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Abstract: Distributed storage systems take advantage of the network, storage and computational resources to provide
a scalable infrastructure. But in such large system, failures are frequent and expected. Data replication is
the common technique to provide fault-tolerance but suffers from its important storage consumption. Erasure
coding is an alternative that offers the same data protection but reduces significantly the storage consumption.
As it entails additional workload, current storage providers limit its use for longterm storage. We present the
Mojette Transform (MT), an erasure code whose computations rely on fast XOR operations. The MT is part
of RozoFS, a distributed file system that provides a global namespace relying on a cluster of storage nodes.
This work is part of our ongoing effort to prove that erasure coding is not necessarily a bottleneck for intense
1/0 applications. In order to validate our approach, we consider a case study involving a storage cluster of
RozoFS that supports video editing as an I/O intensive application.

1 INTRODUCTION replication technique. Efforts are done today to de-
sign efficient codes. The most famous ones are the

Distributed storage systems have been used to provideReed-Solomon (RS) codes. They rely on Galois field
data reliability. Failures in such large systems are con- Operations. In this arithmetic, addition is fast as it
sidered as the norm, and can come either from hard-corresponds to exclusive-OR (XOR), but multiplica-
ware or software considerations. They can result in tion has many implementations which are much more
dramatic data loss and/or the crash of the service. Thecomputational expensive. The storage systems that
traditional way to deal with data protection is to repli- Provide erasure coding by RS suffer from the slowing
cate the data. Once copies of data are distributed down of its computations. Many implementations of
across multiple network nodes, the system is able to RS codes exist. Examples of implementation libraries
facen— 1 failures. If a node has a breakdown, its are OpenFE&€and Jerasure (Plank, 2007).
data is not accessible anymore, but other copies are We propose the use of the Mojette Transform
still available on other nodes. On the other hand, this (MT) (Normand, Kingston, an&venou, 2006) as an
technique is expensive, particularly for huge amounts erasure code for distributed storage. The MT relies
of data. Replication is the default data protection fea- only on additions and its implementation uses the fast
ture included in distributed storage systems. XOR operations. The MT is part of RozoSan
Erasure coding is an alternative that provides the open-source software providing a distributed file sys-
same data protection but reduces significantly the tem. In RozoFS, when a client wants to store a file,
storage consumption. Optimal codes, called Maxi- the data is cut into small chunks of 8 KB. Chunks are
mal Distance Separable (MDS), aim at encoding composed ok blocks of fixed size which depends on
data blocks inta parity blocks, withn > k. The en-  the desired protection. These blocks are encoded into
coded blocks hold enough redundancy to recover then parity blocks, which are discrete projections in the
former data from any subset kparity blocks during ~ Mojette formalism. These projections are then dis-
the decoding process. Compared to replication whosetributed to storage nodes and the system is able to face
storage overhead is, erasure coding’s overhead is
defined byn/k. However, encoding and decoding re- Lhttp://openfec.org/
guire further computations compared to the simple  2code available at http://www.rozofs.org
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n— k failures. Decoding is done client-side after re- been applied in practice (e.g. Facebook Warehouse).
trievingk blocks out of then from storage nodes. However, only a small part of the warehouse’s data
The current storage systems provide erasure cod-has been translated by erasure coding. Warm data
ing to benefit from the storage capacity saving for (i.e. frequently accessed data) is still replicated. Once
longterm storage. When intensive data I/Os are the data have not been used for a while, the raid-node
needed, replication is put forward because of the ad-daemon encodes it and erases the corresponding repli-
ditional workload of erasure codes. Our work differs cated blocks to make room. GlustefFénd Ceph
from this position by exploring the use of an erasure (Weil et al., 2006) are examples of popular 1/O cen-
code for intensive applications. We experiment the tric DFS. Replication is currently their standard for
concept by applying RozoFS to video editing. data protection, but erasure coding is a hot topic on
The rest of the paper is structured as follows: Sec- the roadmap.
tion 2 briefly describes some distributed storage sys-  Erasure coding is already included in private so-
tems and their data protection policy. In Section 3, lutions but it is not to be efficient enough for inten-
we present the MT and its erasure code characteris-sive applications. It is exclusively used today for
tics, while Section 4 describes how RozoFS use it to longterm storage and systems benefit from its low
provide a distributed file system. The video editing data consumption compared to replication. Open-
experiment is presented in section 5 and demonstratessource storage solutions are still actively looking for
that erasure coding is not a bottleneck for I/O inten- high speed erasure code implementations as an alter-
sive applications. Section 6 concludes the paper with native to replication.
the possible future work. Our contribution, RozoFS, is an open-source soft-
ware jointly developed by Fizians SAS and the Uni-
versity of Nantes. It provides a POSIX DFS whose
file operations are exclusively done by erasure cod-
2 RELATED WORK ing. This code is based on the MT whose computa-

) ) L : tions rely entirely on the very fast XOR operations.
Erasure Coding receives significant attention from 1,5 we expect RozoFS to be efficient enough for
both the business and the research communities. Scalintenéive applications.

ity, Caringo, Isilon or Cleversafe are such examples of
companies providing private storage solutions based
on erasure codes. Data protection for these systems
are partially described in technical white papers. 3 MOJETTE TRANSFORM

Scality and Caringo provide replication and era-
sure coding as a way to protect data. Erasure cod-The Mojette Transform (MT) is a mathematical tool
ing is only used for the longterm storage of massive based on discrete geometry. Long developed at the
amounts of data. They both recommend replication University of Nantes, its first definition as an erasure
for intensive applications. Isilon puts forward the use code remains in (Normand et al., 1996 ). A first de-
of erasure coding through a Reed Solomon imple- sign for distributed storage relying on the MT was
mentation in OneFS. Replication is only used when proposed in (Guédon et al., 2001).
erasure coding is not applicable (e.g. too few many
nodes). Cleversafe provides exclusively data protec-3.1  Algorithm
tion through erasure coding. It relies on the Luby’s

implementation (Blomer etal., ) of the Reed Solomon Fundamentally, an erasure code should compute ef-
algorithm. ficiently a desired amount of redundant information
Besides these solutions, famous and stable free alfrom a set of data. This operation is done by a lin-
ternatives exist. One of the most famous free solu- ear operation that should be efficiently inverted. The
tion is Apache HDFS. This Distributed File System inverse operation reconstructs the former data from a
(DFS) aims at archiving and data-intensive comput- subset of the computed information.
ing (i.e. not really an 1/O centric DFS). It relies on the The Mojette encoding is done as follows. A set of
MapReduce framework that divides and distributes data fills a discrete grid whose elements are identified
tasks to storage nodes. Data protection is done byby (i,j), wherei andj are integers. The linear trans-
replication, and triplication is the default protection form consists in Summing these elements fo||owing

policy. Carnegie Mellon University has developed a ditferent discrete directions. Each direction is defined
version based on erasure codes, called HDFS-RAID py a couple of integer@, g). The elements aligned in

(Fan et al., 2009). Itis based on Reed-Solomon codes
for generic parity computations. HDFS-RAID has Shttp://www.gluster.org/
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3 2 Zi2:1Qi = 2 which equal, so reconstruction is pos-
3 4 sible. By modifying the number of linels and the
5 1 number of projections, it is possible to set the de-
| 2 3 X35 5 5 sired fault-tolerance threshold.
3.2 Implementation
2 131113
11ol2 12 In storage application we cut the input stream ikto

fixed size blocks. Each line of the grid in the Mo-
Figure 1. The Mojette Transform, applied to two lines of 4 jette representation is such a data block. The shape of
integers, computes here the following set of 3 projections: the grid must be rectangular then. The set of projec-
{(pi,ai) = (=1,1),(0,2), (1, 1)}. tions is set so thafy = 1. If we suppose thdt the

size of blocks (i.e. grid columns) is higher thiarthe
number of blocks (i.e. grid lines), then the Katz’s cri-
terion guarantees that reconstruction is possible from
any subset ok projections.

The strength of the Mojette Transform is that en-
coding and decoding rely entirely on additions. Com-
pared to classical codes like Reed Solomon, there is
no need to compute expensive multiplications or di-
visions in Galois fields. The elements of the grid
should fit computer words to improve computation
performance. Then, addition is done by efficient
exclusive-OR (XOR). Most recent Intel-based pro-
3 3.°3,/5 cessors can perform very fast computations with ele-
- } ments of 128 bits as it fits the dedicated SSE (Stream-
ing SIMD Extensions) registers.

] In traditional solutions like Reed Solomon codes,

| the size of the parity blocks is fixed. The Mojette
Transform relaxes this constraint. The si&ef each
projection varies slightly with the angle of projection,
and is given by the following formula:

The decoding is the inverse operation. It consists Blel.p.o)= (k=D fal+(-Dfp[+1 ()
in filling the empty grid with the only projection data. wherek is the number of the grid lines andhe size
Data reconstruction is possible if the Katz’s criterion of blocks. The MT is then considered @s+ &) MDS
(Normand, Kingston, anflvenou, 2006) holds forthe  (Parrein et al., 2001), wheweis the quotient of the
rectangular-shaped grid. This criterion was extended number of bins required for decoding by the number
for any convex shape in (Normand et al., 1996 ). Re- of element in the grid. The set of projections is taken
construction is straightforward for the elements in the such asj= 1 andp varies around 0 in order to mini-
corners of the grid. Indeed these elements match mize the value of.
entirely a projection bin. (Normand, Kingston, and
Evenou, 2006) showed that if a reconstruction path
can be found to fill a side of the grid, thenitcanbe ap- 4 ROZOFS
plied several time to easily reconstruct the grid. Fig-
ure 2 represents such reconstruction considering theR
example of Figure 1. According to the Katz criterion
if the following condition is sufficient to validate the
reconstruction:

a direction are summed to form a bin. The set of bins
defined by the same direction is called a projection.
Hence, it is possible to use the Mojette Transform to
compute a desired number of projections from a set of
lines of data. Ik andn are respectively the number of
lines of the grid, and the number of projections, and if
n > K, the set of projections holds redundant informa-
tion. Figure 1 shows the computation of 3 projections
from a set of 2 lines of data.

)
~
—
)]
(&}

Figure 2: Inverse Mojette Transform as described in (Nor-
mand, Kingston, an&venou, 2006).

0zOFS is an open source software solution provid-
ing a scalable distributed file system. Once mounted,
the file system yields a unique name space (i.e. an hi-
r erarchy of directories and files), that relies on clusters
Z}q >k (1) of commodity storage nodes. RozoFS manages scal-
i= ability by adding storage nodes to expand the global
wherer is the number of projections that remains, resources of the system. For data reliability, it relies
g depends on this projection set, akds the num- on the Mojette Transform as an erasure code.
ber of lines of the grid. For instance, in Figure 2,
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4.1 Information Dispersal

We consider a network of commodity computers (or
nodes) communicating by one or several links. The
more the links, the more the paths for packets, and
the more reliable and high-performance the system
is. Reliability comes from the capacity to commu-
nicate even if a link is down. Again, failure proba-
bilities are non negligible and should be considered
as the norm. Multiple links induce high-performance
because packets can be sent in parallel.

RozoFS considers flows of information of fixed
size. A small data chunk of 8 KB fills a Mojette grid
as seen in Figure 1. The protection settings, called
layouts, define the value of andk (respectively the
number of projections and the number of lines in the
Mojette grid).

Table 1: The protection settings provided by RozoFS.

Layout | k | n | storage nodes fault-tolerance
0 2] 3 4 1
1 4| 6 8 2
2 8| 12 16 4

Currently, three layouts are designed in RozoFS.
The table 1 displays the relative information for these

configurations. Each layout corresponds to a storage

consumption ofi/k = 1.5 times the size of the input.
For instance, we consider the write operation of 1 GB
of data in an exported volume of RozoFS, set with the
layout 0. It results that 3 projection files of around
500 MB (i.e. pluse) are distributed across physical
disks.

4.2 Stackable Architecture

RozoFS relies on three components:
e exportd the daemon that manages metadata;
e storaged the daemon in charge of the projections;

e rozofsmountused by the clients to mount RozoFS
locally.

For the sake of modularity, these components are
stackable. For instance, it is either possible to col-
locate them on a single node, storing projections on
different disks, to obtain protection over disk failure
(similar to some RAID configurations). In a large net-
work topology, dedicated nodes are much more ap-
preciated for the sake of scalability.

RozoFS Client. Each client can use RozoFS as a
standard POSIX file system thanks to theofsmount
process. It relies on FUSHo operates in the user-
mode. Clients handle two kinds of operations: (i)

4http://www.fuse.sourceforge.net
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Figure 3: The RozoFS cluster is composed of 6 nodes that
hold different services. They provide the DFS to 5 clients
running a Non-Linear Editing (NLE) application.

the metadata operation®@kup getattr, etc), inter-
facing the export server; (ii) the file I/O operations
(read/write the projections), interfacing the storage
nodes through thstorcli subprocesses. The encoding
and decoding workload are managed by the clients.
The network design should take care of reliability.
Services and links must be replicated to provide avail-
ability facing failures.

Metadata Server. This node manages thexportd
process that services the metadata operations. Its con-
figuration file defines the exported file systems. It
keeps statistics of storage nodes to provide a data dis-
tribution policy based on the storage capacity. The
metada server supplies clients with two lists: (i) the
list of storage nodes servicing the mounted volume;
(ii) the list of storage nodes associate with a regular
file (for read/write operations). This service should
be replicated to guarantee high availability.

Storage Nodes. These entities hold thetorageddae-
mon. Two services are provided by storage nodes: (i)
the management services to exportd; (ii) the projec-
tion 1/O services to the clients, called th®rio pro-
cesses. Each storio process can listen to a specific net-
work interface. A storcli groups all storio of a storage
node in a load-balancing group to improve availabil-

ity.

5 EVALUATION

In this section, we explore the capacity of RozoFS to
scale as the global workload increases.

Experiment Setup. For our evaluation, we employ a
RozoFS cluster of 6 similar servers. Each machine
contains an Intel Xeon CPU @ 2.40 GHz, 12 GB
of RAM, and 10 disks (7200 rpm SAS) with 2 TB
each. These drives are managed by a RAID-5 con-
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troller, providing better 1/O performances and local ; ; ;
reliability. Each node holds 8 1 Gbit Ethernet ports. I8 sequential write
The exported volume is set to layout O providing fault- 1,500 1 ¥ sequential read
tolerance against a single failure. The servicesare dis- = '
tributed as follows:

¢ the 6 nodes serve as storage servers;
e one among them serves as active metadata server;

e another is a passive/replicated metadata server;

e the 6 nodes mount RozoFS and re-export the file
system through the AFP protocol for client access;

Figure 3 displays the platform used here. For high
speed communications and reliability, 4 Ethernet 1 ) 3 4 5

ports are reserved for storio processes. RozoFS man-

ages itself the packet scheduling for load-balancing Figure 4: Accumulated throughput (in MB/s) recorded by
and availability. Because the metadata server is a po-iN€ threads, depending on the number of clients working in
tential point of failure, it is necessary to set a high- parallel, for sequential access operations.

availability strategy. Here, we use DRBo syn-
chronise the active metadata server with the passive
one. Pacemaktris used as a cluster management
software that manages the failover mechanisms in
case of failure.

Throughput (MB/s)
o
S
S

500

our study case. We explore the capacity of RozoFS to
adapt, facing a growing number of clients accessing
the file system simultaneously.

I0zone takes the following parameters. The file
size is setto 1 GB which is larger than the CPU cache,
The Study Case. We use the previous RozoFS clus- and smaller than the RAM capacity. To fit the multi-
ter as a storage solution for video editing. Non-Linear source editing, each client involved in the test man-
Editing (NLE) applications entail intensive workloads ages 5 threads. A thread reads or writes the 1 GB
for computers. Multiple source editing is particu- file according to the desired access strategy. For in-
larly file 1/O intensive since multiple multimedia con-  stance, in a writing test, each node induces the writing
tents are accessed simultaneously. For this exper-of 5 GB in RozoFS (i.e. which represent$7GB in
imentation, we use the famous NLE software Ap- the physical disks).
ple Final Cut Pré. Remote clients, running on Ap- We measure the accumulated throughput recorded
ple Mac OS, attach the RozoFS file system to their by the threads as the number of clients grows. Each
own machine using the AFP protocol. Once mounted, thread should access data with a rate of at least
the file system provides an easy access to the sourc&5 MB/s to validate the study case. Figure 4 and 5
media stored on RozoFS. In our case, the systemrespectively display the average results from 5 test it-
stores video encoded with the lossy compressed for-erations for sequential and random access.
mat Apple ProRes 422. It requires at least a rate of _ . _

200 Mbit/s (i.e. 25 MB/s) to avoid frame drops. We Benchmarkmg Sequential 1/Os. The write opera-
consider that editing involves 5 input video files si- tions are qsynchronous anq muliiple write requests
multaneously and outputs a single one. The software &€ done simultaneously. Figure 4 shows thgt as .the
is both designed for sequential operations (e.g. readworkload grows, the performance for sequential write

the video stream) and direct access to a part of the Scales up to 3 nodes. When more clients are added,
video. the nodes are overwhelmed by the requests and cache

misses slow down the performances as data need to
be fetch on the disks. The sequential read operations
significantly benefit from fast access as data is pre-
fetched in the cache. The performance scales up as
the number of clients increases. For instance, when
5 clients are involved, the 25 threads record an ac-
cumulated throughput of 1800 MB/s. Each client re-
ceives 18005 = 360 MB/s and each thread receives
SDistributed Replicated Block Device (www.drbd.org) ~ 360/5= 72 MB/s. In any case in this benchmark, we

5.1 10zone Benchmark

I0zoné is a filesystem benchmark that can output file

I/O performance according to a set of stressing tests.
In particular, the software can perform sequential and
random read/write tests, which are in accordance with

Shttp://clusterlabs.org/ validate the study case as each thread receive more
"http:/iwww.apple.com/final-cut-pro/ than 25 MB/s. Mechanical disks are particularly sen-
8http://www.iozone.org sitive to the type of access. For sequential access, the

455



CLOSER 2014 - 4th International Conference on Cloud Computing and Services Science

: : the real cost of the MT in the computational time. Our
I8 random read evaluation could be extended to more intensive ap-
600 |-| I random write i plications like virtualization, which access data over
block devices. There s clearly a need for comparisons
with other existing solutions. The MT must be com-
pared to erasure code libraries such as OpenFEC and
Jerasure. Further erasure code aspects beyond com-
putational considerations should be explored, such as
the node repair problem.

400

Throughput (MB/s)

200
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Figure 5: Accumulated throughput (in MB/s) recorded by
the threads, depending on the number of clients working in
parallel, for random access operations.
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In this work, we have presented the Mojette Trans-
form (MT) as an efficient alternative to classical era-
sure codes since it relies on fast computations, and a
great candidate to handle intensive applications. We
have set the MT as the I/O centric process in Ro-
zoFS with good expectations for practice efficiency.
Finally, we have designed an evaluation based on a
RozoFS cluster. The platform is able to handle mul-
tiple parallel access from intensive 1/O applications
(i.e. multiple source video editing). The evaluation
has revealed that erasure coding is not a bottleneck
for intensive applications and should not be limited to
longterm storage.
More specific measures should be done to reveal
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