
Using Technology to Accelerate the Construction of Concept 
Inventories 

Latent Semantic Analysis and the Biology Concept Inventory 

Kathy Garvin-Doxas1, Michael Klymkowsky2, Isidoros Doxas3 and Walter Kintsch4 
1Center for Integrated Plasma Studies, University of Colorado, Boulder, CO, U.S.A. 

(Present address: Boulder Internet Technologies, Columbia, MD, U.S.A.) 
2Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, U.S.A. 

3Center for Integrated Plasma Studies, University of Colorado, Boulder, CO, U.S.A. 
(Present address: BAE Systems, Columbia, MD, U.S.A.) 

4Institute of Cognitive Science, University of Colorado, Boulder, CO, U.S.A. 

Keywords: Concept Inventory, Biology Concept Inventory, Misconceptions, Latent Semantic Analysis. 

Abstract: Concept Inventories are multiple choice instruments that map students’ conceptual understanding in a given 
subject area. They underpin some of the most effective teaching methods in science education, but they are 
labour intensive and expensive to construct, which limits their wide use in instruction. We describe how we 
use Latent Semantic Analysis to accelerate the construction of Concept Inventories in general, and the 
Biology Concept Inventory in particular.  

1 INTRODUCTION 

Concept Inventories are multiple choice instruments 
that explore students’ conceptual understanding in a 
given subject area. To accomplish this, CI 
developers look for verbal markers that can be used 
as proxies for identifying students’ conceptual 
structures, much as we try to find DNA markers for 
various traits. Well constructed CIs provide 
researchers with a map of the students’ conceptual 
landscape, which can be used to inform instruction 
in that area. 

Research-based teaching methods that are firmly 
based on misconception research and make 
consistent use of collaborative learning are the most 
widely used national-scale tested methods that 
consistently produce learning gains significantly 
superior to lectures in Physics and Astronomy (eg. 
McDermott et al., 1998; Zeilik et al., 1997; Hake 
1998). Short of one-on-one tutoring (cf. Bloom’s 
“two sigma challenge”, Bloom, 1984), this is the 
best model available for impacting student learning. 

Although consistently successful, the model also 
incorporates a significant barrier to its wide 
adoption, replicability, and extensibility. It is 
critically dependent on the existence of well-

researched assessment instruments that can reliably 
diagnose a student’s misconceptions, and which 
require considerable time and effort to produce. 
Although several groups, both academic and 
commercial are currently engaged in developing 
such instruments in disciplines such as biology (e.g. 
Garvin-Doxas and Klymkowsky, 2008; Smith et. al., 
2008; Kalas et. al. 2013), geoscience (e.g. Libarkin 
and Anderson, 2006), and engineering (e.g. Midkiff 
et. al., 2001), no substantial advance has been made 
in the time, effort, and expense required to develop a 
validated, reliable instrument.  

Here we describe the construction of Concept 
Inventories and how it differs from the construction 
of tests, and we show how we use Latent Semantic 
Analysis (LSA, Landauer et. al., 1998; Landauer and 
Dumais, 1997) to facilitate the usually labour 
intensive validation phase of Concept Inventories in 
general, and the Biology Concept Inventory (Garvin-
Doxas and Klymkowsky, 2008; Klymkowsky and 
Garvin-Doxas, 2008) in particular. 
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2 CONCEPT INVENTORIES 
AND TESTS 

Although CIs bear a strong resemblance to 
standardized tests, the two types of instruments are 
very different, having fundamentally different aims. 
Tests are basically designed to answer the question 
“what percentage of the desired knowledge and 
skills in this field has this student acquired?”. CIs 
are meant to answer the question “what conceptual 
constructs is this student using when solving 
problems in this field?”. These same questions can 
also be asked from the point of view of an ensemble 
of students (rather than the individual student). From 
that point of view tests are meant to rank the 
students in the ensemble according to their skill and 
knowledge, while CIs are meant to report the 
percentage of students in the ensemble that use a 
particular conceptual construct.  

The two descriptions (individual and ensemble) 
must of course be equivalent, since they are both 
describing the same underlying system. This is 
harder than it sounds, and it is the source of most 
difficulties, both practical and conceptual, in all 
statistical descriptions of systems from Physics to 
Economics. What that means, is that for any given 
case we should come up with the exact same 
observable answers whether we are looking at the 
individual view (eg. calculating the likely trajectory 
of an electron hole in a semiconductor, or the likely 
portfolio value of an individual investor) or the 
ensemble view (ie. calculating the total current in the 
semiconductor, or the total retirement savings of a 
population). As a practical matter, most fields that 
use statistical descriptions of their systems have 
developed more-or-less distinct sub-disciplines that 
study the two pictures, each with its own distinctive 
tools and methods. In economics, for instance, the 
Treasury and the Federal Reserve use 
macroeconomic tools, theories and measures to 
follow the economy as a whole, while investment 
brokers use different tools to produce investment 
strategies for individuals. The two pictures should be 
exactly equivalent (and they are rigorously so for 
systems like ideal gasses, if not necessarily so for 
the economy) but nevertheless the two sub-
disciplines can often look very different. 

In education too, different tools and methods 
have traditionally been associated with individual 
students than have been used with ensembles. In 
particular, although tests can be (and sometimes 
indeed are) used to guide individual students’ 
learning, most tests are mainly used to produce 
grades (i.e. rankings). Concept Inventories on the 

other hand are meant to map students’ prevalent 
misconceptions in a field, and hence guide the 
development of instructional materials and methods 
that address these misconceptions explicitly. On the 
student level, CIs can be used to assign supplemental 
instructional materials that are specifically designed 
to address that particular student’s misconceptions. 
For example, during the development of the Biology 
Concept Inventory (BCI), we discovered that an 
entire class of difficulties that students encounter in 
both genetics and molecular biology arise from 
students’ misconceptions about random processes 
(cf. Garvin-Doxas and Klymkowsky, 2008; 
Klymkowsky and Garvin-Doxas, 2008). In short, 
students do not understand that processes as diverse 
as diffusion and evolution are underpinned by 
random processes which are taking place all the time 
(molecular collisions and mutations), but think 
instead that they are driven processes that stop 
taking place when the driver is removed (they 
believe that there is no diffusion in the absence of 
density gradients, and no evolution in the absence of 
natural selection). This misconception can frustrate 
learning unless it is directly addressed, and one can 
envision instructional materials designed to address 
it explicitly.  

As a result of their main use as producers of 
rankings, tests are therefore (in order of importance) 
1) uni-dimensional 2) monotonic, and, as much as 
possible, 3) linear. Of these properties, the one that 
mostly defines the structure of a test is linearity. 

2.1 Tests as Producers of Rankings 

To ensure these properties, test developers look at 
statistical measures like discrimination (ie. how 
close can two scores be before we can no longer 
assure that the higher score indeed represents higher 
performance) and item difficulty.  

Item difficulty is the fundamental weighting 
factor on which most of the linearization schemes 
rest. Perhaps the version of difficulty that is most 
accessible intuitively is the percentage of students 
that answered the question correctly; questions that 
have been answered correctly by a large percentage 
of students have lower difficulty. Item Response 
Theory (IRT) for instance makes an explicit 
assumption of true or near unidimensionality, and 
posits that the probability, P, that a student of ability 
 will correctly answer a question of difficulty b is 
given by the logistic function    

P = exp(-b) / [1+exp(-b)] (1)

Both student ability and item difficulty can then be 
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place on the same scale (as we see from the logistic 
function, a student whose ability 1 is equal to the 
difficulty of some item b1 will have a 50% 
probability of answering that question correctly).  

Difficulty is then used to linearize the response 
of the test. The most intuitively accessible 
linearization method, and the one most widely used, 
consists of constructing the test with questions of 
many different difficulty levels (b1-b4 in Figure-1). 
The higher the level of the student’s skill and 
knowledge, the more questions s/he will answer 
correctly. With a large bank of questions to choose 
from, a test can be devised with questions that are 
evenly spaced along the difficulty line, effectively 
calibrating the instrument to insure a more-or-less 
linear response: answering twice as many questions 
(above some statistical floor) really means twice the 
level of performance. We should note here that for 
multiple choice tests the probability that a student of 
very low ability answers correctly asymptotes to the 
random floor (e.g. 25% for a four-option item), but 
for concept inventories it usually asymptotes well 
below the random floor, and often close to zero. This 
is a consequence of having distracters that represent 
common misconceptions; students who hold an 
alternative model are lured to the answer that 
corresponds to their model, and are therefore less 
likely to pick the correct answer by chance.  
Statistical treatments that take into account a 
nonzero asymptote also exist. 

 

Figure 1: Item Characteristic Curves (ICCs) for four items 
of difficulty b1-b4. Evenly distributing test items along the 
difficulty line produces a test with linear response. 

Recently, more sophisticated linearization 
techniques like Rasch analysis (Rasch, 1961) have 
been used for instrument calibration, but all 
calibration techniques aim for a linear instrument 
response, and make explicit or implicit assumptions 
about unidimensionality (or near-unidimensionality). 
This is a direct and unavoidable consequence of 
most tests’ main use, which is to produce rankings. 
 

2.2 Concept Inventories and Rankings 

Necessary as these statistical properties are for tests, 
they are mostly irrelevant (and sometimes even 
counterproductive) for Concept Inventories. CIs are 
by nature multidimensional since what we really 
want to know is each of the misconceptions that a 
student holds, not some average over all 
misconceptions. What we really want to know is 
what specific instructional material to assign to a 
student in order to address his/her misconceptions; a 
measure of the student’s average performance level 
is not at all informative on that task. Furthermore, 
the percentage of students that answers a question 
correctly is not an appropriate weighting factor for a 
CI. The vast majority of the students can, and often 
do, harbour the same misconception even after 
repeated instruction; this is the very essence of 
misconceptions. Leaving these questions out of the 
instrument, or giving them minimal weight, because 
they are at the tail of the difficulty distribution is not 
a productive option. 

Nevertheless, CIs have historically been used 
essentially as tests, reporting a student’s 
improvement in overall performance 
(i.e. improvement in the total number of items 
answered correctly) instead of reporting each 
misconception a student is holding. This use of a CI 
has proven to be useful in gaining the attention of 
instructors (e.g. Hake, 1998), and should therefore 
be considered during instrument constructions as a 
possible (and even probable) use of the final 
instrument. That said, results from CIs are inherently 
much richer in the types of insights they can 
provide.  Given that the objective of a CI is to 
provide detailed information that can be used to 
explicitly address student misconceptions, it is 
useful to have an analysis for each dimension 
(concept) in the instrument, in addition to an average 
over all dimensions. This can be done by performing 
a statistical analysis not only for the correct answer 
in each question, but also for the answers that 
correspond to particular misconceptions. In the 
context of IRT for instance, the Item Characteristic 
Curve (ICC; Fig.-1) is no longer the probability that 
the student will answer the question correctly, but 
the probability that the student will pick the answer 
that corresponds to a particular misconception, and  
is the student’s “ability” with respect to that 
misconception, or in other words the degree to which 
the student holds that misconception. 

The requirement of performing an analysis for 
each dimension of a CI revives “the curse of 
dimensionality” (the requirement of analyzing a very 
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large number of items) which is precisely the 
problem that modern test theories aim to alleviate. 
Nevertheless, the requirement is a direct 
consequence of the function of CIs, which is to 
produce multidimensional information on the 
conceptual state of students.  

2.3 Validity and Reliability 

For an instrument to be useful, be it a test or a CI, it 
must be valid and reliable. Validity means that the 
instrument measures what we want it to measure, 
and doesn’t measure things we don’t want it to 
measure (a thermometer should measure only 
temperature, not some combination of temperature 
and weight). Reliability means that the instrument 
gives the same value when measuring identical 
things. It is obvious from the definitions that validity 
and reliability are closely related; if an instrument 
measures only one thing (eg. temperature) then 
there’s only one value it can give (the temperature of 
whatever we are studying, no matter what its other 
properties are). It is therefore clear that validity 
implies reliability. What is less appreciated however, 
is that reliability does not imply validity. Reliability 
means that we are consistently measuring the same 
one thing; but what is that thing? The answer to that 
question cannot possibly come from the statistics of 
the instrument alone; an additional input is needed.  

That additional input is always theory. The 
statistics of a reliable thermometer are identical to 
the statistics of a reliable voltmeter (in fact, most 
modern thermometers are actually measuring a 
voltage); the only difference is the theory used to 
translate the output of the device into a measurement 
of temperature. In CI construction that additional 
input is provided by experts who can consistently 
associate students’ verbal cues with persistent 
mental constructs.  

Validation is a labour intensive and time 
consuming process, the cost of which we can reduce 
significantly with the use of technology. During the 
development of the BCI we created Ed’s Tools, an 
online suite of tools that allows us to collect, code, 
and aggregate large amounts of text data, 
considerably improving the speed of data collection 
and analysis. The validation procedure and 
validation results for the BCI are described in detail 
in Garvin-Doxas and Klymkowsky, 2008, and 
Klymkowsky and Garvin-Doxas, 2008. The 
development and usage of Ed’s Tools are described 
in detail in Garvin-Doxas et. al., 2007. Here we give 
a short description of the method for completeness, 
while referring the reader to the previously 

published work for a detailed exposition.  
We start by asking students to provide essay 

answers to open-ended questions, which we then 
code using Ed’s Tools. The coding allows us to 
aggregate the language that students use to describe 
their thinking for each concept that we identify. We 
then use that language to formulate both the 
questions and the answers (both the correct answer 
and the distracters) for the CI items. We then 
conduct interviews and think-alouds with a large 
number of students and use these to refine our 
wording of the Inventory items, and repeat the cycle 
until the results from the interviews and the 
instrument converge. 

In the following section we describe how we use 
Latent Semantic Analysis (LSA) to improve the 
logistics of determining the prevalence of each 
preconception in the student population, and we 
show some initial results. 

2.4 Latent Semantic Analysis and CI 
Construction 

LSA has been used successfully to provide grading 
of student essays that correlates well with grades 
given by experts (Landauer and Dumais, 1997; 
Landauer et a.l, 1998), and can also be used 
effectively to provide feedback that helps students 
(or teachers) identify the elements of the text that 
they have missed (Kintsch et al., 2000).  

In addition to these general language 
applications, we have recently achieved comparable 
results in science specific tasks. The results of this 
work show that with only a small (of the order of 
~100) set of human-rated documents to train on, 
LSA can classify documents that it has not trained 
on along predefined concept categories in a way that 
correlates well with the human classification. So far 
we have analyzed student answers to three questions 
in Physics, two in Astronomy, and six in Biology.  

The Physics results shown in Figure-2 were 
obtained with data collected with Ed’s Tools from 
three different classes at the University of Northern 
Colorado (UNC): an introductory calculus-based 
course for scientists and engineers, and two physics 
courses for pre-service teachers (an introductory 
physics course, and a capstone physics course that is 
required of all graduating pre-service teachers). The 
essay was assigned during regular class time, and 
students in all three classes were given 20 min to 
complete it. The essay was given early in the 
semester so that the students in the calculus based 
class and the introductory pre-service class had not 
covered the material in college.  
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A typical Physics question was: 

In 60 words or more, describe what happens 
when a light car and a heavy truck, which travel 
with the same speed but in opposite directions, 
collide head-on? 

As a rule of thumb sixty-word answers are the 
shortest documents on which LSA can be effective, 
but with this question we wanted to test LSA’s 
performance for the shortest answers on which the 
method can be expected to give reasonable results. 
We collected 65 responses from a class for majors, 
and a total of 160 responses from two classes for 
pre-service teachers. Although the overall number of 
essays we collected was 225, nearly half of them had 
no physics content (most of the invalid responses 
concerned seat belt use, insurance rates, and the 
safety disadvantages of fuel efficient small cars) so 
the number of relevant essays on which LSA trained 
was closer to 120. Two expert graders used 
approximately half of the responses to train on, and 
scored the remaining half independently. Four rubric 
components were identified, along which each of the 
answers was scored on a scale of 0-3. An answer 
was given a 0 along a component if it did not contain 
any treatment of the subject, and a 3 if it contained a 
well articulated treatment (for a misconception, that 
treatment is physically incorrect, but as long as the 
concept is clearly present in the text the score for 
that component is 3). The four components and 
examples of answers are given in the Appendix. The 
essays were analyzed using two spaces, TASA, and 
a physics space constructed for the project. TASA 
contains 1.2 million words in 37,000 documents and 
750,000 sentences and has been selected to be 
representative of the amount and type of material a 
college student would have read in their lifetime. 
The physics space was constructed using  

 

Figure 2: The correlation between the LSA score 
assignment and the experts’ score assignment for each 
rubric component. The bars represent the TASA-Expert, 
(TASA+Physics)-Expert, and Expert-Expert correlations 
respectively for the orange, green, and blue bar. 

introductory physics texts available under the Open 
Content license (http://opencontent.org/opl.shtml) 
and contains 1465 documents.  

Astronomy 

 
Biology 

 
Figure 3: Top frame: The correlation function between the 
two experts (blue) and between the experts and the LSA 
system using the TASA general English space (orange) 
and TASA augmented with the physics space (green). The 
rubric components are as follows: 
#1: The Cosmological Constant (CC) provides a repulsive 
force that counteracts gravity 
#2: The CC is the same as Dark Energy 
#3: Study of distant supernovae shows that the expansion 
of the universe is accelerating 
#4: Fluctuations in the microwave background radiation 
show that the CC exists 
#5: Dark Energy is a force that counteracts gravity 
Bottom frame: The correlation function between the two 
experts (blue) and between the experts and the LSA 
system using the TASA general English space (orange) 
and TASA augmented with the biology space (green). The 
rubric components are as follows: 
#1: Alternative forms of a gene are known as alleles 
#2: Alleles can be dominant or recessive to one another 
#3: For most genes, you carry two alleles, one from your 
mother and the other from your father 
#4: A recessive phenotype is visible if both alleles are 
recessive; if one is dominant, the recessive phenotype will 
not be visible, but the allele remains and can be passed to 
offspring 
#5: Phenotype refers to the visible traits displayed by an 
organism. 
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Figure-1 shows the correlation of the LSA 
assigned scores (using the two spaces) to the score 
assigned by expert-1 for each of the components, 
and the correlation between the two experts. 
Dimension-3 is the well-known dominant 
misconception in the domain (that the heavy truck 
will exert a greater force on the small car than the 
other way around). We see that LSA is comparable 
to the experts for component-1 (correct energy 
formulation) and component-2 (correct momentum 
formulation), although it performs lower than the 
experts in component-3 (the dominant 
misconception on the subject). Component-4 is the 
correct force formulation of the problem. 

It is important to note that TASA alone, which is 
general space, produces results that are overall 
comparable to the results produced with the addition 
of a target-specific physics space. This plot shows 
that by using human raters to rate a relatively small 
number of documents, LSA can generally classify 
documents on which it was not trained, with a 
correlation which can be comparable to that of 
different human experts. The exception in this case 
seems to be the correct force formulation (which 
states that the forces exerted by the car and truck on 
each other are equal). It is not clear why this rubric 
component faired so much worse than the rest. It is 
worth noting that the experts were in perfect 
agreement on this component (the correlation is one, 
over all relevant answers). 

Figure-3 shows results from two additional 
questions, one in Astronomy, analyzed with TASA 
and the same Physics test used in the Physics 
questions, and one in Biology, analysed with TASA 
and an open source Biology text. We see that in both 
cases the system is consistently comparable to the 
experts, especially when the general English space is 
augmented with subject-specific texts. 

3 CONCLUSIONS AND FUTURE 
WORK 

Although this is an ongoing project, the results so far 
show that student essays, even of lengths that are 
generally on the borderline of being too short for 
treatment by LSA, can indeed give results that are 
comparable to expert raters’, although some 
challenges still remain. One of the questions that 
will be important to the method, is the extend to 
which the nature of the space in which the texts are 
projected (eg. a general space like TASA versus a 
discipline-specific space like the one we developed 

from the textbooks) affects performance, and we 
plan to conduct additional studies with a variety of 
discipline-specific texts to address this question. 
Perhaps the greatest limitation of the method is the 
fact that, at this stage, the dominant misconceptions 
are still being discovered “by hand” as it were, with 
experts combing through large amounts of textual 
data. Tools like Ed’s Tools can improve the logistics 
of that search, and tools like LSA can improve the 
logistics of identifying these misconceptions in very 
large populations, but the discovery phase still 
depends exclusively on experts. We plan to address 
this limitation in future work, by using LSA to point 
out possible new misconceptions that can then be 
rated by content experts. 
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APPENDIX 

The rubric components for the Physics example: 

Component-1: Energy Conservation 
Answers that received a non-zero grade along this 
component had a correct discussion of energy 
conservation for the problem. Students usually 
talked about kinetic energy being converted to other 
forms of energy during the collision (eg. heat or 
sound) and correctly stated that the total kinetic 
energy after the collision is lower than before. Some 
students even identified and explained elastic and 
inelastic collisions. The more complete the answer, 
the higher the score that was assigned to it in this 
component. For example: 

When the light car and heavy truck collide.  Each 
will apply a force to the other.  The force from the 
heavy truck will be greater than the force the car 
applies to the truck. After the inelastic collision the 
car will "bounce" off the truck and travel 
backwards. The truck will slow considerably but 
should continue forwards. In this collision 
momentum of the car and truck system will be 
conserved because momentum is always conserved.  
Kinetic energy however will be lost because the 
collision is inelastic.  Energy will be lost in the form 
of heat and sound. 

This answer was scored as a 3 in the first 
component (incidentally, it also scored a 3 in 

component-3, the dominant misconception in the 
domain). 

Component-2: Momentum Conservation 
Answers that received a non-zero score along this 
component had a correct discussion of momentum 
considerations for the problem. Students usually 
talked about the truck having a greater momentum 
because of its greater mass. They correctly stated 
that the truck will continue to move in its original 
direction, while the car will reverse directions, that 
the combined mass of the car+truck will move at a 
lower speed than either did before, and many 
students even stated explicitly that momentum is 
conserved in the collision. The more complete the 
answer, the higher the score that was assigned to it 
along this component. For example: 

What happens when the light car and heavy truck 
collide with each other is that they will have a non-
elastic collision.  When they crash they will 
somewhat stick together and continue to move in the 
same direction as the heavy truck was moving before 
the collision.  The kinetic energy of the light car and 
heavy truck will not be the same as the kinetic 
energy of the total mass of the truck and car, 
because the vehicles are not on a frictionless surface 
and energy is lost in heat. 

This answer scored a 3 in this component 
(although it is missing an explicit statement for 
conservation of momentum). It also scored a 3 in 
component-1 (correct energy treatment) despite the 
fact that it is ambiguous about the reason for energy 
non-conservation. Very few answers were better 
than this. 

Component-3: The Force Exerted by the Truck is 
Bigger 
This is the best known misconception treated in the 
literature. Answers that received a non-zero grade 
along this component stated that the truck will exert 
a bigger force on the car than the other way around. 
For example: 

Primarily, when a collision occurs between any 
object, energy will always be conserved. What will 
happen in a case where a light car and a heavy 
truck, traveling at the same speed in opposite 
directions, collide is each will have a certain 
magnitude in force and after the collision the 
vehicles will travel some distance. We know that the 
heavier truck will have more force because it is 
more massive. The light car will have less force 
because it is less massive. The direction in which the 
vehicles travel post impact depends on the net force 
resulting between the two vehicles. 

This answer scored a 3 in this component. It 
clearly states the dominant misconception twice, 
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both for the truck and for the car. 

Component-4: Force Equal 
This is the correct force formulation for the problem. 
According to Newton’s laws, the force exerted by 
the car on the truck is equal to the force exerted by 
the truck on the car. For example: 

When a light car and heavy truck collide head on 
traveling at the same speed the light car will have 
the most damage.  This is not because the force was 
greater on the car, both are hit with the same 
amount of force, it is simply because the car is not 
built as sturdy as the heavy truck. 

This answer received a 3 on this component. 
Some students not only stated this explicitly, but 
they also quoted Newton’s law by name. 
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