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Abstract: Distributed storage systems take advantage of the network, storage and computational resources to provide
a scalable infrastructure. But in such large system, failures are frequent and expected. Data replication is
the common technique to provide fault-tolerance but suffers from its important storage consumption. Erasure
coding is an alternative that offers the same data protection but reduces significantly the storage consumption.
As it entails additional workload, current storage providers limit its use for longterm storage. We present the
Mojette Transform (MT), an erasure code whose computations rely on fast XOR operations. The MT is part
of RozoFS, a distributed file system that provides a global namespace relying on a cluster of storage nodes.
This work is part of our ongoing effort to prove that erasure coding is not necessarily a bottleneck for intense
I/O applications. In order to validate our approach, we consider a case study involving a storage cluster of
RozoFS that supports video editing as an I/O intensive application.

1 INTRODUCTION

Distributed storage systems have been used to provide
data reliability. Failures in such large systems are con-
sidered as the norm, and can come either from hard-
ware or software considerations. They can result in
dramatic data loss and/or the crash of the service. The
traditional way to deal with data protection is to repli-
cate the data. Oncen copies of data are distributed
across multiple network nodes, the system is able to
face n− 1 failures. If a node has a breakdown, its
data is not accessible anymore, but other copies are
still available on other nodes. On the other hand, this
technique is expensive, particularly for huge amounts
of data. Replication is the default data protection fea-
ture included in distributed storage systems.

Erasure coding is an alternative that provides the
same data protection but reduces significantly the
storage consumption. Optimal codes, called Maxi-
mal Distance Separable (MDS), aim at encodingk
data blocks inton parity blocks, withn≥ k. The en-
coded blocks hold enough redundancy to recover the
former data from any subset ofk parity blocks during
the decoding process. Compared to replication whose
storage overhead isn, erasure coding’s overhead is
defined byn/k. However, encoding and decoding re-
quire further computations compared to the simple

replication technique. Efforts are done today to de-
sign efficient codes. The most famous ones are the
Reed-Solomon (RS) codes. They rely on Galois field
operations. In this arithmetic, addition is fast as it
corresponds to exclusive-OR (XOR), but multiplica-
tion has many implementations which are much more
computational expensive. The storage systems that
provide erasure coding by RS suffer from the slowing
down of its computations. Many implementations of
RS codes exist. Examples of implementation libraries
are OpenFEC1 and Jerasure (Plank, 2007).

We propose the use of the Mojette Transform
(MT) (Normand, Kingston, and́Evenou, 2006) as an
erasure code for distributed storage. The MT relies
only on additions and its implementation uses the fast
XOR operations. The MT is part of RozoFS2, an
open-source software providing a distributed file sys-
tem. In RozoFS, when a client wants to store a file,
the data is cut into small chunks of 8 KB. Chunks are
composed ofk blocks of fixed size which depends on
the desired protection. These blocks are encoded into
n parity blocks, which are discrete projections in the
Mojette formalism. These projections are then dis-
tributed to storage nodes and the system is able to face

1http://openfec.org/
2code available at http://www.rozofs.org
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n− k failures. Decoding is done client-side after re-
trievingk blocks out of then from storage nodes.

The current storage systems provide erasure cod-
ing to benefit from the storage capacity saving for
longterm storage. When intensive data I/Os are
needed, replication is put forward because of the ad-
ditional workload of erasure codes. Our work differs
from this position by exploring the use of an erasure
code for intensive applications. We experiment the
concept by applying RozoFS to video editing.

The rest of the paper is structured as follows: Sec-
tion 2 briefly describes some distributed storage sys-
tems and their data protection policy. In Section 3,
we present the MT and its erasure code characteris-
tics, while Section 4 describes how RozoFS use it to
provide a distributed file system. The video editing
experiment is presented in section 5 and demonstrates
that erasure coding is not a bottleneck for I/O inten-
sive applications. Section 6 concludes the paper with
the possible future work.

2 RELATED WORK

Erasure Coding receives significant attention from
both the business and the research communities. Scal-
ity, Caringo, Isilon or Cleversafe are such examples of
companies providing private storage solutions based
on erasure codes. Data protection for these systems
are partially described in technical white papers.

Scality and Caringo provide replication and era-
sure coding as a way to protect data. Erasure cod-
ing is only used for the longterm storage of massive
amounts of data. They both recommend replication
for intensive applications. Isilon puts forward the use
of erasure coding through a Reed Solomon imple-
mentation in OneFS. Replication is only used when
erasure coding is not applicable (e.g. too few many
nodes). Cleversafe provides exclusively data protec-
tion through erasure coding. It relies on the Luby’s
implementation (Blömer et al., ) of the Reed Solomon
algorithm.

Besides these solutions, famous and stable free al-
ternatives exist. One of the most famous free solu-
tion is Apache HDFS. This Distributed File System
(DFS) aims at archiving and data-intensive comput-
ing (i.e. not really an I/O centric DFS). It relies on the
MapReduce framework that divides and distributes
tasks to storage nodes. Data protection is done by
replication, and triplication is the default protection
policy. Carnegie Mellon University has developed a
version based on erasure codes, called HDFS-RAID
(Fan et al., 2009). It is based on Reed-Solomon codes
for generic parity computations. HDFS-RAID has

been applied in practice (e.g. Facebook Warehouse).
However, only a small part of the warehouse’s data
has been translated by erasure coding. Warm data
(i.e. frequently accessed data) is still replicated. Once
the data have not been used for a while, the raid-node
daemon encodes it and erases the corresponding repli-
cated blocks to make room. GlusterFS3 and Ceph
(Weil et al., 2006) are examples of popular I/O cen-
tric DFS. Replication is currently their standard for
data protection, but erasure coding is a hot topic on
the roadmap.

Erasure coding is already included in private so-
lutions but it is not to be efficient enough for inten-
sive applications. It is exclusively used today for
longterm storage and systems benefit from its low
data consumption compared to replication. Open-
source storage solutions are still actively looking for
high speed erasure code implementations as an alter-
native to replication.

Our contribution, RozoFS, is an open-source soft-
ware jointly developed by Fizians SAS and the Uni-
versity of Nantes. It provides a POSIX DFS whose
file operations are exclusively done by erasure cod-
ing. This code is based on the MT whose computa-
tions rely entirely on the very fast XOR operations.
Thus, we expect RozoFS to be efficient enough for
intensive applications.

3 MOJETTE TRANSFORM

The Mojette Transform (MT) is a mathematical tool
based on discrete geometry. Long developed at the
University of Nantes, its first definition as an erasure
code remains in (Normand et al., 1996 ). A first de-
sign for distributed storage relying on the MT was
proposed in (Guédon et al., 2001).

3.1 Algorithm

Fundamentally, an erasure code should compute ef-
ficiently a desired amount of redundant information
from a set of data. This operation is done by a lin-
ear operation that should be efficiently inverted. The
inverse operation reconstructs the former data from a
subset of the computed information.

The Mojette encoding is done as follows. A set of
data fills a discrete grid whose elements are identified
by (i, j), wherei and j are integers. The linear trans-
form consists in summing these elements following
different discrete directions. Each direction is defined
by a couple of integers(p,q). The elements aligned in

3http://www.gluster.org/
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Figure 1: The Mojette Transform, applied to two lines of 4
integers, computes here the following set of 3 projections:
{(pi ,qi) = (−1,1),(0,1),(1,1)}.

a direction are summed to form a bin. The set of bins
defined by the same direction is called a projection.
Hence, it is possible to use the Mojette Transform to
compute a desired number of projections from a set of
lines of data. Ifk andn are respectively the number of
lines of the grid, and the number of projections, and if
n> k, the set of projections holds redundant informa-
tion. Figure 1 shows the computation of 3 projections
from a set of 2 lines of data.
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Figure 2: Inverse Mojette Transform as described in (Nor-
mand, Kingston, and́Evenou, 2006).

The decoding is the inverse operation. It consists
in filling the empty grid with the only projection data.
Data reconstruction is possible if the Katz’s criterion
(Normand, Kingston, and́Evenou, 2006) holds for the
rectangular-shaped grid. This criterion was extended
for any convex shape in (Normand et al., 1996 ). Re-
construction is straightforward for the elements in the
corners of the grid. Indeed these elements match
entirely a projection bin. (Normand, Kingston, and
Évenou, 2006) showed that if a reconstruction path
can be found to fill a side of the grid, then it can be ap-
plied several time to easily reconstruct the grid. Fig-
ure 2 represents such reconstruction considering the
example of Figure 1. According to the Katz criterion
if the following condition is sufficient to validate the
reconstruction:

r

∑
i=0

qi ≥ k (1)

where r is the number of projections that remains,
qi depends on this projection set, andk is the num-
ber of lines of the grid. For instance, in Figure 2,

∑2
i=1qi = 2 which equalsk, so reconstruction is pos-

sible. By modifying the number of linesk and the
number of projectionsn, it is possible to set the de-
sired fault-tolerance threshold.

3.2 Implementation

In storage application we cut the input stream intok
fixed size blocks. Each line of the grid in the Mo-
jette representation is such a data block. The shape of
the grid must be rectangular then. The set of projec-
tions is set so thatqi = 1. If we suppose thatl , the
size of blocks (i.e. grid columns) is higher thank, the
number of blocks (i.e. grid lines), then the Katz’s cri-
terion guarantees that reconstruction is possible from
any subset ofk projections.

The strength of the Mojette Transform is that en-
coding and decoding rely entirely on additions. Com-
pared to classical codes like Reed Solomon, there is
no need to compute expensive multiplications or di-
visions in Galois fields. The elements of the grid
should fit computer words to improve computation
performance. Then, addition is done by efficient
exclusive-OR (XOR). Most recent Intel-based pro-
cessors can perform very fast computations with ele-
ments of 128 bits as it fits the dedicated SSE (Stream-
ing SIMD Extensions) registers.

In traditional solutions like Reed Solomon codes,
the size of the parity blocks is fixed. The Mojette
Transform relaxes this constraint. The sizeB of each
projection varies slightly with the angle of projection,
and is given by the following formula:

B(k, l , p,q) = (k−1) | q |+(l −1) | p |+1 (2)

wherek is the number of the grid lines andl the size
of blocks. The MT is then considered as(1+ε) MDS
(Parrein et al., 2001), whereε is the quotient of the
number of bins required for decoding by the number
of element in the grid. The set of projections is taken
such asq= 1 andp varies around 0 in order to mini-
mize the value ofε.

4 ROZOFS

RozoFS is an open source software solution provid-
ing a scalable distributed file system. Once mounted,
the file system yields a unique name space (i.e. an hi-
erarchy of directories and files), that relies on clusters
of commodity storage nodes. RozoFS manages scal-
ability by adding storage nodes to expand the global
resources of the system. For data reliability, it relies
on the Mojette Transform as an erasure code.
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4.1 Information Dispersal

We consider a network of commodity computers (or
nodes) communicating by one or several links. The
more the links, the more the paths for packets, and
the more reliable and high-performance the system
is. Reliability comes from the capacity to commu-
nicate even if a link is down. Again, failure proba-
bilities are non negligible and should be considered
as the norm. Multiple links induce high-performance
because packets can be sent in parallel.

RozoFS considers flows of information of fixed
size. A small data chunk of 8 KB fills a Mojette grid
as seen in Figure 1. The protection settings, called
layouts, define the value ofn andk (respectively the
number of projections and the number of lines in the
Mojette grid).

Table 1: The protection settings provided by RozoFS.

Layout k n storage nodes fault-tolerance
0 2 3 4 1
1 4 6 8 2
2 8 12 16 4

Currently, three layouts are designed in RozoFS.
The table 1 displays the relative information for these
configurations. Each layout corresponds to a storage
consumption ofn/k= 1.5 times the size of the input.
For instance, we consider the write operation of 1 GB
of data in an exported volume of RozoFS, set with the
layout 0. It results that 3 projection files of around
500 MB (i.e. plusε) are distributed across physical
disks.

4.2 Stackable Architecture

RozoFS relies on three components:
• exportd: the daemon that manages metadata;

• storaged: the daemon in charge of the projections;

• rozofsmount: used by the clients to mount RozoFS
locally.

For the sake of modularity, these components are
stackable. For instance, it is either possible to col-
locate them on a single node, storing projections on
different disks, to obtain protection over disk failure
(similar to some RAID configurations). In a large net-
work topology, dedicated nodes are much more ap-
preciated for the sake of scalability.

RozoFS Client. Each client can use RozoFS as a
standard POSIX file system thanks to therozofsmount
process. It relies on FUSE4 to operates in the user-
mode. Clients handle two kinds of operations: (i)

4http://www.fuse.sourceforge.net

Gigabit Ethernet

NLE1 NLE2 NLE3 NLE4 NLE5

RozoFS

Global Namespace

Figure 3: The RozoFS cluster is composed of 6 nodes that
hold different services. They provide the DFS to 5 clients
running a Non-Linear Editing (NLE) application.

the metadata operations (lookup, getattr, etc), inter-
facing the export server; (ii) the file I/O operations
(read/write the projections), interfacing the storage
nodes through thestorcli subprocesses. The encoding
and decoding workload are managed by the clients.
The network design should take care of reliability.
Services and links must be replicated to provide avail-
ability facing failures.

Metadata Server. This node manages theexportd
process that services the metadata operations. Its con-
figuration file defines the exported file systems. It
keeps statistics of storage nodes to provide a data dis-
tribution policy based on the storage capacity. The
metada server supplies clients with two lists: (i) the
list of storage nodes servicing the mounted volume;
(ii) the list of storage nodes associate with a regular
file (for read/write operations). This service should
be replicated to guarantee high availability.

Storage Nodes. These entities hold thestorageddae-
mon. Two services are provided by storage nodes: (i)
the management services to exportd; (ii) the projec-
tion I/O services to the clients, called thestorio pro-
cesses. Each storio process can listen to a specific net-
work interface. A storcli groups all storio of a storage
node in a load-balancing group to improve availabil-
ity.

5 EVALUATION

In this section, we explore the capacity of RozoFS to
scale as the global workload increases.

Experiment Setup. For our evaluation, we employ a
RozoFS cluster of 6 similar servers. Each machine
contains an Intel Xeon CPU @ 2.40 GHz, 12 GB
of RAM, and 10 disks (7200 rpm SAS) with 2 TB
each. These drives are managed by a RAID-5 con-
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troller, providing better I/O performances and local
reliability. Each node holds 8×1 Gbit Ethernet ports.
The exported volume is set to layout 0 providing fault-
tolerance against a single failure. The services are dis-
tributed as follows:

• the 6 nodes serve as storage servers;

• one among them serves as active metadata server;

• another is a passive/replicated metadata server;

• the 6 nodes mount RozoFS and re-export the file
system through the AFP protocol for client access;

Figure 3 displays the platform used here. For high
speed communications and reliability, 4 Ethernet
ports are reserved for storio processes. RozoFS man-
ages itself the packet scheduling for load-balancing
and availability. Because the metadata server is a po-
tential point of failure, it is necessary to set a high-
availability strategy. Here, we use DRBD5 to syn-
chronise the active metadata server with the passive
one. Pacemaker6 is used as a cluster management
software that manages the failover mechanisms in
case of failure.

The Study Case. We use the previous RozoFS clus-
ter as a storage solution for video editing. Non-Linear
Editing (NLE) applications entail intensive workloads
for computers. Multiple source editing is particu-
larly file I/O intensive since multiple multimedia con-
tents are accessed simultaneously. For this exper-
imentation, we use the famous NLE software Ap-
ple Final Cut Pro7. Remote clients, running on Ap-
ple Mac OS, attach the RozoFS file system to their
own machine using the AFP protocol. Once mounted,
the file system provides an easy access to the source
media stored on RozoFS. In our case, the system
stores video encoded with the lossy compressed for-
mat Apple ProRes 422. It requires at least a rate of
200 Mbit/s (i.e. 25 MB/s) to avoid frame drops. We
consider that editing involves 5 input video files si-
multaneously and outputs a single one. The software
is both designed for sequential operations (e.g. read
the video stream) and direct access to a part of the
video.

5.1 IOzone Benchmark

IOzone8 is a filesystem benchmark that can output file
I/O performance according to a set of stressing tests.
In particular, the software can perform sequential and
random read/write tests, which are in accordance with

5Distributed Replicated Block Device (www.drbd.org)
6http://clusterlabs.org/
7http://www.apple.com/final-cut-pro/
8http://www.iozone.org

1 2 3 4 5

500

1,000

1,500

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

sequential write

sequential read

Figure 4: Accumulated throughput (in MB/s) recorded by
the threads, depending on the number of clients working in
parallel, for sequential access operations.

our study case. We explore the capacity of RozoFS to
adapt, facing a growing number of clients accessing
the file system simultaneously.

IOzone takes the following parameters. The file
size is set to 1 GB which is larger than the CPU cache,
and smaller than the RAM capacity. To fit the multi-
source editing, each client involved in the test man-
ages 5 threads. A thread reads or writes the 1 GB
file according to the desired access strategy. For in-
stance, in a writing test, each node induces the writing
of 5 GB in RozoFS (i.e. which represents 7.5 GB in
the physical disks).

We measure the accumulated throughput recorded
by the threads as the number of clients grows. Each
thread should access data with a rate of at least
25 MB/s to validate the study case. Figure 4 and 5
respectively display the average results from 5 test it-
erations for sequential and random access.

Benchmarking Sequential I/Os. The write opera-
tions are asynchronous and multiple write requests
are done simultaneously. Figure 4 shows that as the
workload grows, the performance for sequential write
scales up to 3 nodes. When more clients are added,
the nodes are overwhelmed by the requests and cache
misses slow down the performances as data need to
be fetch on the disks. The sequential read operations
significantly benefit from fast access as data is pre-
fetched in the cache. The performance scales up as
the number of clients increases. For instance, when
5 clients are involved, the 25 threads record an ac-
cumulated throughput of 1800 MB/s. Each client re-
ceives 1800/5= 360 MB/s and each thread receives
360/5= 72 MB/s. In any case in this benchmark, we
validate the study case as each thread receive more
than 25 MB/s. Mechanical disks are particularly sen-
sitive to the type of access. For sequential access, the
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Figure 5: Accumulated throughput (in MB/s) recorded by
the threads, depending on the number of clients working in
parallel, for random access operations.

disk’s arm move the read-and-write head to reach the
correct track on the physical disk. Once there, the fol-
lowing accesses are straightforward.

Benchmarking Random I/Os. Random operations
are slowed down by intermediate seeks between oper-
ations, increasing the latency of disk’s head. Figure 5
shows that the throughput suffers from these random
accesses. During random read operations, the perfor-
mance scales as it benefits from small cache effects
and each thread receive at least 25 MB/s. However,
the random write test is clearly the worst case and
shows the limit of hardware as the performances col-
lapse. For 3 clients, each thread receives 350/3/5=
23 MB/s. For more clients, performances get worse.
We should note that 5 writing threads per client does
not fit our study case. For video editing, each editors
outputs a single file. It would correspond to a single
write thread in our case.

6 CONCLUSIONS

In this work, we have presented the Mojette Trans-
form (MT) as an efficient alternative to classical era-
sure codes since it relies on fast computations, and a
great candidate to handle intensive applications. We
have set the MT as the I/O centric process in Ro-
zoFS with good expectations for practice efficiency.
Finally, we have designed an evaluation based on a
RozoFS cluster. The platform is able to handle mul-
tiple parallel access from intensive I/O applications
(i.e. multiple source video editing). The evaluation
has revealed that erasure coding is not a bottleneck
for intensive applications and should not be limited to
longterm storage.

More specific measures should be done to reveal

the real cost of the MT in the computational time. Our
evaluation could be extended to more intensive ap-
plications like virtualization, which access data over
block devices. There is clearly a need for comparisons
with other existing solutions. The MT must be com-
pared to erasure code libraries such as OpenFEC and
Jerasure. Further erasure code aspects beyond com-
putational considerations should be explored, such as
the node repair problem.
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