlled by the
application execution environment managers.

Figure 1: Architecture overview.

3.1 Cluster as a Service (CaaS)

Cluster as a Service is designed as follows:
1) Two-layer implementation

The lower layer takes care of physical machine
cluster management. The upper layer handles virtual
machine cluster management. Moreover, each layer
is programmable with web APIs.

2) The lower layer
The lower layer handles the operating systems of

each node composing a cluster. Nodes can be
allocated to clusters dynamically from software and
securely separated by using network technology, like
virtual LAN in the allocation.

3) The upper layer
The upper layer deals with deploying IaaS

software such as OpenStack and Eucalyptus. It also
can deploy PaaS software. The layer has
configuration management tools to ease deployment
on the nodes of clusters.

An actual deployment example is depicted in
Figure 2.

Figure 2: Cluster as a Service.

3.2 Inter-cloud Object Storage Service

Figure 3: Inter-cloud storage service.

Figure 3 depicts the service from the user’s view
point. Users of these clouds can share objects,

OpenStack-1 Eucalyptus

Hadoop
SunGrid
Engine

Hadoop MPI Hadoop MPI

CaaS

IaaS

PaaS

OpenStack-2

Hadoop MPI

Dynamically and securely separated clusters

…

Upper layer: Deploying software

Lower layer: Preparation of nodes

On-demand�Cloud�Architecture�for�Academic�Community�Cloud�-�Another�Approach�to�Inter-cloud�Collaboration

663

simply by dropping objects in inter-cloud-containers.
Users explicitly specify the locations where they
want to store objects.

4 PROTOTYPE

4.1 CaaS Overview

We developed Cluster as a Service by which a
private cloud can be deployed from common
computer resources.

The cloud on demand solution has a resource pool
from which each private cloud allocates IT resources
as they need them and releases them when they are
not using them (Figure 4). The security is guaranteed
by separating the network segments for each private
cloud. When servers are released, the cloud on
demand solution erases the storage before it
allocates it to the other private clouds. For rapid
elastic allocation, some servers in the resource pool
have to be ready to run. These servers are moved
from the resource pool network segment to the target
private cloud network segment by changing the
network configuration.

Figure 4: Cluster as a Service.

4.2 Requirements of CaaS

Req.1) Computer resources must be dynamically
allocated to the clusters of different private clouds.
Req.2) Clusters must be securely separated.
Req.3) Software components of the cloud must be
easily deployed on the clusters.

4.3 Design of CaaS

CaaS is designed to satisfy these requirements:
1) Two-layer implementation

The lower layer takes care of Req. 1) and Req.
2). The upper layer handles Req. 3). Moreover, each
layer is programmable with web APIs.

2) Lower layer
The lower layer handles the operating systems of

each node composing a cluster for using machine
images. Nodes can be allocated to clusters
dynamically from software and securely separated
by using network technology, like virtual LANs, in
the allocation. The lower layer also deals with
erasing storage when servers are released. A
prototype of this layer is dodai-compute (Dodai-
compute).

3) Upper layer
The upper layer deals with deploying IaaS/PaaS

software such as Hadoop, Grid Engine, OpenStack,
and eucalyptus. Configuration management tools
make it easy to deploy software on the nodes of
clusters. A prototype of this layer is dodai-deploy
(Dodai-deploy).

4.4 Dodai-compute

The lower layer dodai-compute is a system based on
OpenStack nova to control operations (such as run
instances from an image) on physical machines
instead of VMs. Figure 5 illustrates the architecture
of dodai-compute. The run instances, terminate
instances, start instances, stop instances, reboot
instances and associate address operations on
physical machines can be done via EC2 APIs. The
architecture of dodai-compute is as follows. Dodai-
compute uses PXEboot via a cobbler library to
bootstrap physical machines corresponding to run
instance API calls. It also uses an OpenFlow
controller to assign network segments to the physical
machine. IPMI is used to control physical machines
corresponding to the start instance, stop instance and
reboot instance. The terminate instance operation is
used to move physical machines to the machine pool
network segment. The OpenFlow controller does
this operation. The disks are physically cleaned up
and become ready for the next launch. The associate
address operation is done by an agent in each
physical machine instance.

VLANs are used on some private clouds. When
IaaS is deployed on them, we use OpenFlow
technology, instead of VLAN, in order to separate
network segments for each private cloud.

4.5 Dodai-deploy

The upper layer of dodai-deploy’s specification and
its prototype are described in this section. Dodai-

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

664

Figure 5: Dodai-compute architecture.

deploy has the following functionalities:
1) Installation configuration proposal creation
Dodai-deploy runs according to a user

installation plan called a ‘proposal.’
2) Installation and un-installation
Software components are installed according to a

proposal on target physical machine nodes and
virtual machine nodes. Dodai-deploy can un-install
software components, as well.

3) Test installation result
Automatic testing of the deployed IaaS and PaaS

is an important functionality of dodai-deploy. Users
can use these functionalities through a Web GUI and
CLI. Figure 6 illustrates the architecture of dodai-
deploy. The dodai-deploy server generates manifest
files for the puppet configuration tool (Puppet) when
users submit proposals requesting installations. The
architecture was designed with fast deployment in
mind to cope with the growing number of target
machines. Parallel deployment is the key to
achieving this goal but dependencies among
software components have to be used to make usable
deployment strategies. The actual parallel
deployment procedure uses MCollective
(Mcollective) to control many puppet clients.

4.6 Colony

We describe how to implement a geographically
distributed inter-cloud storage service. Storage-I in
Figure 7 should be a network-aware object storage
service in order to make the remote application
deployment rapid. The prototype uses OpenStack
Swift as the base software. A prototype of this inter-
cloud storage service is colony (Colony).

OpenStack Object Storage (code-named Swift is
open source software for creating redundant,
scalable data storage using clusters of standardized

Figure 6: Dodai-deploy architecture.

servers to store peta-bytes of accessible data. It is
not a file system or real-time data system, but rather
a long-term storage system for large amounts of
static data that can be retrieved, leveraged, and
updated. Object Storage uses a distributed
architecture with no central point of control,
providing greater scalability, redundancy and
permanence.

Objects are written to multiple hardware devices,
with the OpenStack software responsible for
ensuring data replication and integrity across the
cluster. Storage clusters scale horizontally by adding
new nodes. Should a node fail, OpenStack works to
replicate its content from other active nodes.
Because OpenStack uses software logic to ensure
data replication and distribution across different
devices, inexpensive commodity hard drives and
servers can be used in lieu of more expensive
equipment.

Swift has proxy nodes and auth nodes acting as
the front-end and storage nodes acting as the back-
end for accounts, containers, and object storage.

The internal software components of the service
are shown in Figure 7. The caching component
makes the machine image launch fast. The
dispatcher selects the nearest object replica in object
storage service-I, even if there is no copy in the local
cache.

4.6.1 How the Original Swift Works

The basic mechanism of downloading and uploading
objects in the original Swift is as follows:

1) GET
The proxy server randomly chooses a replica

from the ring and asks the storage server to send the
object in which the replica resides.

On-demand�Cloud�Architecture�for�Academic�Community�Cloud�-�Another�Approach�to�Inter-cloud�Collaboration

665

Figure 7: Software components of colony.

2) PUT
The proxy server knows the storage servers to

which object replicas from the ring should be put
and sends the objects to the all storage servers. The
PUT operation ends when the all replica writes
finish.

This implementation is based on an assumption
that the replicas are concentrated in the network, for
example, in the same data center. However, in our
context, this assumption is not valid. Actually, if we
apply the original OpenStack swift to storage-I, the
GET and PUT operations take time when the
randomly selected replica is far away. This is the
reason why we have to make the Swift software
network-aware.

4.6.2 Network-aware OpenStack Swift

1) How to make Swift network-aware
In the put operation, all replicas are written in

the same site as the proxy server instead of writing
them to the location the ring specifies. The replicas
of the original positions are made asynchronously by
the object replicator. After confirming the
replication, the local copies corresponding to the
replicas are deleted. In the get operation, the ‘nearest’
replica, instead of a random one, is chosen by the
mechanism described in the next section. The proxy
server works with the cache mechanism as well.

2) How to measure network distance
We use the zone information in the ring for the

network distance measurement. The zone
information consists of fixed decimal numbers, and
we can allocate them freely. Therefore, we can use
these decimal numbers to specify actual locations.
Let’s say the nodes in data center #1 are from zone-
100 to zone-199, the nodes in data center #2 are
from zone-200 to zone-299, and so on. By using this
sort of convention, the software can know the

network distance without our having to modify the
ring structure or code related to it.

5 EVALUATION

In order to evaluate the prototype in a real context,
we deployed and evaluated our cloud on demand
solution as NII’s research cloud (called gunnii). We
also evaluated the prototype in a number of user
scenarios.

5.1 Evaluation Environment

We deployed cloud on demand solution as our
research cloud providing bare-metal cloud service to
NII researchers on July, 2012. An overview of
gunnii from the users’ viewpoint is shown in Figure
8. NII researchers can extend their existing research
clusters to this research cloud on demand.

Figure 9 shows how we use OpenFlow
technologies with dodai-compute in this
configuration. Dodai-compute provisions bare-metal
clusters by using PXEboot and IMPI interfaces and
allocates the bare-metal machines in OpenFlow
closed networks, regions, on demand. It also
connects these regions to corresponding existing
closed networks of research groups, which are
assigned individual VLAN-IDs by setting up
suitable flow tables in OpenFlow switches.

Figure 8: Overview of the NII research cloud, gunnii.

5.2 User Scenario According to U1
(Guaranteed Performance against a
Abrupt Increase of the Load)

We also set up two private clouds. One was an
OpenStack (OpenStack) IaaS private cloud (private
cloud-A), on which web services of a simulated e-

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

666

Figure 9: gunnii’s architecture.

commerce company were hosted. The other was a
Hadoop PaaS private cloud of a business intelligence
company (private cloud-B), which was used for
analyzing big data like web service usage logs.

The traffic of private cloud-A decreased during
the period from 2 am to 5 am. To increase the
utilization of IT resources, allocations to these two
clouds changed depending on the amount of traffic
in private cloud-A.

 The business intelligence company was
supposed to give daily feedback to the e-commerce
company by using the big hadoop cluster on demand.

1) Cost evaluation
 We verified the cloud on demand operations

according to the user scenarios in gunnii. The
verification points were as follows:

1. Can we change the size of the two clouds
dynamically?

2. Can the services run continuously on the
clouds even during the size change? Figure 10
shows the verification environment. Private cloud-A
consisted of two servers: a master node which had
master software components of OpenStack diablo
software and included OpenStack nova, glance,
swift, keystone and horizon and slave software. The
other server only had slave software like nova
compute and swift object servers.

First, two servers were allocated to private cloud-
A by using dodai-compute and OpenStack software
components were deployed with dodai-

deploy. In order to check verification point 2, a
virtual machine was launched on one of the
OpenStack nova-computes.

When private cloud-A’s traffic reached a peak,
dodai-compute allocated another server to it and
dodai-deploy configured the cloud to have three
servers (Figure 11).

During this rerun, the application connection to
the virtual machine was not interrupted. Nova-api

Figure 10: Verification environment.

Figure 11: Private cloud expansion.

and other software were continuously available to
users. This was possible because dodai-deploy can
notice that software components are deployed and
services are running already on the two pre-existing
servers. It deploys software components only to the
newly allocated server. Moreover, through the
OpenStack nova mechanism, the nova-scheduler
automatically recognizes the new nova-compute.

On the other hand, when a bigger hadoop cluster
is needed, private cloud-A should release a server. In
this experiment, we released the most recently
allocated server, because it was not the server on
which the virtual machine was running. In a real
situation, however, we would need to monitor the
allocations of virtual machines by nova-compute
and need to live migrate some of them to servers that
will not be released (Figure 12).

In the experiment, the newly allocated server was
released by using a dodai-compute terminate-
instance call. OpenStack nova detected the loss of
one server for nova-compute, and it did not try to
launch virtual machines on that server later.

1) Security
We verified that the network separation of the

On-demand�Cloud�Architecture�for�Academic�Community�Cloud�-�Another�Approach�to�Inter-cloud�Collaboration

667

Figure 12: Private cloud reduction.

OpenFlow controller and the disk cleanup process in
machine pool segment maintained the security of the
user information. It was impossible to get into other
clusters through the network and impossible to
retrieve any information of the previous user from
the physical machines.

2) Ease of application development
We verified that the cluster networks did not

have restrictions on broadcast or multicast. Users
can develop applications with network multicasting
functionalities on elastic private environments.
Moreover, we evaluated the deployment
performance of dodai-deploy for OpenStack and
Hadoop. Because of the concurrent deployments to
the target nodes, the performance was almost flat
regarding the number of nodes. However, for
Hadoop, there was an 8% increase in deployment
time in going from n=7 to n=8. The increase was
due to the CPU constraints of the dodai-deploy
server(Figure 13). We should be able to avoid this
by scaling up or scaling out the dodai-deploy server.

Figure 13: Deployment performance of dodai-deploy.

5.3 User Scenario According to U2
(Guarantee regarding Delay)

In this scenario, a user of a service provided by a
cloud system goes on a business trip to a remote
location. Because the longer physical distance
causes a longer network delay from the site where
the service is provided, the user may experience
performance degradation as far as the response time
goes.

1) Extension to wide area network configuration
The evaluation environment of gunii was in a

data center configuration. However, our cloud on
demand solution architecture allows for an easy
extension to a wide area network. Figure 14 shows
how we can make this extension.

2) Delay
The delay stays practically small because the

cloud on demand solution can deploy the
corresponding service in a data center nearer to the
user.

Figure 14: Cloud on demand in a wide area network
configuration.

5.4 User Scenario According to U3
(Guaranteed Availability in the
Event of a Disaster or a Large-
Scale Failure)

In this scenario, the cloud system of a municipality
is damaged in a natural disaster and cannot continue
to provide its services.

The disaster recovery operations used the
resources of the remote municipalities (Such
measures would be pre-arranged) .

1) Cloud migration
We developed a cloud migration tool which can

migrate OpenStack IaaS from site-A to site-B by
using dodai-compute, dodai-deploy and colony, and
we demonstrated it in public. It stored the
OpenStack user database and snapshots as well as

0

50

100

150

200

250

1 2 3 4 5 6 7 8

OpenStack

Hadoop

Number of nodes

Time of deployment (sec)

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

668

configuration information for dodai regularly at site-
A and restored them after reconstruction of the
OpenStack at site-B using dodai (Figure 15).

Figure 15: Cloud Migration.

Moreover, we could migrate any software
supported by dodai-deploy, i.e., OpenStack, Hadoop,
GridEngine and Eucalyptus.

2) Performance of inter-cloud object storage
PUT and GET

By making the object storage service OpenStack
swift network-aware, the inter-cloud object storage
is almost equal in performance to local object
storage for PUT and GET, which is described in
(Yokoyama et al., 2012b).

5.5 User Scenario According to U4
(Service Continuity)

Normally, if a provider suspends its business, its
customers need to re-register with different
providers for similar services. To avoid such a
situation, resources, applications, and customer ID
data for the services provided by one provider can be
transferred to the cloud systems of other providers in
advance. Then, if its business is suspended, its
consumers can use similar services provided by the
other providers.

1) Cloud migration
As described in the previous section, however it

not necessary for dodai to regularly store a user
database, snapshots, or configuration information.

2) Performance of inter-cloud storage PUT and
GET performance

Same as in the previous section.

6 CONCLUSIONS

We proposed a solution called cloud on demand and

described a prototype implementation based on the
dodai and colony projects. The cloud-on demand
was proved to be feasible in the actual user scenarios
in one data center. This architecture can be extended
to wide area networks using SINET L2VPN and
VPLS services if we plug the upper link from the
OpenFlow switches into the SINET directly.

We are now constructing a new prototype of
cloud on demand upon SINET, and we will evaluate
its performance in this wide area network
environment.

ACKNOWLEDGEMENTS

We would like to thank all the contributors to the
dodai project, especially Shin-ichi Honiden,
Yoshitaka Kuwata, Masashi Ochida, Osamu
Habuka, Takahiro Shida, Guan Xiaohua, Motonobu
Ichimura, Takahiko Yuzawa and Daishi Kimura.

REFERENCES

GICTF: http://www.gictf.jp/index_e.html.
Hiroshi Sakai, "Standardization Activities for Cloud

Computing", NTT Technical review, Vol. 9 No. 6,
June 2011.

Shigetoshi Yokoyama, Nobukazu Yoshioka, “Cluster as a
Service for self-deployable cloud applications”,
pp.703-704, Cluster, Cloud and Grid Computing
(CCGrid), 2012 12th IEEE/ACM International
Symposium, 2012a.

Shigetoshi Yokoyama, Nobukazu Yoshioka, "An
Academic Community Cloud Architecture for Science
Applications," pp. 108-112, 2012 IEEE/IPSJ 12th
International Symposium on Applications and the
Internet (SAINT), 2012b.

Shigetoshi Yokoyama, Nobukazu Yoshioka, Motonobu
Ichimura, “Intercloud Object Storage Service: Colony”,
pp. 95-98, CLOUD COMPUTING 2012, The Third
International Conference on Cloud Computing, GRIDs,
and Virtualization, 2012a.

SINET: http://www.sinet.ad.jp/
index_en.html?lang=english.

Dodai-compute: https://github.com/nii-cloud/dodai-
compute.

Dodai-deploy: https://github.com/nii-cloud/dodai-deploy.
Puppet: http://puppetlabs.com/
Mcollective: http://puppetlabs.com/mcollective/
Colony: https://github.com/nii-cloud/colony.
OpenStack: http://openstack.org/
Shigetoshi Yokoyama, Nobukazu Yoshioka and

Motonobu Ichimura, "A Network-aware Object
Storage Service", pp.556-561, The 2nd International
Workshop on Network-aware Data Management to be
held in conjunction with SC12, 2012b.

On-demand�Cloud�Architecture�for�Academic�Community�Cloud�-�Another�Approach�to�Inter-cloud�Collaboration

669

Virtual Infrastructure Management in Private and Hybrid
Clouds, Computer, 2009.

Sky Computing, Internet Computing, 2009.
Nimbus, www.nimbusproject.org, last access on

December 24th 2012.
Mesos: A Platform for Fine-Grained Resource Sharing in

the Data Center, NSDI, 2011.
EGI-FedCloud: http://www.egi.eu/infrastructure/cloud/

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

670

