
On the Formalisation of an Application Integration Language
Using Z Notation

Mauri J. Klein, Sandro Sawicki, Fabricia Roos-Frantz and Rafael Z. Frantz
UNIJUÍ University, Department of Exact Sciences and Engineering, Bairro Universitário, Ijuí, Brazil

Keywords: Enterprise Application Integration, Domain-Specific Language, Formalisation, Z Notation.

Abstract: Companies rely on applications in their software ecosystem to provide IT support for their business processes.
It is common that these applications were not designed taking integration into account, which makes hard
their reuse. Enterprise Application Integration (EAI) focuses on the design and implementation of integration
solutions. The demand for integration has motivated the rapid growing of tools to support the construction of
EAI solutions. Guaraná is a proposal that can be used to design and implement EAI solutions, and different
from other proposals includes a monitoring system that can be configured using a rule-based language to
endow solutions with fault-tolerance. Although Guaraná is available, it has not been formalised yet. This is
a limitation since it is not possible to validate the rules written by software engineers, using the rule-based
language, to ensure that all possibilities of failure in a given EAI solution are covered. Besides, it is not
possible to generate automatically these rules based on the semantics of the EAI solution. In this paper we
provide a formal specification of the language provided by Guaraná to design EAI solutions, using Z notation.

1 INTRODUCTION

Business processes frequently demand support from
applications. Companies count on software ecosys-
tems (Messerschmitt and Szyperski, 2003) that are
mostly composed of applications that are legacy sys-
tems, packages purchased from third parties, or de-
veloped at home to solve a particular problem. As a
result, these heterogeneous software ecosystems con-
tain applications that were not designed taking inte-
gration into account. Integration is necessary, chiefly
because it allows to reuse two or more applications to
support new business processes, or because the cur-
rent business processes have to be optimised by in-
teracting with other applications within the software
ecosystem.

Enterprise Application Integration (EAI) provides
methodologies and tools to design and implement
EAI solutions. The goal of an EAI solution is to keep
a number of applications’ data in synchrony or to de-
velop new functionality on top of them, so that ap-
plications do not have to be changed and are not dis-
turbed by the EAI solution (Hohpe and Woolf, 2003).
Figure 1 illustrates a typical EAI solution, composed
of two processes that contain the integration logic and
five communication ports that allow for the interac-
tion with applications and between processes.

Sostware

Ecosystem

Integration

Solution

Business Processes

Figure 1: Typical integration solution.

In the last few years, the demand for integra-
tion has motivated the rapid growing of tools to sup-
port the design and the implementation of EAI so-
lutions, such as Camel (Ibsen and Anstey, 2010),
Spring Integration (Fisher et al., 2010), Mule (Dos-
sot and D’Emic, 2009), and Guaraná (Frantz et al.,
2011). As applications, an EAI solution can fail dur-
ing its execution. A desirable feature on integra-
tion tools is fault-tolerance, so that an EAI solution
can keep running despite of the occurrence of fail-
ures. Error monitoring is an important activity in
fault-tolerance, since it enables the detection of er-
rors. Camel, Spring Integration, and Mule provide
an error detection mechanism mostly based on the
widely-used try-catch (Goodenough, 1975). To the
best of our knowledge, Guaraná is the single proposal

314 J. Klein M., Sawicki S., Roos-Frantz F. and Z. Frantz R..
On the Formalisation of an Application Integration Language Using Z Notation.
DOI: 10.5220/0004967003140319
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 314-319
ISBN: 978-989-758-027-7
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

that provides an error detection mechanism based on
a monitoring system that can be configured using a
rule-based language to help in the detection of er-
rors (Frantz et al., 2012). Guaraná is composed of
a domain-specific language (DSL) to design EAI so-
lutions and a framework plus a runtime system that
allows for the implementation and execution of EAI
solutions. By means of the rule-based language soft-
ware engineers can write rules to express the expected
behaviour and then the correct execution of an EAI
solution designed with Guaraná DSL.

The construction of a model that precisely de-
scribes an EAI solution and allows for an analysable
model depends on formality. Although Guaraná DSL
is available, it has not been formalised yet. Its meta-
model is expressed using the Unified Modeling Lan-
guage (UML) notation (OMG, 2011) and constrained
using the Object Constraint Language (OCL) (OMG,
2012). Thus, it is not possible to reason about EAI
solutions designed using Guaraná DSL. Reasoning
would allow us not only to validate whether the rules
written by software engineers to detect errors cover
all possibilities of failure in a given EAI solution, but
also build the foundations to generate in an automated
fashion these rules based on the semantics of the EAI
solution.

According to van Lamsweerde (2000), a formal
specification must be expressed in a language made
of three components: syntax, semantics, and rules for
reasoning on the specification. The latter component
enable analysis on the specification in an automated
fashion. Therefore, in this paper, we start the formali-
sation of Guaraná DSL by providing a formal specifi-
cation of its abstract syntax usingZ notation(Spivey,
1992).

Formal Specification has been studied since of the
principles of Computer Science (Floyd, 1967; Dijk-
stra, 1975; Wing et al., 1999). The interest on for-
mality, mainly concerning language definition, has
been growing continually since that point (Bowen and
Hinchey, 2006; Harel and Rumpe, 2004; Shroff and
France, 1997). In Harel and Rumpe (2004), the au-
thors argue that any language, no matter how it is,
whether textual or visual, for programming or design,
it must be complete, with clear syntactic rules and
rigid description of their meaning. A sound language
definition must rigorously define the mapping of each
syntactic element to its meaning. Often, language de-
signers make such mapping informally. According to
the same authors, providing a formal semantics for the
languages, together with tools for analysing and exe-
cuting their behaviour and for consistency checking,
is crucial (Harel and Rumpe, 2004).

In the literature, there are a number of works pro-

viding formal specifications for modelling languages,
likewise we propose in this paper. In Mostafa et al.
(2007); Shroff and France (1997); Kim and Carring-
ton (1999), the authors formalise UML diagrams us-
ing Z notation. Hong and Mannino (1995) provide
a denotational semantics for UML. Kaliappan and
König (2012) give formal semantics to UML activ-
ity diagrams using the compositional Temporal Logic
of Actions. In another work, Vidal et al. (2012) for-
malise the semantics of OWL-S services choreogra-
phy using Petri nets. As argued by van Lamsweerde
(2000), the major contribution of a formal specifica-
tion is that it can be automatically manipulated by
tools for a wide variety of purposes, such as anima-
tions of the specification in order to check its ade-
quacy, generation of test cases and counterexamples.

The rest of this paper is organised as follows: Sec-
tion 2 gives an overview of the metamodel of Guaraná
DSL; Section 3 presents the formal specification of
the abstract syntax of Guaraná DSL; Section 4 dis-
cusses challenges and future work; and, finally, Sec-
tion 5 presents our conclusions.

2 Guaraná DSL

In this section, we provide an overview of the abstract
syntax of Guaraná DSL. Figure 2 depicts the UML-
based metamodel as introduced by authors in Frantz
et al. (2011).

In this metamodel,Solutionis the root class and
it represents an EAI solution. ASolutionhas aname
property, which is used for documentation purposes
only, and consists of one or moreProcesses, one or
moreApplications, and one or moreLinks. ClassPro-
cesscontains the integration logic necessary to inter-
act with applications within the software ecosystem
and to process data that flows in the EAI solution.
A Processis composed of at least oneEntryPort, at
least oneExitPort, at least oneTask, and at least two
Slots. Ports are composed of tasks and slots, that get
connected byLinks; these, in turn, can be eitherAp-
plicationLinks, which connectApplications to Ports,
or IntegrationLinks, which connectEntryPorts toEx-
itPorts. Every task has aname, a set ofinputs, a set
of outputs, and anexecutionBody. Both inputs and
outputs are connected to slots at run time and hold
messages; the execution body is a piece of Java code
that implements the atomic activity that must be car-
ried out by the task. Inside the execution body, a soft-
ware engineer may reference the messages held in the
inputs and outputs.

On�the�Formalisation�of�an�Application�Integration�Language�Using�Z�Notation

315

name : Name

Solution

name : Name

Process

outputs : Name[0..*]
inputs : Name[0..*]
executionBody : EString
name : Name

Task

name : Name

Application
ApplicationLink

name : Name

Link

name : Name

Port

ExitPortEntryPort

relatedOutput : Name
relatedInput : Name
name : Name

Slot

IntegrationLink

links
1..*

applications
1..*

processes
1..*

slots
2..*

tasks

process

1..*

0..1

entryPorts

process

1..*

1

exitPorts

process

1..*

1

sourceoutputSlots
10..*

targetinputSlots

10..*

application
1

port
1

target
1

source
1

link
1

tasks

port

1..*

0..1

slots
1..*

Figure 2: Guaraná DSL Metamodel from Frantz et al. (2011).

3 FORMALISATION

In this section we formalise the abstract syntax of
Guaraná DSL using Z schemas, describing its classes
and relationships.

3.1 Types and Constraints

In an EAI solution designed with Guaraná DSL, sev-
eral building blocks are identified by names. For this
purpose, we introduce the set of all names as basic
type of the specification. Similarly, we introduce a
basic type for the set of all scripts, which are a piece
of source code that implements the business logic of
tasks, cf. expression (1).

[Name,Script] (1)

The free type defined in expression (2) defines
Typeto be a set containing the main building blocks
of Guaraná DSL.

Type::= Task|Slot|Process|Application|Link (2)

In order to ensure that all building blocks have
a unique name, we write out explicitly a constraint
denoted by expression (3). Two variablestype1and

type2 should not have the same name; therefore,
if type1.nameequalstype2.name, then type1equals
type2.

∀ type1, type2 : Type• (3)

type1.name= type2.name⇔ type1= type2

We defined the remaining sets using Z schemas,
which are composed of two parts: declarative and
predicative. In order to keep the formalisation com-
prehensive and facilitate initial understanding of our
proposal, onlyProcess, Port andSolutionschemas are
composed of predicative parts.

3.2 Schemas Definition

In Z notation, a state schema that formalises the static
aspect of a class is calledClass Schema. It consists
of a declarative part in which variables are declared
and a predicative part that contains a predicate (ex-
pressed as a list of conjuncts) constraining variable
values. The variables in a class schema represent at-
tributes and object identifiers of a class.

The Task schema describes the building block
Task, in which four variables are declared: name,
inputs, outputs, and executionBody. We define the

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

316

declarative part of theTask schema using variables
without any relationship between others Z schemas.
The setsNameand Script were declared in expres-
sion (1), and variablenameis restricted by expression
(3).

We identified setsEntryPort andExitPort with a
nameand atypeof Task. The setPort is composed of
the union ofEntryPortandExitPort. The intersection
of EntryPort andExitPort forms an empty set. This
can be observed atPort schema definition.

In Guaraná DSL, a Slot can connect two tasks or
a task with a port. Thus, in the specification, theSlot
schema describes the building block Slot, in which
three variables are declared:name, slots, and inter-
slots. The Slot that connects two tasks is modelled
as a set of binary relations between the setsTaskand
Task, while connections between Task and Port is
modelled as a set of binary relations between the sets
TaskandPort.

A process of a Guaraná solution is identified by
a name and composed of slots, tasks, and ports (en-
tryPorts and exitPorts). A process is specified as a
schema, where the main predicates (constraints) and
declarations of subsets of its composition are defined.
In its predicative part, the slot definition has relation
with two distinct tasks. In other words, for alls1from
setSlot, wheret1, t2 belonging to setTask, the term

s1.slotsrelates taskt1 with taskt2. The definition in-
terslot relates bilaterallyTaskwith Port. Thus, for all
s1 from setSlot, wheret1 belongs to setTaskandpt1
belongs to setPort, the terms1.interslotrelates task
t1 with portpt1.

After the declarations of sub-sets of a process and
the definition of some predicates, we declare the other
sets that compose an integration solution. Therefore,
we describe at this stage, the Application and Link
schemas. Application is composed of a name, which
uniquely identifies the application and two sets of
ports: entryPortsand exitPorts. Link is composed
of a name which uniquely identifies the Link, and
two other sets of relationships:integrationLinkand
applicationLink. The former contains relationships
betweenEntryPortsandExitPorts, and the latter re-
lationships betweenApplicationandPort. With the
declaration of these two schemas, we can represent
the general formalisation of the EAI solution, which
is composed ofProcess, Application, Link andPort.

Finally, we specify an EAI solution. To this
end, we define theSolutionschema, which has two
constraints. The first constraint introduces integra-
tionLink as the relation betweenEntryPortof process
p1 andExitPort of processp2, wherep1 must be dif-
ferent fromp2. For all l1 in setLink andp1, p2 in
set Process, wherel1.integrationLinkrelatesEntry-
Port from processp1, with ExitPort from processp2,
such asp1andp2must be different. The second con-
straint represents the applicationLink as the relation-
ship between anApplicationand aPort ensuring that
two different Applications will never be connected to

On�the�Formalisation�of�an�Application�Integration�Language�Using�Z�Notation

317

the same port. Thus, for alll1, l2 from set Link, and
app1, app2 from set Application, andpt1 from set
Port, wherel1.applicationLinkrelatesapp1with pt1
and l2.applicationLinkrelatesapp2with pt1, if and
only if, applicationapp1is equals toapp2.

4 CHALLENGES AND FUTURE
WORK

There is a long way to go before Guaraná DSL can
have a well-defined semantics. To the best of our
knowledge, this is the first proposal addressing for-
malisation of this language. Amongst the challenges
raised, we are aware of the limitations of tool support
for Z specifications. Although Z notation has been
widely used to provide formal specification, there are
few tool support to assist in the detection of seman-
tic errors, which makes difficult the validation of the
specification. We have to investigate which technique
can be combined with Z to cope with this limitation.

The main goals in our ongoing research are:i) for-
malise the semantics and the rules for reasoning on
the domain-specific language of Guaraná proposal;ii)
validate the rules for error detection, so that we can
ensure they cover every possibility of failure in an
EAI solution designed with Guaraná DSL;iii auto-
matically generate these rules based on the semantics
of an EAI solution; and,iv) generate test cases from
the EAI solution specification.

5 CONCLUSIONS

Currently, the lack of formal semantics on Guaraná
DSL prevents the automated reasoning of the EAI so-
lutions designed with this language. In this paper, we
presented a formal specification of the abstract syntax
of Guaraná DSL using Z notation. This is a first step
towards the formalisation of the language.

We seek, with the use of formalism, to eliminate

ambiguities and inconsistencies that would only be
detected during development and testing phases. Fur-
thermore, the correction of the specification in a pre-
liminary stage of the development process avoids er-
rors that can occur later, resulting in more onerous
problems. In this context, we know that a key chal-
lenge for software engineers is to ensure the reliability
of designed EAI solutions. For this reason, the current
paper addressed the formal specification of the ab-
stract syntax of Guaraná DSL, an initial step towards
the formalisation of the whole language, with that we
want to ensure that an EAI solution is in accordance
with what was specified.

Using the mathematical basis of a formal spec-
ification technique, such as Z notation, it became
possible to explore the abstract syntax of Guaraná
DSL with precision and rigour. For that, we used
Z schemas to describe the Unified Modeling Lan-
guage classes and the Object Constraint Language
constraints of the Guaraná DSL metamodel. Thus,
the formalisation of Guaraná DSL would contribute
to the validation of an EAI solution, allowing to check
that its specification meets the integration solution re-
quirements. Besides, we believe that our work on the
formalisation of Guaraná DSL shall contribute to the
improvement and adoption of this proposal.

ACKNOWLEDGEMENTS

The research work on which we report in this paper
was supported by CAPES, FAPERGS, and the inter-
nal Research Programme 2013/14 at UNIJUI Univer-
sity.

REFERENCES

Bowen, J. P. and Hinchey, M. G. (2006). Ten Command-
ments of Formal Methods ...Ten Years Later.IEEE Com-
puter, 39(1):40–48.

Dijkstra, E. W. (1975). Guarded Commands, Nondeter-
minacy and Formal Derivation of Programs.Commun.
ACM, 18(8):453–457.

Dossot, D. and D’Emic, J. (2009).Mule in Action. Man-
ning.

Fisher, M., Partner, J., Bogoevici, M., and Fuld, I. (2010).
Spring Integration in Action. Manning.

Floyd, R. W. (1967). Assigning meanings to programs. In
Proceedings of a Symposium on Applied Mathematics,
volume 19 ofMathematical Aspects of Computer Sci-
ence, pages 19–31.

Frantz, R. Z., Corchuelo, R., and Molina-Jiménez, C.
(2012). A proposal to detect errors in Enterprise Ap-

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

318

plication Integration solutions.Journal of Systems and
Software, 85(3):480–497.

Frantz, R. Z., Quintero, A. M. R., and Corchuelo, R. (2011).
A Domain-Specific Language to Design Enterprise Ap-
plication Integration Solutions.Int. J. Cooperative Inf.
Syst., 20(2):143–176.

Goodenough, J. B. (1975). Exception handling: Issues
and proposed notation.Communications of the ACM,
18(12):683–696.

Harel, D. and Rumpe, B. (2004). Meaningful Model-
ing: What’s the Semantics of "Semantics"?Computer,
37(10):64–72.

Hohpe, G. and Woolf, B. (2003).Enterprise Integration
Patterns - Designing, Building, and Deploying Messag-
ing Solutions. Addison-Wesley.

Hong, S. N. and Mannino, M. V. (1995). Formal seman-
tics of the unified modeling language {LU} .Decision
Support Systems, 13(3-4):263–293.

Ibsen, C. and Anstey, J. (2010).Camel in Action. Manning.

Kaliappan, P. S. and König, H. (2012). On the Formaliza-
tion of UML Activities for Component-based Protocol
Design Specifications. InProceedings of the 38th In-
ternational Conference on Current Trends in Theory and
Practice of Computer Science, SOFSEM’12, pages 479–
491.

Kim, S.-K. and Carrington, D. (1999). Formalizing the
UML Class Diagram Using object-Z. InProceedings of
the 2Nd International Conference on The Unified Mod-
eling Language: Beyond the Standard, UML’99, pages
83–98.

Messerschmitt, D. and Szyperski, C. A. (2003).Software
Ecosystem: Understanding an Indispensable Technology
and Industry. MIT Press.

Mostafa, A. M., Ismail, M. A., Bolok, H. E., and Saad,
E. M. (2007). Toward a Formalization of UML2.0
Metamodel using Z Specifications. InSoftware Engi-
neering, Artificial Intelligence, Networking, and Paral-
lel/Distributed Computing, 2007. SNPD 2007. Eighth
ACIS International Conference on, volume 1, pages 694–
701.

OMG (2011). UML 2.4 Superstructure Specification.

OMG (2012). OCL 2.3.1 Object Constraint Language.

Shroff, M. and France, R. B. (1997). Towards a formaliza-
tion of UML class structures in Z. InCOMPSAC, pages
646–651. IEEE Computer Society.

Spivey, J. M. (1992).The Z Notation: A Reference Manual.
Prentice Hall.

van Lamsweerde, A. (2000). Formal specification: a
roadmap. InICSE - Future of SE Track, pages 147–159.

Vidal, J. C., Lama, M., and BugarÃn, A. (2012). Toward
the use of Petri nets for the formalization of OWL-S
choreographies.Knowledge and Information Systems,
32(3):629–665.

Wing, J., Woodcock, J., and Davies, J. (1999). InFM’99 -
Formal Methods: World Congress on Formal Methods in
the Development of Computing Systems, volume 1708–
1709 ofLNCS. Springer-Verlag.

On�the�Formalisation�of�an�Application�Integration�Language�Using�Z�Notation

319

