An Integrated Approach for Designing and Validating REST Web
Service Compositions

Irum Rauf, Faezeh Siavashi, Dragos Truscan and Ivan Porres
Abo Akademi University, Dept. of Information Technologies, Turku, Finland

Keywords:

Abstract:

REST, Web Service Composition, Model-based Testing, UPPAAL, TRON.

We present an integrated approach to design and validate RESTful composite web services. We use the

Unified Modeling Language (UML) to specify the requirements, behavior and published resources of each
web service. In our approach, a service can invoke other services and exhibit complex and timed behavior
while still complying with the REST architectural style. We show how to transform service specifications into
UPPAAL timed automata for verification and test generation. The service requirements are propagated to the
UPPAAL timed automata during the transformation. Their reachability is verified in UPPAAL and they are
used for computing coverage level during test generation. We validate our approach with a case study of a

holiday booking web service.

1 INTRODUCTION

Web services have machine-readable interfaces that
automate the task of communicating information be-
tween machines and reduce time and human efforts.
They are being increasingly used in the industry in
order to automate different tasks and offer services to
a bigger audience. REST architectural style aims at
producing scalable and extensible web services using
technologies that play well with the existing tools and
infrastructure of the internet. This has encouraged no-
table enterprizes to use REST web services to meet
their needs. REST interfaces offer a CRUD interface
(create, retrieve, update and delete) to its users via a
set of standard HTTP methods. They offer stateless
behavior that facilitates scalability and requires that
no hidden session or state information be carried be-
tween method calls.

Different web services published over the internet
can be composed to form a composite web service
such that the composed web service fulfills new ser-
vice goals using the functionality of partner web ser-
vices. Automated systems, for example hotel reser-
vation systems, are often built as stateful composite
services that require a certain sequence of method in-
vocations that must be followed in order to fulfill ser-
vice goals. Designing and developing such stateful
composite services with REST features is not a trivial
task and requires rigorous approaches that are capable
of creating reliable web services.

104 Rauf I., Siavashi F,, Truscan D. and Porres I..

Thus, with the use of web services in businesses
and critical applications, there is an increasing need
for a) design approaches to develop web service com-
positions that support complex scenarios and timed
behavior while complying with the REST architec-
tural style and b) validation approaches to effectively
and efficiently detect faults in specifications and im-
plementations of such services.

In this article, we present a design and valida-
tion approach that facilitates the service developer to
create reliable, timed and stateful composite REST
web services. As a first contribution, we introduce
an approach in which we use the Unified Modeling
Language (UML) (UML, 2009) to model our service
specifications via an extension of our previous work
in (Porres and Rauf, 2011). We use UML since it has
emerged as a standard modeling language at indus-
trial level (Budgen et al., 2011) and has sophisticated
tools due to large user base. This can make adoption
of the approach easier in the industry.

The service design models and their implementa-
tions should be validated for their correct behavior in
order to build trust on the service functionality. We
have used the model checking approach for this pur-
pose. Model checking is a way to exhaustively and
automatically check if a finite-state model of a pro-
gram satisfies its specifications (Clarke et al., 1994).
The UML-based service design models represent the
system graphically and are comprehensible for a hu-
man user. In order to make the models amenable

An Integrated Approach for Designing and Validating REST Web Service Compositions.

DOI: 10.5220/0004949601040115

In Proceedings of the 10th International Conference on Web Information Systems and Technologies (WEBIST-2014), pages 104-115

ISBN: 978-989-758-023-9

Copyright ¢ 2014 SCITEPRESS (Science and Technology Publications, Lda.)

An Integrated Approach for Designing and Validating REST Web Service Compositions

for model checking we suggest, as a second contribu-
tion, a set of reversible mechanized steps for translat-
ing UML-based service specifications into UPPAAL
timed automata (UPTA) (Larsen et al., 2009). UP-
PAAL is a commonly used model checking tool for
verifying real time systems through modeling and
simulation (Larsen et al., 1997). We verify basic
properties of our design models such as reachabil-
ity, liveness and safety using the UPPAAL model-
checker tool. UPTA are updated (if needed) based on
the verification results and transformed back to UML.
From the UML models, a skeleton of the composite
service is generated automatically in the Django web
development framework (Holovaty and Kaplan-Moss,
2009) using our partial code generation tool.

In our approach, a service can invoke other ser-
vices and exhibit complex and timed behavior while
still complying with the REST architectural style. We
need to check if the service implementation is func-
tioning correctly along with partner services and if the
service goals and timed constraints are being fulfilled.
Thus, as a third contribution, we show how we vali-
date the implementation of the RESTful web service
composition with a model-based testing (MBT) ap-
proach using the UPPAAL TRON tool (Larsen et al.,
2009). By using MBT, test cases can be automatically
generated with an increased probability of test cover-
age and with an ease of test case maintenance.

Requirements traceability is an important compo-
nent of our integrated approach. The requirements
of the composition are included in the UML speci-
fications and then propagated to UPTA specifications.
They are used for both verifying the reachability of
those model elements implementing them and for rea-
soning about their coverage after the tests are exe-
cuted. Upon detecting failures, traced requirements
can be used to localize the errors either in the models
or in the specifications.

We exemplify and validate our integrated ap-
proach with a relatively complex case study of a hol-
iday booking composite REST web service from in-
dustrial context. The case study shows how stateful
and timed web services offering complex scenarios
and involving other web services can be constructed
using our approach.

The paper is organized as follows: Section Il gives
an overview of our approach, while tool support is
discussed in section I1l. The case study is presented
in section IV and the evaluation of the approach is
presented in section V. The related work is discussed
in section VI and the section VII concludes the paper.

2 OUR APPROACH

An overview of our integrated design and validation
approach is given in Figure 1. The left side of the fig-
ure shows our previous work, whereas the right side
shows the contribution of this paper and how it is con-
nected to the previous work.

In our previous work (Figure 1-left), we de-
signed behavioral interfaces for web services that
were RESTful by construction (Porres and Rauf,
2011). These design models were implemented in the
Django web framework using our partial code gener-
ation tool (Rauf and Porres, 2011) which generated
code skeletons with pre- and post-conditions for ev-
ery service method. The design models were also an-
alyzed for their consistency (Rauf et al., 2012).

In the current work, we focus on designing, veri-
fying and testing composite REST web service (Fig-
ure 1-right) as follows:

Design: First of all we extend our design approach
to create composite REST web services with UML.
Our approach takes as input the behavioral interface
specifications of the partner REST web services and
the business requirements. With these inputs, we con-
struct models for composite web service using our de-
sign approach.

Verification: =~ We then provide verification of the
design models by reasoning on the basic proper-
ties of models like deadlock, liveness, reachability
and safety with the UPPAAL model-checker. To
achieve this, we transform the service design mod-
els to UPTA, which are simulated and verified. Based
on verification results, the UML-based service design
models are updated.

Transformation: Transformation step generates two
types of automata from service design models. One
of the types corresponds to service design models and
the other type represents the environment model. The
environment model simulates the behavior of service
user to invoke the interface service methods in order
to facilitate test generation.

Code Generation: The code skeletons are generated
from UML service design models to Python-based
Django web framework using our code generation
tool (Rauf and Porres, 2011) that are completed man-
ually by the developer.

Testing: For model-based testing of the service imple-
mentation, we have used online conformance testing
tool UPPAL-TRON that validates the service imple-
mentation against its UPTA specification models at
runtime.

Evaluation: In the end, we have evaluated our valida-
tion approach for its efficiency using mutation testing
and benchmarked.

105

WEBIST 2014 - International Conference on Web Information Systems and Technologies

Specification Document Composite Service

1
|

J/ I Specifications
| J/

Design Stateful —_— Design REST WS
REST Models Composition

Analyze
Consistency

REST Composite
WS Models

il

|
|
|
|
Lﬁ REST WS Models I
|
I Transformation
|
|
|
|
|
|
|
|

Generate Code

Simulate and UPTA Models
T T

Generate
TestCases

]

< Test Cases

Behavioral REST
WS Interface

— Test SUT

L Test Results

Figure 1: Activity Diagram of Design and Validation Ap-
proach for REST CWS.

2.1 REST Composition Models

We require that a composite REST web service in-
terface should exhibit the REST interface features,
i.e. addressability, connectivity, statelessness and uni-
form interface. We have modeled our composite
REST web service interfaces with a resource model,
a behavioral model and a domain model that exhibit
these features.

This work extends our previous work on creat-
ing behavioral interface specifications of individual
REST web services (Porres and Rauf, 2011). For the
details of the design approach, readers are referred to
(Porres and Rauf, 2011).

The concept of resource is central to the structure
of REST web service. It represents a piece of infor-
mation (Richardson and Ruby, 2008). We respresent
the static structure of REST web service with resource
model which is modeled with a UML class diagram.
Each class represents a resource definition. We have
used the term resource definition to define a resource
entity such that its instances are called resources. This
is analogue to the relationship between a class and its
objects in the object-oriented paradigm.

The direction of the association between resource
definitions gives the navigability direction between
them while their role names give the relative URI of
resources (addressability). The collection resource
definiton without the incoming transitions is termed
as root such that every resource definition in the re-
source model should be reachable via root and the
graph formed should be connected (connectivity).

A behavioral model represents the dynamic struc-

106

ture of the service and it is modeled by a UML State
Machine (SM). Each state represents the service state
and the trigger methods of transitions are restricted to
the side-effect methods of HTTP, i.e., PUT, POST and
DELETE (uniform interface). The statelessness fea-
ture of the REST interface is preserved while build-
ing stateful REST web service by defining state in-
variants as boolean expression of states of different
resources. The state of a resource is given by its rep-
resentation retrieved by invoking a GET on it. We are
thus able to define service states as predicates over the
resources without maintaining any hidden session or
state information (statelessness). The state invariants
in the SM are written as Object Constrain Language
(OCL) expressions. OCL is commonly used to define
constraints in UML models, including state invariants
(Birgit Demuth, 2009).

For modeling a service composition, the models
are required to represent method invocations on the
partner services. The service invocations to partner
services are modeled as effects on the transitions. The
composite web service requirements, -inferred from
the specification document, are added as UML com-
ments on the transitions that satisfy them. These re-
quirements should be met by the implementation of
the service in order to fulfill the service goals.

The domain model of the composite service is rep-
resented with a class diagram. It represents inter-
faces between the composite service and its partner
services. The required and provided interface meth-
ods between the composite and its partner services are
modeled with required and provided interfaces in the
domain model, respectively.

2.2 \erification

Model verification is a process of determining
whether the models are designed correctly and repre-
sent the developer’s conceptual descriptions and spec-
ifications. Model checking is one of the ways to ex-
haustively check the models automatically. The ser-
vice design models of composite REST web service
should be verified for their basic properties in order to
build confidence of the service designer on the models
before implementing them. This allows one to elimi-
nate design errors that can be expensive to detect and
correct at later stage of the development cycle.
UPPAAL model-checker is used for modeling,
simulation and verification of real-time systems
(Larsen et al., 1997). It consists of set of timed
automata (TA), clocks, channels that synchronize
the systems (automata), variables and additional ele-
ments. A real-time system is modeled as a closed net-
work of TA. Each automaton in the network is speci-

An Integrated Approach for Designing and Validating REST Web Service Compositions

fied via a template, which can be instantiated as pro-
cess. A template in UPTA is composed of locations,
edges, clocks and variables representing all properties
of the system. Synchronization between different pro-
cesses can be provided using channels. Two edges in
different automata can synchronize if one is emitting
(denoted as channel_name!) and the other is receiv-
ing (denoted as channel_name?) on the same chan-
nel. Guards are the conditions that enable a transition
when they are satisfied. Similarly, the conditions as-
sociated to locations, called invariant, specify that the
system can stay in the location if and only if the in-
variant is satisfiable.

The query language used in UPPAAL is a simpli-
fied version of TCTL (Alur et al., 1990) that consists
of state formulae and path formulae. State formulae
(J) is an expression that describes an individual state,
while path formulae can be classified into reachabil-
ity, safety and liveness properties. Deadlock is ex-
pressed using state formulae. The syntax of TCTL
path formulae that are used in UPPAAL is defined as
follows:

A - for all paths, the property j is always

satisfiable.

A - for all paths, the property j is eventually

satisfiable.

E J -thereisat leasta path in the automata such

that property j is always satisfiable.

E J - there is at least a path in the automata such

that property j is eventually satisfiable.

J T -when j holds, f must hold.

If there is a location in the model that has no out-
going transition, then the model is said to be in a
deadlock. Reachability properties validate the basic
behavior of the model by checking whether a certain
property is possible in the model with the given paths.
The safety property checks that something bad will
never happen and the liveness property is verified to
determine that something will eventually happen.

However, before using UPPAAL model-checker
to verify these properties we need to give our service
design models in UML formal foundations that are
understandable by the verification tool. This has to
be done in an automated manner to avoid extra efforts
from the service developer. In section 3, we present
our tool support for this and explain in detail the trans-
formation from UML to UPTA.

2.3 Model-Based Test Generation

Model-based testing (MBT) is a method that provides
an abstract model of a system under test (SUT) and
preforms automatic test case generation based on the
specifications of the SUT (Utting and Legeard, 2007).

In MBT, modeling the environment of a system is
important since the environment generates test cases
from whole or some parts of the model to satisfy the
test criteria. Environment models help in automation
of testing in three ways: the automation of test case
generation from a simulated environment, the selec-
tion of test cases, and the evaluation of their test re-
sults. Our UML to UPTA transformation tool gener-
ates both the SM of SUT and the environment model.

We provide automatic test generation using UP-
PAAL TRON, which is an extension of UPPAAL for
online model-based black-box conformance testing
(Larsen et al., 2009). During test generation, the envi-
ronment model randomly selects test cases and com-
municates to the test adapter.

A test adapter is used by UPPAAL TRON to ex-
pose the observable 1/O communication between the
test environment model and the SUT model, as shown
in Figure 2. Our adapter implements the communi-
cation with the SUT by converting abstract test in-
puts into HTTP request messages and HT TP response
messages into abstract test outputs. The TRON tool
generates tests via symbolic execution of the specifi-
cations using randomized choice of inputs. Based on
the timed sequence of input actions from the simula-
tion, the adapter preforms input actions to Implemen-
tation Under Test (IUT) and waits for the response.
Output from IUT is monitored and generated as out-
put actions for the simulation. The conformance test-
ing is achieved by comparing outputs of IUT to the
behavior of the simulation.

Tron Engine

nput Tmpl

http

Environment Model of CWS tation

=

0-/\’%,_%

Under Test
(IUT)

HB Adapter

output

Figure 2: UPPAAL TRON test setup.
2.4 Requirements Traceability

Service requirements can be inferred from the spec-
ification document and they serve as service goals.
A service should be checked for its service goals in
order to validate that the service does what it is re-
quired to do. By catering to the service requirements
at the design phase and propagating them to the val-
idation stage, we provide a mechanism by which a
service requirement can be validated for its goals and
the unfulfilled requirements can be traced back to the
design phase to find faults in the design. Service re-
quirements are generally domain-specific since they
are inferred from the specifications. We infer func-
tional and temporal requirements from the specifica-
tion document into a table and number them. These

107

WEBIST 2014 - International Conference on Web Information Systems and Technologies

requirements are attached to the SM as comments on
the transitions and are propagated to UPTA such that
the links between requirements and the model ele-
ments are preserved. These requirements are included
in all the models and traced throughout the process,
i.e., at UML, UPTA and test level, respectively.

The requirements are formulated as reachability
properties in UPTA with the purpose of verifying
them during simulation. Each requirement label is
translated into a boolean variable (initialized to False)
and attached to the corresponding edge in the UPTA.
This mapping is explained in more detail in the Sec-
tion 3 on the UML to UPTA transformation.

We require that our testing approach must validate
that these requirements are met by IUT, in order to
build confidence of the developer that the system is
doing what it is required to do. Thus, their coverage
level is monitored during test generation and execu-
tion. Once the test report is available, we can check
which requirements have been validated and which
have failed.

3 TOOL SUPPORT

Modeling in UML. The design models are modeled
using MagicDraw (Mag, 2013). Static validation of
models is done via OCL using the validation engine of
Magic Draw. We rely on predefined validation suites
for UML contained in MagicDraw for the basic val-
idation of the model. These validation suites contain
rules that check that the designed UML model con-
forms to UML meta-model specifications and prevent
the developer from doing basic modeling mistakes.
Code Generation. The code-skeleton of the up-
dated service design models of REST composite web
service can be generated using our tool presented in
(Rauf and Porres, 2011). The tool generates code
skeleton for design models in Django that is a high
level Python web framework (Holovaty and Kaplan-
Moss, 2009). The generated code also has behavioral
information such that the pre and post conditions for
each method are included and the developer just has
to write the implementation of the operations.

UML ¥ UPTA Transformation. The transforma-
tion from UML design models to UPTA is an exten-
sion of our approach presented in (Nobakht and Tr-
uscan, 2013). The extension of transformation gener-
ates several artifacts: UPTA model, test environment
model and a skeleton for test adapter depicting the
testable interfaces of the composite web service.
Resource Model. In UPTA the resource model is rep-
resented as a template. The resource definitions in the
resource model are specified as variables with 1 or 0

108

POST(a) 3 @

A
[self.a -> size() =1]

B POST(c)
[self.b -> size() =1 and self.c -> size() =0
and self.d -> size() = 0]
POST(d
D (d)
[self.b -> size() =0 and c

self.c -> size() =0 and

self.d -» size() = 1] [self.b -> size() =0 and

self.c -> size() = 1 and
self.d -> size() = 0]

a=0,b:
c=0,d

0,b=0
- 0,470 a==18&b==18&
oSt ==08&&d==0

a==1&&b==0
&&c==0&&d==1

a==18&8&b==0
&&c==188&d==0

Figure 3: (Left) Composite State in UML State Machine.
(Right) Flattened locations in timed automaton.

value, specifying if a resource exists or not, respec-
tively. The attributes of resource definitions are in-
spected and for each integer attribute, an integer vari-
able is declared in the UPPAAL model. Similarly, the
boolean attributes are declared as integer arrays of 0
and 1.

Domain Model. The domain model shows set of op-
erations offered and required by the composite web
service and its partner web services. The correspond-
ing communication between templates in UPPAAL is
represented by channel synchronizations. Two edges
in different automata in UPPAAL can synchronize if
one is emitting and the other is receiving on the same
channel. The operations in an interface are thus trans-
lated into a binary synchronization channel in UP-
PAAL. The template of the service that realizes the in-
terfaces acts as the receiving automaton and the send-
ing automaton is specified by the template of the ser-
vice that uses the interface.

Behavioral Model. The SM of the REST web
service is encoded to TA that are represented by
templates, which are instantiated as processes. Figure
3 shows an example of transformation from the SM
to TA.

States. A state is mapped to a location in UPTA,
and a state invariant is mapped to corresponding
location invariant. The subclauses of the state
invariant are translated to variables corresponding to
the respective resource definition. For example, in
Figure 3, self:a >size() =1istranslatedasa =1
and self:b > size() =0 as b = 0. The initial state
corresponds to the initial location. The final states are
translated by having an edge from the corresponding

An Integrated Approach for Designing and Validating REST Web Service Compositions

location to initial location and updating all the
variables to their initial values, as shown in Figure 3.
The choice state in the SM is replaced by two edges
in the TA model that are originating from the same
source location to different target locations.

State Hierarchy. The SM may contain composite
states for better representation of specifications.
UPTA, however, does not support the notion of
location hierarchy. We flatten the composite states
into several simple states by including the state
invariant of super states in the contained states that
are then mapped to the respective locations in UPTA.
For example, in Figure 3, the top figure contains a
SM with a composite state that is flattened to UPTA
model shown at the bottom. States B, C and D in the
SM correspond to the locations B, C and D of UPTA,
respectively. Note that all the locations contain the
state invariant of superstate A in the SM.
Transitions. A transition in the SM is mapped
to an edge in UPTA and guards on the transition
are mapped to guards on the corresponding edge in
UPTA. In Figure 4, we shows how the transitions in
the SM (top) are translated to UPTA (bottom right).
The locations L1 and L5 correspond to states S1
and S2 of SM, respectively, and locations LO, L2,
L3, and L4 are the extra locations created during
the transformation process as explained below. The
state invariants are translated to location invariants
and represented as boolean functions for the purpose
of diagram clarity. The transition between states S1
and S2 is triggered by POST(b) after 10 minutes as
specified in the guard. In UPTA, this is represented
as guard over the clock variable cl.

Trigger Methods. The trigger methods from the SM
are translated in to receiving channels in UPTA. This
receiving channel is in sync either with the automaton
of the partner service or with the environment model.
Time Events. The time events in behavioral diagram
are replaced by clocks in UPTA. The clock is reset
in the incoming edge to the location (L1) and is
also included in the location invariant. Thus, the
guard after(10m) is translated to cl > 10 on the
corresponding UPTA edge.

Effects. The effect on the transition, i.e., POST (c)
shows invocation to the partner service. The com-
munication between two web services is established
by using a unique channel synchronization. For
instance, emitting a request from a web service
to the other one can be replaced by synchronizing
a channel in an UPPAAL process, and the other
process is the receiver of the synchronization. The
effect of the transition that invokes a remote service
is represented with two edges and an urgent location
(marked with U in the circle) in between, i.e., edges

e2 and e3 and urgent location L3. An urgent location
in UPTA does not allow any delays (Larsen et al.,
1997). Thus, the first edge (el) is synchronized with
the environment model and the second edge (e2)
synchronizes with the partner automaton. The third
edge (e3) is synchronized to receive acknowledgment
response from the partner (as we model asynchronous
service) and the sending channel on the fourth edge
(e4) is synchronized with the environment to indicate
the completion of transition.

$1 POST(b) [after(10m)] / POST(c) s2

[self.a ->size()=0 and
self.b->size()=1]

| [self.a ->size() =0 and T
If.b->size()=0])
se_ >size()=0] l

Req:1 ‘

el && e2 &&
e3 && e4 &&
reqi

Figure 4: Example of SM (top) Corresponding Environment
Model (bottom left) and Flattened TA (bottom right).

Requirements. The requirement on the transitions are
translated into a boolean variable (initialized to False)
and attached to the corresponding edge which updates
it to True. This is shown in Figure 4 with Reql=
True on edge e4. This implies that whenever this edge
would be traversed, this requirement will be met. This
can be formulated as reachability properties to attain
requirement coverage and tracked during test genera-
tion and execution.

Environment Model. The environment model in
UPTA has sending channels that are received by the
composite web service automaton as inputs to trig-
ger the process. This is similar to interface method
calls in the SM. All the interface methods of the ser-
vice specified in the state machine are mapped to the
sending channels in the environment model and the
response of successful transition is received from the
composite web service via receiving channels. This is
also shown in Figure 4: the environment model initi-
ates the automaton (bottom right) by sending channel
post_b! and the process completes when the channel
resp_b? is received.

A Python script is currently used to create the en-
vironment model, from a given UPTA model by ana-
lyzing the channels observable from the environment.
The original idea has been discussed in (Hessel et al.,
2008). This will be merged in the final version of the
UML ¥ UPTA transformation script.

Test Coverage Information. In order to enable
rigorous test coverage in UPPAAL TRON, a second
Python script (discussed in more detail in (Koskinen
et al., 2013)) is used to automatically add counter

109

WEBIST 2014 - International Conference on Web Information Systems and Technologies

variables for each edge of a given automaton in a
UPTA model and a corresponding update of the given
variable on the corresponding edge. Whenever the
edge is visited during the simulation or execution, the
variable is incremented, allowing thus to track which
edges have been visited and how many times. This
enables one to track coverage level wrt. e.g., edge
coverage or edge pair coverage. This script will also
be integrated in the final version of the UML ¥ UPTA
transformation script.

4 CASE STUDY

Our case study is a Holiday Booking (HB) composite
REST web service that is built on inspiration from the
housetrip.com service, with the purpose of having a
case study similar in complexity to real services. This
service is a holiday rental online booking site, where
one can search and book an apartment in the destina-
tion country.

The user of the service searches for aroominaho-
tel from the list of available hotels at HB before travel.
He books the room (if it is available) and that book-
ing is reserved by HB with the hotel for 24 hours. The
user must pay for the booking within 24 hours. If the
user does not pay within this time then the booking is
canceled. If the booking is paid, then the HB service
invokes a credit card verification service and waits for
the payment confirmation. When the payment is con-
firmed, HB invokes the hotel service to confirm the
booking of the room. If the hotel does not respond
within 1 day or it does not confirm at all, the book-
ing is canceled and the user is refunded. If the hotel
service confirms, then a booking is made with the ho-
tel. The payment is not released to the hotel until the
user checks in. When the user checks in, HB releases
the money to the hotel and the booking is marked by
the hotel as paid. Due to space limitation, we only
show some of the models and information here. The
detailed case study is available at (Rauf et al., 2013)
Design Models. The design of HB composite REST
web service is modeled with resource, behavioral and
domain models. The state machine of HB composite
service is shown in Figure 5.

Requirements Traceability. We have inferred func-
tional and temporal requirements from specification
document for our case study. Table 1 shows the re-
quirements for Booking and Payment Release. These
requirements should be fulfilled by the IUT in order
to satisfy the service goals. They are added as com-
ments to the model in Figure 5.

Verification. The design models of Holiday Booking
(HB) composite REST web service are translated to

110

Table 1: Requirements of Holiday Booking CWS (excerpt).

Req Sub-Requirements

1- Booking 1.1 - A booking should be paid
1.1.1 - A booking should be paid within 24 hours of the booking.
1.1.2 - If a booking is not paid within 24 hours of the booking,
then it is canceled by the system

1.1.3 - A confirmed paid booking, waits for user check in

2- . 21-..

4- Payment 4.1 - If the user checks in then the payment must be released
Release to the hotel.
4.2 - When the payment is released to the hotel, HB CWS must

notify the hotel about release of the payment

UPTA with the help of transformation tool. Here, we
only show an excerpt of UPTA in Figure 6. The de-
tailed model and the specifications of the partner web
services are available in (Rauf et al., 2013).

The verification properties are specialized for our
case study and some of them are mentioned below.
Deadlock Freeness. The HB Service, the hotel ser-
vice and the payment service models are all deadlock
free. This means that the composite service is never
reach to a state that cannot preform a transition (i.e.,
A[] not deadlock). Note that the following queries are
made for complete model and only some of them can
be traced in Figure 6.

Reachability. All the locations in the HB service
are reachable. This means that the model receives
and sends messages to the partner services smoothly
and the model is validated for its basic behavior (i.e.,
E CompService:r), where r is the last location in the
TA model and indicates that all processes for certain
booking is completed.

Safety. Some of the safety properties in our model are:
a) Payment should be released iff the user has checked
in,i.e., (E CompService:h2 imply CardService:c2),
where c2 is the location after check-in and h2 is
the location after payment release, b) If the pay-
ment is released by the HB service then the Hotel
service is paid, i.e., (E CompService:h2 imply
HotelService: p), where p is the location in Hotel ser-
vice model for hotel payment.

Liveness. Some of the liveness properties in the model
are: a) When the payment is not paid within 24 hours,
the booking is canceled (i.e., CompService:c and
compService:cl > 24 CompService:bl), where ¢
indicates waiting for the payment, cl indicates clock
of the model and bl indicates the booking request is
going to cancel due to the delay, b) If the Hotel Ser-
vice does not confirm within 3 days then the booking
is considered not confirmed (i.e., CompService:o and
CompService:cl >3 CompService:n), where 0 is
the location for waiting for the hotel response and n is
the location for canceling.

An Integrated Approach for Designing and Validating REST Web Service Compositions

DELETE(pay)

PUT(pay, bookingid) / POST(../payments/)

DELETE(pay) [after(10m)]
P

waitingPConfirmation
[self.paid->size()=0 and self.pay->size()=1

and self.cancel->size()=0 and self.refund->size()=0
and self. waitingRefund->size()=0]

) L ¢
and self.cancel->size(}=0 and self.refund->size()=0
cancelled
and self. WaitingRefund->size()=0]

waitingforRefund

[self.paid->size()=0 and self.pay->size()=0 POST(waitingRefund) / POST(../payments/)
and self.cancel->size()=1 and self.refund->size()=0
PUT(pai

and self. WaitingRefund->size()=1]

d, amount)

cancelledandrefunded
[sell paid->size()=0 and sell.pay->size()=0
and self.cancel->size()=0 and self.refund->size()=1
and self.waitingRefund->size()=0]

state machine HolidayBookingSM gi HolidayBouI’SM]J
unPaid
\
Req 1.1.2 and self. waitingRefund->size()=0]
Req 3.1 =
[self.paid->size()=0 and self.pay->size(}=0

POST(bookings, days,

[self.paid->size()=0 and self.pay-=size()=0

— |~ -

— N
PUT (cancel, nme)’%ﬂer(%h]] J/ PUT(cancel. note = "Reason”) |Req 2.2.1
and self.cancel->size()=1 and self refund->size()=0
T
— — — — = “PUTiRefund. amount}
Req 3.5

" paidB

HConfirm
[self.HotelConfirm->size()=1 ar
self.HotelCheck->size()=0]

| f confirmHPReleased
| [self.waitingCheckln->size()=1 and
k self.checklnlConfirm-=size()=0 and
Req 4,2 | self waitingPRelease->size()=0 and
self.confirmHPRelease->size()=1 and
sell.PRelease-ssize()=1]

DELETE(waitingRefund)

[self.paid->size()=1 and sell.pay->size()=0 and self.cancel->size()=0
and self refund->size()=0 and self.waitingRefund->size()=0]

PUT(cancel) [(dayleft >7)]

waitingCheckin

[self.waitingChecklin->size()=1 and

self.checklniConfirm->size()=0 and
self waitingPRelease->size()=0 and
self.confirmHPRelease->size()=0 and

! | PUT(confirmHPRelease) / POST. fhotel/{bid/paid) L self.PRelease->size()=0]

cancelledNotRefunded
[self paid->size()=0 and self.pay->size()=0
and self.cancel->size()=1 and self.refund->size()=0
and self.waitingRefund->size()=0]

o)

PUT(cancel} [after(12h)]

PUT{cancel)

Req3.4.2

7 [N
’ T Reqg 3.4.1

unconfirmedbyHotel

[self.HotelConfirm-=size()=0 and
self HotelCheck->size()=0]

g

DELETE(HotelCheck)

| PUT(checkInConfirm)

Req 1,1.3

PUT(HolgICheck) / POST(.

olelipracessing!

paymentReleased
[self.waitingChecklIn->size()=1 and
self.checkIniConfirm->size()=0 and
self.waitingPRelease->size()=0 and
self.confirmHPRelease->size()=0 and
self. PRelease->size()=1]

DELETE(waitingPRelease)

waitingPaymentRelease

checkinConfirm | p
[self.waitingCheckin->size()=0 and
self.checkinlConfirm->size()
self.waitingPRelease->size()

self.confirmHPRelease->size()=
self.PRelease->size()=0]

T(HotéIConfirm)

1 and
0 and
0and

waitingHCofrimation
[self.HotelGonfirm->size()=0 and

PUT(PRelease) [self.waitingGheckin->size()=0 and pRlhioiICheck 2aizel=1]
seli.checkInlConfirm->size()=1 and
—B,_ - seltwa\lingpFlelease—>size()=1 and o
Req 44 sell. w::|;$:2225:1222628f0 and PUT(waitingPRelease) / Posr /payments/) DELETE(HotolCltock) [atter(3d)]
J
Figure 5: UML State Machine of Holiday Booking Composite REST Web Service.
R3_1:=true, b1 res_ NOT_pay! i CC_post_NOTPaid?
R1_1_2:=true f0_0() set_invfO(),R2_4:=true Py R2_2_1:=true
&
post_cancel? ¢ post_pay? set_invf2(),
PR R2_2_1:=true,
a R1_1_1:=lrue(—\ Ppay! ;“—\aok? }—\-;-;anFchay‘ g cl:=0 h
post book? % res book! Uset invf 1() \L;'/ cl:=0 CC_post Paid’?O
cl:=0 cl<=24 set_invfO() fO()&p cl<=24 R2_1:=t?uel 10 f 1()&&|cl<10
cl>=10
res NOT_pay!

Figure 6: Excerpt of UPTA model of Holiday Booking Composite REST Web Service.

Test Environment. The environment model speci-
fies the user actions, such as booking, canceling a
reservation, requesting for the payment, paying, re-
funding and checking in. These are created from the
observable channel synchronizations of the compos-
ite web service. The automaton in Figure 7 shows
the environment model satisfying edge and require-
ments coverage. In Figure 7 they are encoded in
the guard as a verdict() boolean function in the
form: ri&&:::rp&&e; ::: &&ey where rj and ej are
variables corresponding to requirements and, respec-

tively, to edges of the composite web service in Fig-
ure 6. Whenever the verdict function evaluates to
TRUE environment model can go to the final location.

Test Setup. Similar to Figure 2, the test setup
comprises the TRON engine, the adapter, and the
IUT. The IUT is a web service composition of three
web services: Holiday Booking, Hotel and Payment
Services. The test adapter composed of a set of test
cases which satisfy the test requirements that are
listed in Tablel.

111

WEBIST 2014 - International Conference on Web Information Systems and Technologies

Figure 7: Environment model.

5 EVALUATION

The UML state machines of the HB composite REST
web service had 14 states and 25 transitions. These
were translated into a UPTA model with 34 loca-
tions and 46 edges. Similarly, the state machines of
Payment service had 3 states and 4 transitions which
transformed in to a UPTA model with 5 locations-and
6 edges. The Hotel service had 4 states and 5 transi-
tions that were translated into 7 locations and 9 edges.
In addition, the environment model created had 4 lo-
cations and 13 edges.

One issue with using formal tools like UPPAAL
for verification and test generation, is the scalability
of the approach, due to the state space explosion. In
contrast to offline test generation, where the entire
state space has to be computed, in online test gen-
eration only the symbolic states following the cur-
rent symbolic states have to computed. This reduces
drastically the number of symbolic states making the
test generation less prone to space explosion and thus
more scalable. For instance, the number of explored
symbolic states when generating, with the verifyta
tool, traces satisfying complete edge coverage (i.e.,
&eq:::&&en, where ej are tracking variables cor-
responding to all m edges of the HBS models) was
974. In the contrast, the maximum number of sym-
bolic states reported by TRON during a test session
achieving complete edge coverage was 12 (see Fig-
urell).

For benchmarking the verification process, we
have used the verifyta command line utility of
UPPAAL for verification of the specified 5 proper-
ties. We have used the memtime tool to measure the
time and memory needed for verification. The result
showed in average 0.20 seconds and 54996 KB of
memory being used. Although the memory utilization
depends heavily on the symbolic state space, it shows
that the current size models leave room for scalability
of the approach. A known limitation of UPPAAL is

112

that the maximum memory size it can use is close to
4GB due to its 32-bit architecture. Figure 11 plots the
evolution of the number of symbolic states for 10000
model time units (20 seconds).

In order to evaluate the efficiency of our approach,
we compared the specification coverage with the code
coverage yielded by a given test run. Since we had
access to the source code of the IUT, we used the cov-
erage tool for Python (pyt, 2013) to report the code
coverage for each test session. The Table 2 lists re-
sults of several measurements:

Table 2: Correspondence between code coverage and edge
coverage.

Run | Edge Coverage | Code Coverage
1 64 % 55%
2 80% 67%
3 100% 78%

Although many of the errors were caused by mod-
eling mistakes, testing revealed some errors in the im-
plementation as well. For instance, in the HB service,
there was an error in sending cancel request and an-
other error found in the POST header in refund re-
quest. Also in the Hotel service, the confirmation was
sent by the wrong method, so it was rejected by Holi-
day Booking service.

In order to evaluate the fault detection capabili-
ties of our approach, we have manually created 30
mutated versions of the original HB service program
code. Each mutation had one fault seeded in the code,
for instance replacing POST with DELETE, remov-
ing one line of the source code, change of logical con-
ditions, etc. The faults were always seeded in those
parts of the code that is covered when achieving 100%
edge coverage of the model. We assumed that the
original version of the composite web service is the
correct one, as we were able to run the 100 test ses-
sions in TRON against it. For each mutated version
of the composite web service, we set the TRON to
execute 100 test sessions against it. When a fault was
discovered, the mutant was considered as killed. If the
mutated statement has been covered by the test runs
but no failure was detected, we mark it as alive. Out
of the 30 mutated programs, 28 mutants were killed
and 2 were alive. This resulted into a mutation score
of 93.3%.

6 RELATED WORK

There is already a large body of work on using model
checking techniques for validation and verification of
web service compositions. Overviews of such works

An Integrated Approach for Designing and Validating REST Web Service Compositions

number of symbolic states

time (milisec)

Figure 8: Evolution of symbolic states.

can be found in (Rusli et al., 2011) and (Bozkurt and
other, 2010). Mostly authors have used web service
specific specification languages as their starting point
and converted the specifications to an intermediate
language that is accepted by model checking tools.
Then, by taking advantage of the model checking tool
capabilities they performed simulation, verification or
test generation via model-checking. Most of these
works use the selected model-checking-tool only for
simulation and verification; only a handful generate
abstract tests from the verification conditions, and in
most cases it is not clear how the abstract test cases
(i.e., the counterexample traces) are transformed into
executable ones and executed. In the following, we
will revisit those works which are most similar to
ours.

We can distinguish roughly two approach cate-
gories: those that target the PROMELA language
(Part and Peschke, 2003) which is the input language
for the SPIN model-checker (Holzmann, 1997), and
those that target the UPPAAL timed automata which
is the input language for the UPPAAL model-checker
(Behrmann et al.,).

In the first category, the vast majority of ap-
proaches have used BPEL or OWL-S(Martin et al.,
2004) for the specification of the web service com-
position. For instance, Garcia (Garcia-Fanjul et al.,
2006) generates test cases using test case specifica-
tions created from counterexamples that are obtained
from model checking. The transition coverage crite-
rion is used to identify transitions in BPEL specifi-
cation that define the test requirements for producing
test cases. These transitions are mapped to the model
and expressed in terms of LTL property expressions.
Transition coverage is obtained by repeatedly execut-
ing the tool with each previously identified transition.

Fu. etal. (Fu et al., 2005) provide framework for
analyzing, designing and verifying web service com-
positions. Their work provides both bottom-up and
top-down approach to analyze the interaction between
web services. In top-down approach, the desired con-

versation of a web service is specified as guarded au-
tomaton that are converted to PROMELA and used
as input to SPIN model-checker. The bottom-up ap-
proach translates BPEL to guarded automaton and
then used with SPIN model-checker after translating
guarded automaton to PROMELA. The web service
conversations are analyzed for synchronization in or-
der to verify their compatibility.

One distinct approach is given by Huang et al.
(Huang et al., 2005). They automatically translate
OWL-S specification of composite web service into
a C-like specification language and PDDL through an
integrated process. These can be processed with the
BLAST model-checker which can generate positive
and negative test cases during model checking of a
particular formula and test the web service using the
test cases.

These works focus on BPEL processes and OWL-
S, this makes them dependent on specific execution
languages for SOAP based services whereas our work
is not dependent on implementation and supports
REST architectural style. In addition, their work does
not support requirement traceability and is not clear
how tests are generated and executed. Furthermore,
the works that use the PROMELA language for spec-
ification do not address real-time properties, due to
the limited support for time in PROMELA.

In the second category, researchers have targeted
timed automata specifications. In (Cambronero et al.,
2011), Cambronero et al. verify and validate web
services choreography by translating a subset of WS-
CDL into a network of timed automata and then use
UPPAAL tool for validation and verification of the
described system. They also capture capture require-
ments by extending KAOS goal model and implement
them. The work is supported by WST tool that pro-
vides model transformation of timed composite web
services (Cambronero et al., 2012). In (Diaz et al.,
2007), Diaz et. al also provide a translation from WS-
BPEL to UPPAAL timed automata. Time properties
are specified in WS-BPEL and translated to UPPAAL.

113

WEBIST 2014 - International Conference on Web Information Systems and Technologies

However, requirements are not traced explicitly, while
verification and testing are not discussed.

Ibrahim and Al-Ani (Ibrahim and Al Ani, 2013)
transform BPEL specification to UPAAAL. The spec-
ification includes safety and security non-functional
properties which are later formulated into guards in
the UPPAAL model which could be similar to our
verification of requirements. They do not consider
neither real-time properties nor test generation.

In (Guermouche and Godart, 2009), Nawal and
Godart deal with checking the compatibility of web
service choreography supporting asynchronous timed
communications using model checking based ap-
proach. They use model-checker UPPAAL and
present compatibility checking distinguishing be-
tween full and partial compatibility and full incom-
patibility of web services. Our work is somewhat
similar to their work as we support time critical state-
ful REST webs service compositions using UPPAAL,
however, in addition to verification we use UPPAAL
with TRON to validate the implementation of the web
services.

Zhang (Zhang et al., 2011) suggest the use of
the temporal logic XYZ/ADL language (Zhu and
Tang, 2003) for specifying web server compositions.
They transform the specifications into a timed asyn-
chronous communication model (TACM) which are
verified in UPPAAL.

In (Lallali et al., 2008), uses BPEL specifications
as a reference specification and transform them to an
Intermediate Format (IF) based on timed automata
and then propose an algorithm to generate test cases.
Similar to our approach, tests are generated via sim-
ulation in a custom tool, where the exploration is
guided by test purposes. One noticeable difference
is that time properties are added manually to the IF
specification, while we specify them at UML level.

These works provide approaches to verify and
validate the service specifications by checking the
properties of interest using UPPAAL tool, however
our work, in addition to model checking the proper-
ties also performs conformance testing of the service
composition via online model-based testing with the
TRON tool and provides requirement traceability for
non-deterministic systems.

7 CONCLUSION

We have presented an integrated approach to design
and validate RESTful composite web services. In our
approach, a service can invoke other services and ex-
hibit complex and timed behavior, while still comply-
ing with the REST architectural style. We showed

114

how to model the service composition in UML, in-
cluding time properties. We modeled communicating
web services and explicitly define the service invoca-
tions and receiving service calls.

We use model checking approach with UPPAAL
model-checker to verify and validate our design mod-
els. From the verified specification, we generate tests
using an online model-based testing tool. The use of
online MBT proved beneficial as our system under
test exhibits non-deterministic behavior due to con-
currency and real-time domain.

With the help of requirements traceability mech-
anism we traced requirements to UML models and,
via the UML ¥ UPTA transformation to timed au-
tomata models. Their reachability is verified in UP-
PAAL and they are used as test goals during test
generation. Linking requirements to generated tests
allowed us to quickly see which requirements have
been validated and which have not. In addition, it al-
lows us to identify from which parts of the specifica-
tion/implementation the detected error has originated.

We exemplified our approach with a relatively
complex case study of a holiday booking web service
and we provided preliminary evaluation results.

REFERENCES

(2013). Code coverage measurement for Python — cov-
erage, v. 3.6. Online at https://pypi.python.org/pypi/
coverage. retrieved: 20.08.2013.

(2013). Nomagic MagicDraw webpage at http://
www.nomagic.com/products/magicdraw/.

Alur, R. et al. (1990). Model-checking for real-time sys-
tems. In Logic in Computer Science, 1990. LICS’90,
Proceedings., Fifth Annual IEEE Symposium on e,
pages 414-425. |IEEE.

Behrmann, G. et al. Uppaal 4.0. In QEST ’06 Proceedings
of the 3rd international conference on the Quantitative
Evaluation of Systems, pages 125 — 126. IEEE Com-
puter Society Washington, DC, USA.

Birgit Demuth, C. W. (2009). Model and Object Verifi-
cation by Using Dresden OCL. In Proceedings of
the Russian-German Workshop Innovation Informa-
tion Technologies: Theory and Practice,, pages 81—
89.

Bozkurt, M. and other (2010). Testing web services: A sur-
vey. Department of Computer Science, Kings College
London, Tech. Rep. TR-10-01.

Budgen, D., Burn, A. J., Brereton, O. P,, Kitchenham, B. A.,
and Pretorius, R. (2011). Empirical evidence about the
uml: a systematic literature review. Software: Prac-
tice and Experience, 41(4):363-392.

Cambronero, M. et al. (2012). Wst: a tool supporting timed

composite web services model transformation. Simu-
lation, 88(3):349-364.

An Integrated Approach for Designing and Validating REST Web Service Compositions

Cambronero, M. E. et al. (2011). Validation and verifica-
tion of web services choreographies by using timed
automata. Journal of Logic and Algebraic Program-
ming, 80(1):25-49.

Clarke, E. M., Grumberg, O., and Long, D. E. (1994).
Model checking and abstraction. ACM Transactions
on Programming Languages and Systems (TOPLAS),
16(5):1512-1542.

Diaz, G. etal. (2007). Model checking techniques applied to
the design of web services. CLEI Electronic Journal,
10(2).

Fu, X. et al. (2005). Synchronizability of conversations
among web services. Software Engineering, IEEE
Transactions on, 31(12):1042-1055.

Garcia-Fanjul, J. et al. (2006). Generating test cases specifi-
cations for BPEL compositions of web services using
SPIN. In International Workshop on Web Services—
Modeling and Testing (WS-MaTe 2006), page 83.

Guermouche, N. and Godart, C. (2009). Timed model
checking based approach for web services analysis. In
Web Services, 2009. ICWS 2009. IEEE International
Conference on, pages 213-221. |IEEE.

Hessel, A. et al. (2008). Testing Real-Time systems using
UPPAAL. In Formal Methods and Testing, pages 77—
117. Springer-Verlag.

Holovaty, A. and Kaplan-Moss, J. (2009). The defini-
tive guide to Django: Web development done right.
Apress.

Holzmann, G. J. (1997). The model checker SPIN. Software
Engineering, IEEE Transactions on, 23(5):279-295.

Huang, H. et al. (2005). Automated model checking
and testing for composite web services. In Object-
Oriented Real-Time Distributed Computing, 2005.
ISORC 2005. Eighth IEEE International Symposium
on, pages 300-307. IEEE.

Ibrahim, N. and Al Ani, 1. (2013). Beyond functional ver-
ification of web services compositions. Journal of
Emerging Trends in Computing and Information Sci-
ences, 4, Special Issue:25-30.

Koskinen, M. et al. (2013). Combining Model-based Test-
ing and Continuous Integration. In Proceddings of
the International Conference on Software Engineer-
ing Advances (ICSEA 2013). IARIA. TO APPEAR.

Lallali, M. et al. (2008). Automatic timed test case genera-
tion for web services composition. In on Web Services,
2008. ECOWS’08. IEEE Sixth European Conference,
pages 53-62. IEEE.

Larsen, K. G. et al. (1997). UPPAAL in a nutshell. In-
ternational Journal on Software Tools for Technology
Transfer (STTT), 1(1):134-152.

Larsen, K. G. et al. (2009). UPPAAL Tron user manual.
CISS, BRICS, Aalborg University, Aalborg, Denmark.

Martin, D. et al. (2004). OWL-S: Semantic markup for web
services. W3C member submission, 22:2007-04.

Nobakht, M. and Truscan, D. (2013). An Approach for
Validation, Verification, and Model-Based Testing of
UML-Based Real-Time Systems. In Lavazza, L.,
Oberhauser, R., Martin, A., Hassine, J., Gebhart, M.,
and Jntti, M., editors, ICSEA 2013, The Eighth In-
ternational Conference on Software Engineering Ad-
vances, pages 79-85. IARIA.

Part, 1. and Peschke, M. (2003). Design and validation of
computer protocols.

Porres, 1. and Rauf, I. (2011). Modeling behavioral REST-
ful web service interfaces in UML. In Proceedings
of the 2011 ACM Symposium on Applied Computing,
pages 1598-1605. ACM.

Rauf, I. et al. (2012). Analyzing Consistency of Behavioral
REST Web Service Interfaces. In Silva, J. and Tiezzi,
F., editors, The 8th International Workshop on Auto-
mated Specification and Verification of Web Systems,
Electronic Proceedings in Theoretical Computer Sci-
ence, page 115. EPTCS.

Rauf, 1. and Porres, |. (2011). Beyond CRUD. pages 117-
135.

Rauf, I., Siavashi, F., Truscan, D., and Porres, 1. (2013).
An Integrated Approach to Design and Validate REST
Web Service Compositions. Technical Report 1097.

Richardson, L. and Ruby, S (2008). RESTful web services.
O’Reilly.

Rusli, H. M. et al. (2011). Testing Web services composi-
tion: a mapping study. Communications of the IBIMA,
2007:34-48.

UML, O. (2009). 2.2 Superstructure Specification. OMG
ed. http://www.omg.org/spec/lUML/2.2/.

Utting, M. and Legeard, B. (2007). Practical Model-Based
Testing: A Tools Approach. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA.

Zhang, G. et al. (2011). Model checking for asynchronous
web service composition based on xyz/adl. In Web
Information Systems and Mining, pages 428-435.
Springer.

Zhu, X.-Y. and Tang, Z.-S. (2003). A temporal logic-based
software architecture description language xyz/adl.
Journal of Software, 14(4):713-720.

115

