
Scaling Software Experiments to the Thousands

Christian Neuhaus1, Frank Feinbube1, Andreas Polze1 and Arkady Retik2

1Hasso Plattner Institute, University of Potsdam, Prof-Dr.Helmert-Str. 2-3, Potsdam, Germany
2Microsoft Corporation, One Microsoft Way, Redmond, U.S.A.

Keywords: Massive Open Online Courses, Online Experimentation Platform, Software Engineering, Operating Systems,
InstantLab, Windows.

Abstract: InstantLab is our online experimentation platform that is used for hosting exercises and experiments for op-
erating systems and software engineering courses at HPI. In this paper, we discuss challenges and solutions
for scaling InstantLab to provide experiment infrastructure for thousands of users in MOOC scenarios. We
present InstantLabs XCloud architecture - a combination of a privat cloud resources at HPI combined with
public cloud infrastructures via ”cloudbursting”. This way, we can provide specialized experiments using VM
co-location and heterogeneous compute devices (such as GPGPU) that are not possible on public cloud in-
frastructures. Additionally, we discuss challenges and solutions dealing with embedding of special hardware,
providing experiment feedback and managing access control. We propose trust-based access control as a way
to handle resource management in MOOC settings.

1 INTRODUCTION

Knowledge acquisition has never had it better: While
our ancestors had to buy very expensive books, we
can look up virtually any information on the inter-
net. Universities follow that trend by making their
teaching materials available online: Lectures can be
streamed and downloaded from platforms like iTunes
U. Websites like Coursera and Udacity provide com-
plete courses with reading materials, video lectures
and quizzes - sometimes also run directly by univer-
sities (e.g. Stanford Online or openHPI). However,
educational resources should not be limited to pas-
sively consumed material: 10 years of experience in
teaching operating systems courses to undergraduate
students at HPI have shown us that actual hands-on
experience in computer science is irreplaceable.

InstantLab at HPI. InstantLab is a web platform
that is used in our undergraduate curriculum to pro-
vide operating systems experiments for student ex-
ercises at minimum setup and administration over-
head. InstantLab uses virtualization technology to
address the problem of ever-changing system config-
urations: experiments in InstantLab are provided in
pre-packaged containers. These containers can be de-
ployed to a cloud infrastructure and contain virtual
machine images and setup instructions to provide the

exact execution environment required by the experi-
ment. InstantLab’s core component is a web applica-
tion, through which users can instantiate and conduct
experiments. The running instances of these experi-
ments can be accessed and controlled through a termi-
nal connection, which is set up from within the user’s
web browser (see figures 1, 2).

User Web Browser Experiment Execution Host

Figure 1: Browser-based access to experiments.

Figure 2: InstantLab: Live Experiments in the Browser.

Neuhaus C., Feinbube F., Polze A. and Retik A..
Scaling Software Experiments to the Thousands.
DOI: 10.5220/0004965505940601
In Proceedings of the 6th International Conference on Computer Supported Education (CSEDU-2014), pages 594-601
ISBN: 978-989-758-020-8
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



Over several terms of teaching operating systems
courses, InstantLab has proven to be a helpful tool: it
allows us to offer various software experiments with
very little setup work, ranging from elaborate kernel-
debugging exercises over demonstrations of historic
operating systems (e.g. Minix, VMS) to more general
software engineering exercises.

2 SCALING TO THE
THOUSANDS

While InstantLab is used in teaching in our under-
graduate classes with great success, we aim to bring
this level of hands-on experience and practical exer-
cises to massive open online-courses (MOOCs). This
is where it is needed the most: Students at regular uni-
versities usually have access to university-provided
hardware resources. Students of online courses how-
ever come from diverse backgrounds and are scattered
all over the world – the only equipment that can be
assumed to be available to the participants is a web
browser. In this section, we review state of the art
of MOOCs and software experiments and identify the
challenges that lie ahead.

2.1 State of the Art

Recently, massive open online courses have received
plenty of attention as a new way of providing educa-
tion and teaching. This is reflected by a several web
platforms supporting MOOCs (e.g. Coursera, Udac-
ity, edX, Khan Academy, Stanford Online, openHPI,
iversity). On the software side, new software frame-
works (e.g. lernanta1, Apereo OAE2) and Software-
as-a-Service platforms (e.g. Instructure Canvas) offer
the technical foundation for MOOCs.

In learning theory, the need and usefulness for
learning from practical experience has been recog-
nized (Grünewald et al., 2013; Kolb et al., 1984).
Therefore, most MOOCs incorporate student assign-
ments complementing the teaching material, where
results are handed in and are used for feedback. Most
of these assignments are quizzes, which can be easily
evaluated by comparing the student’s input to a list
of correct answers. More complex assignments (e.g.
calculations, programming exercises) are usually con-
ducted by students handing in results (e.g. calculation
results, program code). A solution for automated gen-
eration of feedback for programming exercises was

1https://github.com/p2pu/lernanta/
2http://www.oaeproject.org/

proposed by (Singh et al., 2013). However, con-
ducting programming assignments and software ex-
periments on students’ hardware creates several chal-
lenges: The heterogeneity of students’ hardware and
software makes it difficult to ensure consistent, repro-
ducible experiment conditions. This makes software
problems hard to troubleshoot (Christian Willems,
2013). Additionally, licensing conditions and pricing
of software products can limit the availability and pre-
vent use for open online courses. Therefore, practical
assignments in MOOCs are currently mostly limited
to non-interactive tasks that do not offer students stu-
dents hands-on experience with practical software ex-
periments.

2.2 Challenges and Chances

In this paper we present an architecture for flexi-
ble and interactive software experiments for massive
open online courses. We build on our experiences
with InstantLab at HPI using pre-packaged software
experiments that are executed in virtual machines and
present an architecture that leverages public cloud
infrastructure resources to cope with the high user
load. However, offering live software experiments at
MOOC-typical scale is fundamentally different from
a classroom scenario: On one hand, the massive scale
poses new challenges that have to be met. On the
other hand, the large number of participants offers
new opportunities of to improve education and the
platform itself. In this paper, we address the following
issues:
GPU and Accelerator Hardware. Embedding spe-

cial hardware resources into cloud-hosted exper-
iments is a difficult task: We show how new vir-
tualization technology can assign physical hard-
ware to different users and employ a compilation-
simulation-execution pipeline to use scarce physi-
cal hardware resources only for tested and correct
user programs (see section 3.3).

Automated Feedback & Grading. Learning from
experience with practical experiments is only pos-
sible when feedback on a students performance
is provided. To gather the required information,
we propose methods for experiment monitoring
by using virtual machine introspection to monitor
students performance during assignments (see
sections 4,5).

Automated Resource Assignment. Access to ex-
pensive experiment resources should only be
granted to advanced and earnest participants of
a course. Traditional access control mechanisms
fall short as they require manual privilege assign-
ment. Instead, we propose a trust-based access



control scheme to automatically govern access to
experiment resources (see section 6).

3 XCloud ARCHITECTURE

This section provides an overview of our XCloud ar-
chitecture that allows us to set up, manage and main-
tain complex experiment testbeds of heterogeneous
hardware on cloud infrastructure (see figure 3). Con-
ceptionally, it consists of three distinctive parts: The
Middleware, the Execution Services and the Data
Storage.

The Middleware hosts a web application that al-
lows to start experiments and access virtual desktop
screens. Users can connect to it using a web browser
or arbitrary network protocols (e.g. SSH). The Mid-
dleware manages user identities and mediates their
access to the actual experiments hosted by the Exe-
cution Services. It also controls the deployment of
experiments on appropriate hardware resources.

The Execution Services manage hardware re-
sources for execution of experiments and provide an
infrastructure to monitor the user activity by a vari-
ety of means ranging from simple log mechanisms to
more elaborate techniques such as virtual machine in-
trospection.

The Data Storage service is our reliable store for
user data, experiment results and the activity log that
holds all the information about the users activities.
These logs are the basis for our trust-based access
control as described in section 6. Furthermore, the
Data Storage holds virtual machine disk images en-
capsulating our experiments.

3.1 XCloud by Example

Within our InstantLab curriculum, we have two spe-
cial teaching objectives that require the extension of
the standard IaaS concepts and that are consequently
incorporated into our XIaaS model: network-related
experiments and accelerator experiments. For net-
work experiments, we extend the IaaS concept with
an explicit notion of a (virtualized) network intercon-
nect within the cloud. For accelerator experiments,
we distinguish between different types of processing
units (like x64 or Itanium) and dedicated accelerator
boards (like Nvidia Tesla or Intel Xeon Phi).

As a proof-of-concept, we currently run our ex-
periments on our XIaaS implementation that is based
on HPs Converged Cloud and hosted within the
FutureSOC-Lab at the Hasso Plattner Institute in Ger-
many.

Browser

User

Middleware

Access Control

Activity Monitor

Network Proxy

Load Balancing

Cloud Adapters

Web Application

Execution Services

Activity Monitor

Hypervisor

Introspection

Data Storage

User Data

Activity Log

Experiment Images

Figure 3: XCloud architecture.

As they are conventional XIaaS services, our
components could be accessed separately by clients.
When working with the experiment scenarios,
though, our students experience the XIaaS infrastruc-
ture as a big multicomputer with compute nodes, ac-
celerator nodes, and an interconnection network.

As an example, consider experiments that allow
students to monitor the boot phase of an operating
system or debug its kernel. In these experiments it
is crucial that the student can connect remotely to the
systems that are studied from another virtual machine
providing its with appropriate monitoring tools. With
XCloud, we treat the two virtual machines as XIaaS
components and create the required connection (e.g.
serial cable) by linking their hardware interfaces. XI-
aaS components are discussed in the next section.

To support these kinds of scenarios while enforc-
ing our security policies, the communication end-
points that the clients receive are grouped and gov-
erned be our trust-based access control scheme (see
section 6). For the convenience of our students, these
services are not restricted to the web service proto-
col only. Students can also use standard remote dis-
play connections (RDP) to connect to their virtual ma-
chines or directly connect to the XCloud interconnect
using protocols such as the Message Passing Interface
(MPI).

Another class of experiments that heavily rely
on XCloud’s interconnect features, are parallelization
tasks where students need to create and run parallel
applications that utilize heterogeneous compute re-
sources using a master-worker-style execution pattern
over multiple virtual machines.

3.2 XIaaS Components

With XCloud, we introduce XIaaS components (see
Figure 4) which extend the IaaS abstraction to support
our teaching objectives. A XIaaS component has the
following characteristics:

Network Interface. XIaaS components can not only



be accessed using standard network services pro-
vided by their operating systems, but can also be
interconnected to form a desired network topol-
ogy.

Hardware Interface. The hardware interfaces pro-
vided by XIaaS components allow users to ac-
cess arbitrary ports of the virtual hardware, like
screen connection, Ethernet, USB, debugger con-
nections, etc. using tunneling protocols. Further-
more, they can be redirected to hardware inter-
faces of other XIaaS components, allowing for a
variety of new usage opportunities.

Physical Devices. To support modern accelerator
cards or other specialized hardware setups, In-
stantLab provides generic deployment mecha-
nisms that use hardware descriptions to configure
the hardware according to the needs of the usage
scenario.

Virtual
Machine

Debugger
VNC

SSH, REST

Virtual Devices

Screen

I/O

Harddisk

Networking

Physical Devices

Xeon Phi

Tesla K20

Intel SCC

GPGPUVirtual Network

Hardware Interface

Network Interface

Figure 4: XIaaS Component.

3.3 Accelerator Hardware
Virtualization

The current trends in hardware developments lead to
an increasing amount of variation, both in hardware
characteristics and hardware configurations. In the
future, general purpose processors will be supported
by a variety of special accelerators, which will re-
quire diligent distribution of computation tasks. The
first type of accelerators that gained a great popular-
ity are GPU Compute Devices. Current versions sup-
port a wide variety of applications and programming
styles and the literature is full of success stories of al-
gorithms that gain drastic performance benefits from
GPU acceleration. Intel, joining this trend, introduced
a new type of accelerators with its Intel’s Xeon Phi
accelerator boards which are special in the sense of
being fully x86-compatible. Because of the benefits
of accelerators for performance-hungry workloads,
several cloud-hosters such as Amazon, Nimbix and
peer1hosting recently added accelerator-based cloud
products to their portfolio. These solutions are mostly
IaaS products providing exclusive direct access to
physical GPUs, thus providing high performance, and
fidelity, while disallowing multiplexing, and interpo-
sition (Dowty and Sugerman, 2009).

Direct access allows applications to use all the ca-
pabilities of the GPUs and exploit their full perfor-
mance. This is beneficial for us, since representa-
tive performance and high fidelity is especially im-
portant in our scenario, since we want our students
to learn about performance characteristics and perfor-
mance optimization techniques of accelerators ((Kirk
and mei Hwu, 2010),(Feinbube et al., 2010)). The
overhead introduced by more sophisticated virtualiza-
tion mechanisms could have a negative effect on ex-
ecution speed and the range of supported features of
the virtualized device.

The lack of mediation between virtual machines
and physical hardware makes it impossible to sup-
port features that are usually inherent to virtualiza-
tion technologies: VM migration, VM hibernation,
fault-tolerant execution, etc. The required interposi-
tion could be realized by implementing means to stop
a GPU at a given point in time, read its state, and to
transfer it to another GPU that will then seamlessly
continue with the computation. For our scenario this
is not as important, though, because student experi-
ments do not require a highly reliable execution: they
can simply be repeated if they fail.

Another important feature that is usually expected
from virtualization is the idea of multiple VMs shar-
ing physical hardware. For us, the amount of multi-
plexing that is required depends primarily on the num-
ber of accelerators that we can provide and the num-
ber students that we want to allow to work with our
MOOC exercise system concurrently.

In an ideal world, we could provide every student
with an direct, exclusive access to one accelerator, al-
lowing them the best programming experience. The
drawback would be that we would then need to ei-
ther restrict the number of students or dynamically
increasing the number of accelerators by relying on
other cloud offerings resulting in additional costs.

The other extreme would be a situation where we
only have a very small number of accelerators for our
exercises. This might be the case because the accel-
erator type is novel and not provided by any cloud
hoster. To allow for realistic execution performance
and high fidelity in such a scenario, the only option
would be to use a job queue for the students’ task sub-
missions and execute one task after another on each
accelerator. Since the user experience is rather lim-
ited in these situations, we described some techniques
to improve both, the user experience and the perfor-
mance of MOOCs where many students are working
with single unique physical experiments in (Tröger
et al., 2008). One possibility is to separate the compi-
lation of the students experiment code from the actual
execution on the experiment. The compilation can be



performed on generic VMs without dedicated accel-
erator hardware. This enables quick feedback dur-
ing development without actually using the acceler-
ator hardware. For running the compiled code, vir-
tualization techniques should allow multiple users to
work simultaneously with software experiments on
the same physical hardware without interfering with
each other. To support this scenario GPUs need mul-
tiplexing capabilities. While GPU vendors are cur-
rently working with vendors of virtualization solu-
tions like VMware (Dowty and Sugerman, 2009) and
Xen (Dalton et al., 2009) on architectures for per-
formant GPU virtualization, some researchers found
ways to allow for this even today: Ravi et al. imple-
mented a GPU virtualization framework for cloud en-
vironments (Ravi et al., 2011) by leveraging the abil-
ity of modern GPUs to separate execution contexts
and the ability to run concurrent kernels exclusively
on dedicated GPU streaming processors. (NVIDIA
Corporation, 2012)

4 USER ACTIVITY
MONITORING

The key difference between MOOCs and traditional
schools or universities is the proportion between the
number of students and teaching staff. Thousands of
users regularly sign up for open online courses which
are offered and organized by only a small team. This
proportion means that personal support work for in-
dividual participants to assign experiment resources
and provide tutoring and feedback has to be kept at a
minimum. To address this problem, we propose auto-
matic feedback and grading mechanisms (see section
5) and automatic resource assignment (see section 6)
based on observed behavior of students on the plat-
form. Both mechanisms require information about
how users interact with the platform. In this section,
we propose activity monitoring on the web platform
and observation of active software experiments.

The web platform itself provides valuable infor-
mation of student activity during a course. The web
platform can record student activity such as logins to
the platform, access of video lectures and starting, fin-
ishing or abortion of experiments. This information is
stored in the activity log (see figure 3) and evaluated
to assess the students’ continuity in following the con-
tents of the course curriculum.

In addition, we extend the activity monitoring to
active software experiments, which are running in-
side of virtual machines in our approach. This en-
ables us to gather more detailed information required
for feedback and grading which is not only based on

the outcome of assignments but can consider how the
given task was solved. A monitoring solution for ac-
tive experiments should be susceptible to user manip-
ulation (tamper-resistant), not alter the execution of
the experiment (transparent) and have only a small
performance impact (efficient). These criteria are not
met by in-VM monitoring modules. Instead, we pro-
pose virtual machine introspection-based monitoring
(Pfoh et al., 2009; Garfinkel et al., 2003). By imple-
menting monitoring on the hypervisor level, it is pro-
tected against manipulation by the user and does not
require changing the software images of experiments
to install monitoring modules. Introspection on the
hypervisor level is facing the challenge of bridging
the semantic gap (Chen and Noble, 2001): Context
on data structures is not available from the operating
system but has to be inferred from context. However,
since we know the exact software versions in our ex-
periment images we can provide the necessary con-
text information to interpret observations. While VM
introspection can cover virtually all activity in exper-
iments, certain events are of particular interest: The
use of privileged operations (system calls, hardware
access, I/O) can be efficiently monitored as they trap
into the hypervisor – this gives a good overview of ac-
tivity on the system. Additionally, the memory can be
monitored to detect loaded software modules or check
the integrity of code sections. Further information can
be gathered by monitoring the activity on the network
link.

Software support for VM introspection is avail-
able for different platforms and hypervisors. The
open source library LibVMI3 is compatible with KVM
and Xen hypervisors while VProbes4 is offered for
VMWare solutions.

5 AUTOMATED FEEDBACK AND
GRADING

To fully benefit from learning at scale, both the feed-
back and the grading procedures must be supported
by automated tools. The quality of these tools must
increase with both present students and those from
former courses. Since most people do not have
outstanding autodidactic abilities, for MOOC-based
courses getting a large number of participants in-
volved is crucial. A good learning environment can
only be provided if the discussion forums are popu-
lated with active people. Their collaborations in exer-

3https://code.google.com/p/vmitools/
4http://www.vmware.com/products/beta/

ws/vprobes reference.pdf



Table 1: Means and metrics for student achievements as a basis for feedback and grading.

Scope Means Metrics
Students (System Interaction Tasks)
1.1 Knowledge Quizzes; clozes correct / incorrect answers
1.2 Actions VM Introspection, scripts correct / incorrect VM states; violations
Student Programs (Programming Tasks)
2.1 Source code keyword scans; pattern detection; correct / incorrect keywords and libraries

AST analysis;
2.2 Actions Integration tests; run-time monitoring; correct / incorrect results and states

sensor data; See 1.2 (student actions) as well.

cises and discussions of the learning material not only
help the students to get a better understanding of the
course contents, but also document the problems that
students found in lectures and exercises and thus are
good source for ideas on how to improve and extend
the course for the future.

One of the most sensitive topics, though, is the
grading of learning results. For the purpose of our lec-
tures, students are graded by their knowledge and ac-
tions, as well as, the source code and behavior of their
respective programs. Table 1 gives an overview of the
means that can be used to acquire information about
their qualification and the according metrics. We pro-
vide four levels of information that can be combined
to evaluate and grade our students.

The knowledge that the student acquired in the
course can be automatically tested and graded using
quizzes and clozes. They get instant feedback about
their understanding of the course material and it is
very straightforward to use this information to gen-
erate grades automatically.

Since our courses heavily rely on hands-on ex-
periences and students directly manipulating system
states, documenting those states is crucial. We use the
VM Introspection mechanisms to check whether or
not a student achieved a desired system state (see sec-
tion “Experiment monitoring”). Furthermore special
scripts provided by the course teaching team can be
introduced and run inside the VM for additional state
checks. Many user interactions are already measured
for our trust-based access control technology (see sec-
tion 6). The level of trustworthiness and the num-
ber of deviations from expected behavior can also be
taken into account when it comes to direct feedback
and grading of a students performance.

Programming exercises offer additional informa-
tion that can be used for student assessments: the
source code and the run-time behavior of the students’
programs. Source code can not only be checked for
correct compilation, but analyzed in more sophisti-
cated ways. Often it is required, that students use pre-
defined keywords or library functions to achieve the

assigned task. Other keywords or library calls may
be forbidden. Simple white- and black-lists and text
scans can be used for these purposes. Based on such
a checker, patterns could be investigated, e.g. if after
an “open()” call there is also a “close()” call. Do-
ing this in a more elaborate way, though, requires to
work on the abstract syntax tree (AST) representation
of the program code. Besides simple pattern detec-
tion ASTs allow to compare solutions with one an-
other. Student programs can be clustered and com-
pared with a variety of standard solutions. The ac-
tions that a running student program executes can be
checked in the same fashion as the students actions
himself. Furthermore integration tests can be applied
to see if the programs behavior and results match the
expectations. Language runtimes like the Java Vir-
tual Machine also allow to use sampling, profiling,
reflection and other runtime monitoring mechanisms
to evaluate the behavior of student programs in detail.
If physical experiments are involved sensor data pro-
vided by these setups can also be used. All the infor-
mation that can be acquired at those four levels can be
used to provided immediate feedback and automated
grading.

6 AUTOMATIC RESOURCE
ASSIGNMENT

Offering live VM-based software experiments to a
large audience is a resource-intensive workload. Due
to budget constraints of teaching institutions, the
amount of these resources is limited. While cloud
platforms can scale up to handle high-load situations,
this also increases cost. In addition, specialized hard-
ware (e.g. accelerator cards, GPGPUs) often can-
not be used by different users simultaneously (i.e.
no overcommitment) and are only present in limited
numbers. Therefore, a resource assignment scheme is
required that can automatically assign experiment re-
sources to earnest participants of the course and detect
and prevent misuse of the provided resources.



To achieve a self-managing solution, we propose
a trust based access control (TBAC) scheme, which
assigns resources to students based on their previous
behaviour on the platform. TBAC is a dynamic ac-
cess control scheme based on the notions of reputa-
tion and trust (Josang et al., 2007): Reputation is in-
formation that describes an actor’s standing in a sys-
tem. Based on such information, trust levels can ex-
press a subjective level of confidence that this actor
will behave in a desired way in the future. These
trust levels can be represented as values on numer-
ical scales x 2 [0;1], where low values indicate low
confidence and 1 indicates certainty. These levels can
be calculated based on personal experience with ac-
tors and also include reputation information gathered
from other actors (federated reputation system) or a
centralized authority (centralized reputation system).
Based on these concepts, Trust-based Access Control
(TBAC) represents a dynamic extension to traditional
models of access control (mandatory, discretionary,
role-based) ((Boursas, 2009)(Chakraborty and Ray,
2006)(Dimmock et al., 2004)) to incorporate trust be-
tween actors into the access policy definitions. Poli-
cies can then specify access criteria based on a certain
level of trust. Access is granted, if the requesting ac-
tor has a sufficient level of trust assigned and denied
otherwise. This concept has been proposed for use in
pervasive computing ((Almenárez et al., 2005)), P2P-
networks (Tran et al., 2005) and is used to govern user
permissions on the popular website Stackoverflow.

Activity
Log

Trust-based
Access Control Engine

user
resource

(i.e. experiment) policy

access request

access decision
grant / deny

Figure 5: Trust-based Access Control System.

The advantage of using TBAC for resource
assignment is self-management of the system: trust
levels are automatically derived from a user’s behav-
ior on the platform, by using the information gathered
through monitoring of interactions with the platform
and experiments, which is stored in the activity log
(see figure 5). Access policies for resource-intensive
software experiments can then be specified using
these trust-levels. This makes policies specific to
experiments, but not to users – eliminating the need
for manual creation of user-specific access policies.

The properties of the curriculum of online courses

Introduction Basic Advanced Bonus

easier 
less resource-intensive 

experiments harder
more resource-intensive

Figure 6: Course curriculum: Difficulty Stages.

can be used in designing such TBAC systems and
policies. We assume that the curriculum starts out
with introductory lessons, where students familiar-
ize themselves with basic material, where software
experiments are not yet required (see figure 6). In
subsequent lessons, the content will become more
demanding and require practical experiments, which
should only be available to students who successfully
completed the previous lessons. We make use of
these properties by employing a step-wise approach
in building trust levels. To get access to the software
experiments in a new curriculum stage, students have
to build according trust levels by completing assign-
ments in the previous stage. As trust levels start out at
0 and do not fall below this level, the mechanism can-
not be circumvented by starting with a fresh account.

7 SUMMARY

Massive Open Online Courses enjoy great popular-
ity and are used by millions of users worldwide.
However, the possibilities for practical assignments
and hands-on exercise are mostly limited to simple
quizzes. In this paper, we introduce InstantLab – a
platform for running software experiments on cloud
infrastructure and making them accessible through a
browser-based remote desktop connection. To truly
scale this approach to thousands of users, several
challenges have to be met: We address the problem
of embedding specialized accelerator hardware into
virtualized experiments. As experiment resources are
limited, they should be protected from abuse and as-
signed to users with an earnest learning intent. We
employ an automatic resource assignment based on
trust levels which are derived from users activities on
the platform. As practical experiments requires de-
tailed feedback on the students action to be effective:
We draw information from runtime virtual machine
introspection to provide detailed feedback about as-
signments during and after experiments.

REFERENCES

Almenárez, F., Marı́n, A., Campo, C., and Garcı́a R, C.
(2005). Trustac: Trust-based access control for perva-
sive devices. Security in Pervasive Computing, pages
225–238.



Boursas, L. (2009). Trust-based access control in feder-
ated environments. PhD thesis, PhD thesis, Technis-
che Universität in München.

Chakraborty, S. and Ray, I. (2006). Trustbac: integrating
trust relationships into the rbac model for access con-
trol in open systems. In Proceedings of the eleventh
ACM symposium on Access control models and tech-
nologies, pages 49–58. ACM.

Chen, P. M. and Noble, B. D. (2001). When virtual is better
than real [operating system relocation to virtual ma-
chines]. In Hot Topics in Operating Systems, 2001.
Proceedings of the Eighth Workshop on, pages 133–
138. IEEE.

Christian Willems, Johannes Jasper, C. M. (2013). Intro-
ducing hands-on experience to a massive open on-
line course on openhpi. In Proceedings of IEEE In-
ternational Conference on Teaching, Assessment and
Learning for Engineering (TALE 2013), Kuta, Bali,
Indonesia. IEEE Press.

Dalton, C. I., Plaquin, D., Weidner, W., Kuhlmann, D.,
Balacheff, B., and Brown, R. (2009). Trusted virtual
platforms: a key enabler for converged client devices.
SIGOPS Oper. Syst. Rev., 43(1):36–43.

Dimmock, N., Belokosztolszki, A., Eyers, D., Bacon, J.,
and Moody, K. (2004). Using trust and risk in role-
based access control policies. In Proceedings of the
ninth ACM symposium on Access control models and
technologies, pages 156–162.

Dowty, M. and Sugerman, J. (2009). Gpu virtualization on
vmware’s hosted i/o architecture. SIGOPS Oper. Syst.
Rev., 43(3):73–82.

Feinbube, F., Rabe, B., Löwis, M., and Polze, A. (2010).
NQueens on CUDA: Optimization Issues. In 2010
Ninth International Symposium on Parallel and Dis-
tributed Computing, pages 63–70, Washington, DC,
USA. IEEE Computer Society.

Garfinkel, T., Rosenblum, M., et al. (2003). A virtual
machine introspection based architecture for intrusion
detection. In NDSS.

Grünewald, F., Meinel, C., Totschnig, M., and Willems, C.
(2013). Designing moocs for the support of multiple
learning styles. In Scaling up Learning for Sustained
Impact, pages 371–382. Springer.

Josang, A., Ismail, R., and Boyd, C. (2007). A survey of
trust and reputation systems for online service provi-
sion. Decision Support Systems, 43(2):618–644.

Kirk, D. and mei Hwu, W. (2010). Programming Massively
Parallel Processors: A Hands-on Approach. Morgan
Kaufmann, 1 edition.

Kolb, D. A. et al. (1984). Experiential learning: Experience
as the source of learning and development, volume 1.
Prentice-Hall Englewood Cliffs, NJ.

NVIDIA Corporation (2012). NVIDIA’s Next Generation
CUDA Compute Architecture Kepler GK110.

Pfoh, J., Schneider, C., and Eckert, C. (2009). A formal
model for virtual machine introspection. In Proceed-
ings of the 1st ACM workshop on Virtual machine se-
curity, pages 1–10. ACM.

Ravi, V. T., Becchi, M., Agrawal, G., and Chakradhar, S.
(2011). Supporting gpu sharing in cloud environments

with a transparent runtime consolidation framework.
In Proceedings of the 20th international symposium
on High performance distributed computing, HPDC
’11, pages 217–228, New York, NY, USA. ACM.

Singh, R., Gulwani, S., and Solar-Lezama, A. (2013). Auto-
mated feedback generation for introductory program-
ming assignments. In Proceedings of the 34th ACM
SIGPLAN conference on Programming language de-
sign and implementation, PLDI ’13, pages 15–26,
New York, NY, USA. ACM.

Tran, H., Hitchens, M., Varadharajan, V., and Watters, P.
(2005). A trust based access control framework for
p2p file-sharing systems. In System Sciences, 2005.
HICSS’05. Proceedings of the 38th Annual Hawaii In-
ternational Conference on, pages 302c–302c. IEEE.

Tröger, P., Rasche, A., Feinbube, F., and Wierschke, R.
(2008). SOA Meets Robots - A Service-Based Soft-
ware Infrastructure for Remote Laboratories. Interna-
tional Journal of Online Engineering (iJOE), 4.


