
PAEAN4CLOUD
A Framework for Monitoring and Managing the SLA Violation of Cloud

Service-based Applications

Yehia Taher1, Rafiqul Haque2, Dinh Khoa Nguyen3 and Beatrice Finance1

1Laboratoire PRiSM, Université de Versailles/Saint-Quentin-en-Yvelines, Versailles, France
2Laboratoire d’InfoRmatique en Image et Systèmes d’information, Université Claude Bernard Lyon 1, Lyon, France

3European Research Institute in Service Science, Tilburg University, Tilburg, The Netherlands

Keywords: Business Transaction, Cloud Computing, Blueprint.

Abstract: Recently, Cloud Computing has become an emerging research topic in response to the shift from product
oriented economy to service-oriented economy and the move from focusing on software/system development
to addressing business-IT alignment. Technically speaking, Cloud Computing enables to build Cloud Service-
Based Application (CSBA) which cater for the tailoring of services to specific business needs using a mixture
of SaaS, PaaS and IaaS solutions - possibly from various providers. In other words, in the context of CSBAs,
cloud services are rented by clients from providers instead of owning the services. Due ti this specific nature,
SLA (Service Level Agreement) has become a very important and up-to-date issues in CSBAs. Therefore
SLA turns to be critical for both cloud service clients and providers and needs constant monitoring for various
reasons mostly detecting if any violation happens but also preventing the violation in efficient way. As in
CSBAs a number of providers are involved, it is a challenge to detect and resist violations of multiple SLAs
that engage different providers form different locations. To deal with such a problem, this paper introduces
a framework called PAEAN4CLOUD. The framework comprises components for monitoring, detecting, and
configuring SLAs. An algorithm is proposed for automatic detection of SLA violations. The configuration
component underpins assembling CSBAs automatically at runtime. The components help in preventing SLA
violations and optimizing application performance as well.

1 INTRODUCTION

Until today, the cloud computing paradigm has given
the rise to a wide variety of services that are grouped
and called Everything as a Service (XaaS). It pro-
motes opportunities to transform an object into a ser-
vice and deliver it to users over the Internet. It enables
building cloud Service-based application (CSBA) that
relies on cloud services such as SaaS, PaaS, IaaS for
designing, implementing, deploying, executing, mon-
itoring, managing applications. CSBAs are highly
customizable and allows building applications by lo-
calizing the services for satisfying the very specific
needs of a context e.g. organization or individual. CS-
BAs pose various challenges. The major challenge is
detecting and managing different types of violations
of service level agreement (SLA). SLA is a predom-
inant entity in CSBAs. In CSBAs, clients rent ser-
vices from providers instead of buying services. This
means that a CSBA is composition of list of rented

service. Thus, SLA becomes critical to both ser-
vice clients and providers and it needs to be moni-
tored constantly while a CSBA is running to detect
violation and prevent the violation. As in CSBAs a
number of providers are involved, detecting and re-
sisting violations (of multiple SLAs that engage dif-
ferent providers form different locations) are enor-
mously challenging. Therefore, an efficient and effec-
tive approach is paramount importance for CSBAs.

Monitoring and managing SLAs for service based
applications (SBAs) have documented in various bod-
ies of literatures, nonetheless, the solutions proposed
in literature are not the best fit to CSBAs since the de-
velopment landscape of these applications are differ-
ent. This implies that the existing approaches cannot
be reused in cloud environment. In addition, the state
of the art lacks an efficient approach for detecting and
resisting SLA violations in cloud-based environment.

The goal of this research is to address this
shortcoming. To this end, a framework called

361Taher Y., Haque R., Nguyen D. and Finance B..
PAEAN4CLOUD - A Framework for Monitoring and Managing the SLA Violation of Cloud Service-based Applications.
DOI: 10.5220/0004949403610371
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (CLOSER-2014), pages 361-371
ISBN: 978-989-758-019-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

PAEAN4CLOUD is proposed in this paper. The
framework comprises a list of components for mon-
itoring, detecting, and configuring CSBAs. An al-
gorithm is proposed in this paper for automatic de-
tection of SLA violations. The configuration com-
ponent enables assembling CSBAs automatically at
runtime. It assists in preventing SLA violations and
optimizing application performance as well. The re-
mainder of this paper is organized as follows. Section
2 presents a motivating scenario. Section 3 describes
the configuration and deployment of CSBAs. The pat-
terns of SLA violation is explained in section 4. The
PAEAN4CLOUD framework is described in section
5. Section 6 presents the algorithms that automate the
violation detection and reconfiguration of CSBA. The
related works is described in section 7. The conclu-
sion is drawn in section 8.

2 MOTIVATING SCENARIO

This section illustrates a simple scenario of today’s
industrial reality. This scenario is an extension of
Taxi Application Scenario that was originally co-
developed with several IT companies like Telefonica,
Telecom Italia, Ericson, 2ndQuadrant and SAP for
the EC’s 4CaaSt project (European Comission: Infor-
mation & Communication Technologies Unit, 2010).
The scenario promotes a comprehensive approach to
exist so that the design, configuration, deployment,
monitoring of SLA, and adaptation of a CSBA can
occur.

TaxiTilburg is an application service provider
that offers the taxi ordering application TaxiOrdering-
CSBA in the form of an end-to-end process, as shown
in Fig. 1. The process is composed of several steps
including Receive Order, Allocate Taxi, Calculate
Route, Confirm Order, and Reject Order. In order to
implement the steps S1 (Receive Order), S4 (Confirm
Order), S5 (Reject Order) of the TaxiOrdering-CSBA
process, TaxiTilburg has developed an in-house SMS
software component that is able to receive new or-
ders by sms, and send order confirmations or rejec-
tions to customers. Unfortunately, due to lack of ex-
pertise, TaxiTilburg has to rely on third-party SaaS
offerings for managing its taxi fleet and for calculat-
ing routes, which are the two necessary functionali-
ties to implement step S2 (Allocate Taxi) and step 3
(Calculate Route) in its TaxiOrdering-CSBA process.
These two required functionalities are captured as the
two functional requirements Fleet Management Ser-
vice and Map Service.

Figure 1 also shows the Quality-of-
Service (QoS) offerings (responseTime(s) �

Figure 1: The process definition of TaxiOrdering-CSBA.

15)&(throughput(req=s) � 100) that TaxiTilburg
has promised to its customers. To maintain this
predefined QoSs, TaxiTilburg has distributed the
QoS value of maximum response time to each step
contained in TaxiOrdering-CSBA process. The
QoS requirement of minimum throughput 100 req/s
remains same for all steps, as shown in Figure 1.

2.1 Configuring the CSBA

In order to deploy the TaxiOrdering-CSBA on the
cloud, it is necessary to satisfy all the functional
and QoS requirements of the TaxiOrdering-CSBA.
We follow the Blueprint Approach to configure the
TaxiOrdering-CSBA, so that all of its functional and
QoS reuqirements can be correctly fulfilled. The con-
cept “Blueprint” has defined in (Nguyen et al., 2012a)
as “an uniform abstract description of a cloud ser-
vice, i.e. SaaS, PaaS, or IaaS, that facilitates the
CSBA developers with the selection, customization
and composition of cross-layered cloud services”.
Depending on the abstraction layer of cloud services,
there are three different types of blueprints SaaS
blueprint,PaaS Blueprint, and IaaS blueprint. Fig-
ure 2 illustrates the configuration of TaxiOrdering-
CSBA using the blueprint approach. There is a SaaS
blueprint describing the TaxiOrdering-CSBA with
its offering and requirements. The blueprint compo-
sition approach (Nguyen et al., 2012b) subsequently
queries the marketplace repository to retrieve appro-
priate source blueprints whose offerings can fulfill the
requirements of the TaxiOrdering-CSBA blueprint.
The newly retrieved source blueprints may also con-
tain requirements, e.g. the FleetMgt-SaaS blueprint.
Hence, this querying and matchmaking task has to be
executed iteratively until the entire configuration of
the TaxiOrdering-CSBA no longer contains any fur-
ther requirement.

The matchmaking between an offering and a re-
quirement does not only take into account the func-

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

362

Figure 2: Blueprint Configuration for the Taxi Ordering CSBA.

tional matchmaking, but also the QoS matchmak-
ing, i.e. whether the QoS properties specified in
the << PolicyPro f ile >> of the requirement can
be satisfied by the QoS properties specified in the
<< PolicyPro f ile >> of the offering. For in-
stance in Figure 2, the two blueprints MapA-SaaS and
MapB-SaaS are selected to fulfill the requirement Map
Service, since their QoS properties regarding the
maximum response time and minimum throughput
satisfy the QoS properties specified for the require-
ment Map Service. Furthermore on the PaaS/IaaS
level, matchmaking is also based on the resource pro-
visioning specification specified in the so-called <<
ResourceUtilizationPro f ile >> , e.g. in Figure 2 the
FleetMgt-SaaS blueprint has some resource provi-
sioning properties specified for its requirement JEE
Application Server regarding the required CPU
speed, memory size and network bandwidth, and
these properties can be satisfied by the resource pro-
visioning properties of the JEE-Linux-PaaS/IaaS
blueprint.

It is worth noting in Figure 2 that there could
be alternative matchmaking results for fulfilling a
requirement, e.g. for fulfilling the requirement
Map Service of the TaxiOrdering-CSBA blueprint,
and for fulfilling the requirement SQL Database of
the FleetMgt-SaaS blueprint. The QoS proper-
ties of the alternative matchmaking results are dif-
ferent, which implies that there might exist alterna-
tive configurations for the TaxiOrdering-CSBA that
could trigger a reconfiguration process in case there
are some changes in the QoS requirements of the
TaxiOrdering-CSBA.

The next step after configuring an CSBA is to

select among the alternatives the optimum blueprint
configuration that will be deployed on the physical
cloud infrastructure. The selection strategy might de-
pend on a variety of criteria such as the cost, licens-
ing issues, or some private business constraints. For
brevity reason we do not discuss the criteria for se-
lecting a blueprint configuration in this paper. In Fig-
ure 2, a configuration has been chosen that involves
the MapA-SaaS blueprint to fulfill the requirement Map
Service of the TaxiOrdering-CSBA blueprint, and
the MySQL-PaaS blueprint to fulfill the requirement
SQL Database of the FleetMgt-SaaS blueprint.

2.2 SLA Specification

Each cloud service provider involved in the
TaxiOrdering-CSBA configuration in Fig.2 promises
to satisfy the stipulated Qualities of Services(QoS)
through a Service Level Agreement (SLA) with his
consumer. Hence, as soon as a blueprint configura-
tion is finalized, SLAs are generated among all the
involved cloud service providers. On the SaaS layer,
the SLAs mainly contain the promised maximum
response time of handling a request and the minimum
throughput (in terms of number of request per sec-
onds). On the PaaS layer, the PaaS providers mainly
specify in their SLAs the number of instances of their
offerings that can be provided to a single user, and
the resource capacity of their offerings including for
instance the CPU speed (in GHz), memory (in GiB),
networkBandwidth (in Gbit/s), and storage capacity
(in TB). Table 1 summarizes the SLA specifications
of all the cloud service offerings in the scenario.

PAEAN4CLOUD�-�A�Framework�for�Monitoring�and�Managing�the�SLA�Violation�of�Cloud�Service-based�Applications

363

Table 1: SLA specification of Cloud Services.

Cloud Ser-
vice

SLA specification for consumers

TaxiOrdering-
CSBA

(responseTime(s) �
15)&(throughput(req=s) �
100)

MaMapA-
SaaS

(responseTime(s) �
3)&(throughput(req=s)� 100)

MapB-SaaS (responseTime(s) �
2)&(throughput(req=s)� 120)

FleetMgt-
SaaS

(numberO f Instance �
4)&(responseTime(s) �
6)&(throughput(req=s)� 50)

MySQL-PaaS (numberO f Instance �
4)&(capacity(T B) = 3)

PostgreSQL-
PaaS

(numberO f Instance �
3)&(capacity(T B) = 2)

JEE-Linux-
PaaS

(numberO f Instance � 3)&(2 �
CPUSpeed(Ghz) � 4)&(2 �
memory(GiB) � 4)&(2 �
networkBandwidth(Gbit=s� 3)

2.3 Deploying the CSBA

In the next phase, a deployment architecture has to be
developed based on the selected optimum blueprint
configuration. The purpose of this deployment archi-
tecture is to serve as a cookbook for cloud adminis-
trator to deploy and maintain the CSBA on the cloud
infrastructure. In this architecture, the blueprints will
be transformed into a set of concrete, multi-layered
cloud service instances and network links that collab-
oratively form the deployment topology of the CSBA.
Figure 3 illustrates the deployment architecture for
the TaxiOrdering-CSBA, in which:

� Two instances of the MySQL-PaaS should be de-
ployed

� Two instances of the FleetMgt-SaaS blueprint
should be deployed on two instances of the
JEE-Linux-PaaS/IaaS.

� A network link should be deployed to con-

Figure 3: Deployment Architecture of the Taxi Ordering
CSBA.

nect the two MySQL-PaaS instances with the two
JEE-Linux-PaaS/IaaS instances.

� One instance of the MapA-SaaS should be de-
ployed

� A network link should be deployed to con-
nect the two FleetMgt-SaaS instances with the
Map-SaaS instance and with all the prospective
TaxiOrdering-CSBA instances.

Maintaining the QoS levels that have been specified in
the SLAs is indispensable for all the service providers
providing platform service, software services, and
physical resource services that are used for building
the TaxiOrdering-CSBA application that will under-
pin the process. At runtime, a framework is required
for monitoring the execution of TaxiOrdering-CSBA
process steps, detecting the occurrence of violations
or potential violations of QoS constraints, and pre-
venting these violations. PAEAN4CLOUD is pro-
posed for addressing these requirements as an effi-
cient solution is missing.

3 PATTERNS OF SERVICE
LEVEL AGREEMENT
VIOLATION

In this section, we describe the Patterns of SLA Vi-
olation (PSLAV) that occur in workstreams while a
CSBA is running. Additionally, the formal seman-
tics of these patterns is provided in a lightweight style
using First Order Logic (FOL). The key purpose of
discovering and formalizing these patterns is to make
the PAEAN4CLOUD aware of SLA violations and
enable it for detecting SLA violations automatically.
In addition, the patterns enable PAEAN4CLOUD de-
tecting and preventing SLA violations proactively and
efficiently. It is worth noting that, the violations re-
ported in this paper have discovered through a study
on the cloud SLA samples provided in various litera-
ture e.g. (Wu and Buyya, 2010), (Emeakaroha et al.,
2012a), and (DeveloperWorks, 2010).

Before defining the PSLAVs, the concepts SLA
and violation of SLA are defined.

Definition 1. Let ‘S’ be the SLA that contains a list
of quality constraints ‘QC’, security constraints ‘SC’,
privacy constraints ‘PC’, and regulatory constraints
‘RC’ such that,

S := (QC ^ SC ^ PC ^ RC)

Since CSBA relies on third party cloud service
providers, an SLA involves a ‘consumer’ and one to

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

364

many ‘providers’. For example, a client “X” buys in-
frastructure services from Amazon1, platform service
from google 2, and software service from SalesForce
3. These providers must satisfy the obligations they
promise to the client “X”.

Definition 2. A violation ‘G’ indicates either a cloud
service consumer or a provider fails to satisfy one or
more constraints contained in the agreement.

The SLA violation patterns are classified into QoS
constraint violation patterns, security constraint vio-
lation patterns, privacy constraint violation patterns,
and regulatory constraint violation patterns. The term
‘constraint’ refers to obligations related to QoS, pri-
vacy, regulatory, and security which are stipulated and
must be satisfied by the involved service providers.
These patterns are described in the following. No-
tably, this paper covers the well-understood SLA vio-
lation patterns only.

� QoS Constraint Violation Patterns. Quality
constraints violation is denoted by ‘GC

Q’. In rela-
tion to QoS4, the following violation patterns are
observed.

– Reliability Violation Pattern. 8CSBA, 9GC
Q if

(Availability(XS)) ! :satisfied, where XS de-
notes any cloud service. If availability of a
service is not at agreed level then quality con-
straint is violated and the service is not reliable
any longer.

– Throughput Violation. 8(CSBA), 9GC
Q if

(T hroughput(XS)) ! :satisfied. In this pat-
tern, throughput of infrastructure, platform, and
software services are not met by providers.

– Response Time Violation. 8(CSBA), 9GC
Q if

(TR(XS)) ! :satisfied. In this pattern, service
providers fail to satisfy response time threshold
promised to consumers.

– Processing Time Violation. 8(CSBA), 9GC
Q

if (TP(XS)) ! :satisfied. In this pattern,
providers fail to meet the processing time
threshold.

– Delay Time Violation. 8(CSBA), 9GC
Q if

(Td(XS)) ! :satisfied. If the maximum delay
threshold is not satisfied then it results quality
constraint violation.

1http://aws.amazon.com/
2https://developers.google.com/appengine/
3http://www.salesforce.com/eu/?ir=1
4Most of the QoS constraints listed in this paper have

adapted from (DeveloperWorks, 2010)

� Security Constraint Violation Patterns. ‘GC
S ’

represents security constraints violation. The se-
curity constraint violation patterns are listed be-
low.

– Data Durability Constraint Violation.
8(CSBA), 9GC

S if (Dd(Ds)) ! :satisfied
where, Ds 2 Ps. Ds, Ps and DC

d represent
database service, platform service, and data
durability respectively. The data durabil-
ity violation happens in database services.
The violation happens if a database service
provider fails to persist data of CSBA users.
For database service, durability is an important
issue.

– Breaching Data Confidentiality. 8(CSBA), 9GC
S

if (DC
c (Ds))! :satisfied, where DC

c represents
data confidentiality. If confidentiality of a data
is breached then it is treated as data confiden-
tiality violation.

– Breaching Data Integrity. 8(CSBA), 9GC
S if

(DC
I (Ds))!:satisfied, where, DC

I denotes data
integrity constraint. Data integrity refers to
consistent and accurate data. Data integrity vi-
olation happens if a database service provider
fails to maintain desired level of data consis-
tency and accuracy.

� Privacy Constraint Violation Patterns.
8(CSBA), 9GC

S if (PC(Ds))!:satisfied, where PC

denotes the privacy constraint and ‘GC
P’ privacy

constraints. In this violation, the providers fails
to isolate client’s data.

� Regulatory Policy Violation Patterns. ‘GP
R’ de-

notes the violation of regulatory policies related to
cloud services. The list below shows the patterns
of the regulatory policy violations.

– Data Retention Policy Violation. 8(CSBA), 9GP
R

if (DP
R(Ds)) ! :satisfied, where ‘DP

R’ repre-
sents data retention policy. In this violation,
providers fail to comply with the data retention
policies.

– Data Deletion Policy Violation. 8(CSBA), 9GP
R

if (DP
D(Ds)) ! :satisfied, where ‘DP

D’ is data
deletion policy. If a data service provider fails
to comply with the data deletion policies then it
results violation.

4 PAEAN4CLOUD FRAMEWORK

In this section, the PAEAN4CLOUD framework is
described. This architecture of PAEAN4CLOUD
framework is shown in Fig. 4.

PAEAN4CLOUD�-�A�Framework�for�Monitoring�and�Managing�the�SLA�Violation�of�Cloud�Service-based�Applications

365

Figure 4: The Architecture of PAEAN4CLOUD.

The architecture comprises the front-end man-
agement console and Back-end management compo-
nents. The console assists end-users in managing and
monitoring SLA violations and the back-end man-
agement components automate the management and
monitoring tasks.

The console contains four buttons that cater for
performing management tasks. The management
console relies on SOAP/RPC protocol to communi-
cate with the back-end components that essentially
perform management tasks.

The back-end consists of CSBA configuration
manager, CSBA operation manager, SLA monitor,
SLA violation manager, and a repository. These com-
ponents are described briefly in the following,

� CSBA Configuration Manager. This component is
used for (re-)configuring the cloud services that
are incorporated in CSBAs. The configuration
manager contains blueprints of CSBAs. An user
carries out the modification (if necessary) and the
configuration manager that in essence is a com-
ponent automates these changes. The special pur-
pose of this component is reconfiguring CSBA on
the fly at runtime for preventing SLA violations.

� CSBA Operation Manager. CSBA operation man-
ager is an application management component
that manages operations performed at runtime by
CSBAs.

� Information Repository. While an instance is run-
ning, several operations are performed. The oper-
ation logs are archived in information repository

so that the history of the operations can be used
by other components. The repository stores moni-
tring information as well.

� SLA Monitor. This component observes the run-
ning instances. The roles of the SLA monitor are
as follows:

– watching operation cycles
– storing monitoring information in the reposi-

tory
– detecting violations of SLA
– reporting violations to the SLA violation man-

ager

In this paper, we develop an algorithm (presented
in 5) for detecting the SLA violations. The SLA
monitor relies on this algorithm. The proposed al-
gorithm is designed using the SLA violation pat-
terns defined in section 3.

� SLA violation manager: The primary role of the
SLA violation manager is preventing violations.
The violation manager communicates with SLA
monitor that detects violation and sends report to
violation manager that acts to prevent the viola-
tion. In addition, it communicates with repos-
itory and fetch necessary information. A com-
ponent called performance analyzer is integrated
with SLA violation manager. The performance
analyzer carries out analysis on the history of
the instances, predicts the potential violations.
Based on this prediction, the violation manager
takes necessary actions in particular, reconfigure
CSBAs to resist the potential violations proac-
tively. The next section describes reconfiguration
of CSBA.

5 DETECTING SLA VIOLATION
AND RECONFIGURING CSBA

The SLA monitor of PAEAN4CLOUD relies on the
algorithms proposed in this paper for automated rea-
soning with CSBAs. These algorithms are presented
and discussed in this section. Additionally, the recon-
figuration of CSBA is discussed here.

5.1 Detecting SLA Violation

The violation detection algorithms are the key contri-
butions of this paper. Algorithm 5.1 and 5.2 are de-
signed for automated reasoning with CSBA to detect
SLA violations. It is worth noting that privacy and
regulatory policy violations out of the scope.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

366

In this section, the detection of violations is dis-
cussed using the TaxiOrdering-CSBA scenario (de-
scribed in section 2). The TaxiOrdering-CSBA is con-
figured by integrating a business process service, soft-
ware services, platform services, and infrastructure
service that are provided by different vendors. The
configuration of CSBA is discussed in Section 2.1.

The central focus of TaxiOrdering-CSBA scenario
is the SLA between the client TaxiTilburg and the
cloud service providers include BestHosting, Tele-
comProvider A and B, Auto Inc., and MapProvider A
and B. As TaxiTilburg is yet another service provider
for the end-users, the quality of the services promised
by the service providers is critical to TaxiTilburg. Be-
sides, the data security is always crucial for the client
TaxiTilburg.

Upon receiving a request placed by the customer
‘X’, a process instance is created. For this instance,
the process execution starts with activity Allocate Taxi
(S2). Then, the SLA monitor is called and software
services are invoked if they are available. If a required
software service is not available, the monitor detects
the unavailability and reports it to the SLA manager.

For S2, the expected values for the QoS parameters
responsetime is 6 seconds and expected throughput is
100 requests per second. However, the actual value
that is taken for response time is 8 seconds which is
greater than the expected value. SLA monitor detects
this violation of quality constraints and reports it to
SLA Manager (See section 4 for detailed description
of the SLA manager). SLA manager prevents the vi-
olation of response time of Taxi Ordering Process.

The response time violation of Taxi Ordering Pro-
cess results in end-client dissatisfaction that influ-
ences the customer in choosing another taxi service
provider. In order to avoid such consequence, the
SLA manager acts proactively based on history of
completed activities.

Furthermore, for each process instance that is
completed successfully, the data is saved in the
database permanently. The DatabaseProviderA
grantees data security in particular, the durability of
the data and consistency of the database to TaxiTil-
burg. The SLA monitor can detect if data is lost or
the database is inconsistent. Algorithm 5.2 is used for
automated reasoning with TaxiOrdering-CSBA. Af-
ter data of an end-client (the client who ordered for
a taxi) is stored in the TaxiOrdering database, the ap-
plication manager of TaxiOrdering-CSBA access the
database remotely for retrieving detail of a customer.
The application manager executes query and retrieve
the detail of the client. If complete detail is not found
in the database then the SLA monitor reports this as a
violation of security constraint, to the SLA manager.

Algorithm 5.1: Quality Constraint Violation Detection (CSBA)

Input:
i. X s that includes the cloud services such that,
(Bs

P, Ss, Ps, Is) v X s

ii. QoS parameters PQoS contained in SLA.
Output: Detect and Report the violation of the QoS constraints
Global Variables:
l cloud service based application(CSBA)
X s cloud services;Bs

P business process services
Ss software services;Ps platform services
Is infrastructure services;Monitor SLA monitor
MSLA SLA Manager;R information repository
GC

Q quality constraints;T R response time
T P processing time;DT delay time
Availability Service Availability;A Process Activity
T hroughput the performance rate of services
BP

I Process Instance;EValue Expected Value
AValue Actual Value;ERate Expected Throughput
ARate Actual Throughput;H Processing History
procedure (Initialize)8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

for each inbound request ‘Ri’ to l

if (l 6= ?
then

�
Call Monitor and invoke BS

P;
else Cancel ‘Ri’;

if Bs
P 6= ?

then

8>>>><>>>>:
if (Bs

P.Availability = “Yes”)
then Instantiate BI

P
(Comment: a process instance BI

P is created
in this step):

else Report GC
Q to MSLA and Store H in R;

else Cancel ‘Ri’ and Terminate ‘BP
i ’;�

for each BI
P

execute (Ai 2 Bs
P);8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

for each A
(Comment: Assume that ‘A’ is an operational
activity
if A 6= ?

then
�

invoke (Ss and Ps and Is v X s);
else Cancel ‘Ri’ and Terminate ‘BP

i ’;
if ((Ss. Availability = “yes”) and
(Ps. Availability = “yes”)
and (Is. Availability = “yes”))

then

8<:
(Compute AValue (T R, DT for X s)
and ARate (T hroughput for X s)
and T P for A);

else
�

Report GC
Q to MSLA and

Store H in R;
if (AValue (T R, DT) > EValue (T R, DT)&&
ARate (T hroughput) > ERate (T hroughput))&&
AValue(T P) > AValue(T P) for A)

then
�

Report GC
Q to MSLA and

Store H in R;
else

�
Execute Next A;8>><>>:

for all Ai v Bs
P

repeat
Check SLA Violation

until Complete the execution of Bs
P;

Additionally, the application manager checks con-
sistency of the TaxiOrdering database either period-

.

PAEAN4CLOUD�-�A�Framework�for�Monitoring�and�Managing�the�SLA�Violation�of�Cloud�Service-based�Applications

367

Algorithm 5.2: (SecurityConstraintViolationDetection)

Input:
i. Ss, Ds 2 Ps

ii. Security parameters ‘PSecurity’contained in SLA.
Output: Detect and Report the violation of
security constraints
Global Variables:
Ss Software Services
Ps Platform Services
Ds Database Services
Monitor SLA Monitor
MSLA SLA Manager
procedure (Initialize)
=�Durability Violation Detection�=8>>>>>>><>>>>>>>:

for each Query to Ds

if (Ds 6= ?)
then Call Monitor and

Run SELECT Di FROM Ds;
else Cancel Query;�
if Query (Ds)! Di Not Found

then Report GC
S to MSLA and Store H in R;

=�Consistency Violation Detection�=8>>>>>>>>>>><>>>>>>>>>>>:

for each Database Checking ‘ChkDB’ to Ds

if (Ds 6= ?)
then Call Monitor and Run DBCC CHECKDB

/* CHECKDB command includes CHECKALLOC
CHECKTABLE, and CHECKCATALOG
commands */

else Cancel ChkDB;�
if ChkDB (Ds)!: consistent Ds

then Report GC
S to MSLA and Store H in R;

ically or when a database transaction is happened.
For any consistency checking request placed by the
application manager, SLA monitor is called. The
application manager access databases and run query
such as, an SQL statement ’DBCC CHECKDB’ on
TaxiOrdering database for checking consistency. If
SLA monitor detects inconsistency in TaxiOrdering
database, then it reports a violation to SLA man-
ager. It is worth noting that in this example only SQL
commands are used for query database and checking
consistency because the TaxiOrdering is a mySQL
database. The proposed solution supports executing
other commands as well since it supports integrat-
ing other database services. In essence, the query
statements and consistency checking depends on the
database service integrated with CSBAs.

The SLA manager calls the configuration manager
- depending on the violation pattern - for reconfigur-
ing the CSBAs. In the next section, the strategies for
reconfiguring CSBAs are discussed.

5.2 Reconfiguring the Service-based
Cloud Application

After being triggered by the SLA Manager, the Con-
figuration and Deployment Manager is responsible
for making an informed decision on the preventive
reconfiguration strategies and actions for the BPaaS
based on the violation patterns that have been detected
in the previous BPaaS instances. The aim is to en-
able future BPaaS instances to meet the expected SLA
with their clients. Figure 5 illustrates the decision tree
inside the Configuration and Deployment Manager, in
which each SLA Violation pattern detected in the pre-
vious section 5 is tackled by specific reconfiguration
strategies, which lead to specific reconfiguration ac-
tions. In the following, each strategy and action is
explained in detail:

� RS1- Find alternative SaaS: This strategy can be
used when a constituent SaaS of a BPaaS is not
available for invocation (Availability Constraint
Violation) or its QoS (response time and through-
put) performance is decreasing. The idea is to find
an alternative substitution for this SaaS. This strat-
egy leads to the reconfiguration action RA1- Dy-
namic SaaS Binding, which dynamically binds all
the upcoming BPaaS instances to the new SaaS.

� RS2- Scale up SaaS: This strategy can be used
when the response time constraint of a constituent
SaaS is violated (ResponseTime Constraint Vi-
olation). The idea is to prevent this violation
for the future BPaaS instances by resizing the
infrastructure resources of the running SaaS in-
stances, including resizing and rebooting their
Virtual Machines with more computing resources
(RA2-Resizing and Rebooting VM) and reconfig-
uring their network links with less latency (RA3-
Reconfiguring Network Link).

� RS3- Scale out SaaS: This strategy can be used
when the throughput constraint of a constituent
SaaS is violated (Throughput Constraint Viola-
tion). The idea is to prevent this violation for
the future BPaaS instances by deploying new in-
stances of this SaaS (RA4- Deploying new In-
stances) and reconfiguring the network link of all
the SaaS instances with larger bandwidth (RA4-
Reconfiguring Network Link).

� RS4- Find alternative data service provider: This
strategy can be used when a violation in data
security and confidentiality is detected by the
SLA Manager (Data Security Constraint Viola-
tion). The idea is to switch to a new Data ser-
vice provider that provides better security mech-
anism and guarantee. This strategy leads to the

.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

368

Figure 5: Reconfiguration Strategies and Actions for each SLA Violation Pattern.

process of migrating data from the old to the new
provider (RA5- Migrating Data), and reconfigur-
ing the Data Access mechanism (RA6- Migrating
Data)

In case several violation patterns are detected, mul-
tiple reconfiguration strategies could be combined to
perform preventive actions. For instance, in case both
the response time and throughput constraint of a SaaS
are violated, one could follow both RS2 and RS3 to
resize the current SaaS instances with more resource
and to deploy new instances of the SaaS.

In our running example in section 2, the
TaxiOrdering-BPaaS is configured using the blueprint
approach that results into a blueprint configuration
in Figure 2. Based on the blueprint configuration,
a deployment configuration has been developed in
Figure 3, which serves as a cookbook for cloud
administrator to actually deploy and maintain the
TaxiOrdering-BPaaS, so that all the SLA constraints
between the TaxiOrdering-BPaaS with its clients can
be satisfied. Nevertheless, at peak time period (e.g.
new year’s eve), the number of instances of the
TaxiOrdering-BPaaS may increase dramatically and
hence lead to several SLA violations. The previous
Section 5 points out the four sample violation cases
that may occur to the TaxiOrdering-BPaaS.

� V1: Response time of the step (S2-Allocate Taxi)
increases, i.e. the actual response time is 8 s
whilst the expected response time is only 6s. This
is due to the response time constraint violation of
the FleetMgt-SaaS.

� V2: Throughput of the step (S2-Allocate Taxi) de-
creases, i.e. the actual throughput is only 8 req/s
whilst the expected throughput is 10 req/s. This
is due to the throughput constraint violation of the
FleetMgt-SaaS.

� V3: Step (S3-Calculate Route) cannot be exe-
cuted. This is due to the availability constraint

violation of the MapA-SaaS.

� V4: Data security is violated. This is due to the
data security constraint violation of the MySQL-
PaaS.

With help of the reconfiguration decision tree, the
Configuration and Deployment Manager is able to
perform preventive actions for the future instances of
the TaxiOrdering-BPaaS. Table 2 explains which re-
configuration strategy and action are performed for
which violation cases in our running example. Please
note that the details of how to perform a reconfigura-
tion action strongly depends on the blueprint configu-
ration of the TaxiOrdering-BPaaS introduced in Sec-
tion 2.1 that provides different alternative configura-
tions. In this paper, we do not discuss the approaches
of selecting a particular configuration.

Figure 6: The deployment architecture of the reconifgured
TaxiOrdering-BPaaS.

Performing the reconfiguration actions will re-
sult in a different deployment configuration of the
TaxiOrdering-BPaaS. Figure 6 illustrates this adapted
deployment configuration of the TaxiOrdering-BPaaS

� 3 instances of the FleetMMapB-SaaS is deployed
on 3 instances of the Linux-JEE-PaaS/IaaS, each

PAEAN4CLOUD�-�A�Framework�for�Monitoring�and�Managing�the�SLA�Violation�of�Cloud�Service-based�Applications

369

Table 2: Reconfiguration Strategies and Actions for the sample TaxiOrdering-BPaaS.

Cloud Service SLA Violation Reconfiguration
Strategy &
Action

Details

FleetMgt-
SaaS

V1: Response Time
Constraint

RS2 =) RA2 Resizing the VM with CPUSpeed(Ghz)=3, mem-
ory(GiB)=4.

FleetMgt-
SaaS

V2: Throughput
Constraint

RS3 =) RA3
& RA4

Deploying another instance of the stack FleetMgt-
SaaS + JEE-Linux-PaaS/IaaS. Reconfiguring the
network link of all three JEE-Linux-PaaS/IaaS in-
stances with networkBandwidth(Gbit/s) = 3

MapA-SaaS V3: Availability
Constraint

RS1 =) RA1 Dynamically rebind to the new MapB-SaaS in-
stance.

MySQL-PaaS V4: Data Security
Constraint

RS4 =) RA5
& RA6

Migrate all the data of the FleetMgt-SaaS to 2 new
instances of PostgreSQL-PaaS. reconfiguring the
data access layer of the FleetMgt-SaaS.

with 3Ghz CPU speed, 3 GiB memeory and 3 Gbit
network link

� 3 instances of the PostgreSQL databases are used
by the FleetMgt-SaaS instances to store data.

� A MapB-SaaS instance used to performed the
“Step 3- Calculate Route”, instead of the MapA-
SaaS instance.

6 RELATED WORKS

This section describes the related works in the area
of monitoring and management the SLA violation of
the CSBA. A number of remarkable works related to
monitoring and management SLAs of the service ori-
ented and Grid applications have been presented in
many literature e.g. (Comuzzi et al., 2009), (Fu and
Huang, 2006), (Koller and Schubert, 2007), (Boni-
face et al., 2007), (Wood et al., 2009). However, a
very little works are found in the area of monitoring
and managing SLAs of the cloud service based sys-
tem. From the conceptual point of view, monitoring
SLA in the area of cloud, grid and conventional ser-
vice oriented domains are the same, yet the methods
of monitoring SLAs of the systems serving these do-
mains differ. Therefore, since this paper is focused
on detecting the violation of the SLAs within cloud
environment, the related works focusing on monitor-
ing SLA for detecting violation and reconfiguration
of cloud services is discussed in this section.

In (Emeakaroha et al., 2012b), a framework called
DeSVi is proposed to detect SLA violation in cloud
infrastructure. The goal of this framework is similar
to PAEAN4CLOUD. The framework is proposed for
monitor the resources and component perform case-
bases reasoning for detecting the violation by utiliz-
ing the notion of knowledge database. Additionally,

the framework relies on the service level objective.
DeSVi contains a application deployment component
that facilitates deploying application automatically.

Hammad (Hammadi and Hussain, 2012) proposes
framework for monitoring QoS. It comprises two
modules include reputation assessment module and
transactional risk assessment module. It assists in
assessing performance based on QOSs observed and
also assists in making decision whether or not a cloud
service customer should migrate to another provider.

SageShift (Sukwong et al., 2012) consists of a Vir-
tual Machine(VM) admission control - Sage, and a
hypervisor - shift. The key focus of the SageShift
is preventing SLA violations. SageShift assess the
feasibility of SLA based on the incoming requests
and prevent SLA violations by adjusting the required
amount of resources dynamically and determining the
sequence of VM execution. Unfortunately, the poten-
tial SLA violations with respect to software service
and platform service cannot be traced as SageShift
oversights these service issues.

(Chandrasekar et al., 2012) proposes a QoS mon-
itor that reads data and a offers a solution that is built
upon the Markov Chain 5 to establish trust between
service consumer and provider.

A holistic approach called OPTIMIS was pro-
posed by (Ferrer et al., 2012) to optimize entire ser-
vice life cycle including monitoring services. The
authors describe various aspects of service monitor-
ing and managing SLAs between service provider and
consumer. They stress on a list issues that need to be
improved for optimizing the performance of current
solutions for monitoring the cloud services. However,
the authors do not offer any optimizing method. Es-
sentially, SLA monitoring is rather a small part of the

5www.math.rutgers.edu/courses/338/coursenotes/
chapter5.pdf

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

370

OPTIMIS approach.
Most of the SLA monitoring approaches discussed

in the above focus on the QoS aspect of services.
Nonetheless, PAEAN4CLOUD is able to detect the
QoS as well as security constraint violations in the
cloud environment. To the best of our knowledge, ex-
isting SLA monitoring solutions do not address the
security constraint violations. The SLA monitor of
the PAEAN4CLOUD relies on the category-based
violation detection approach that enhance the capa-
bility of the monitoring system for identifying vio-
lations efficiently. Additionally, the category-based
violation detection approach assists in deciding the
most suitable reconfiguration strategy for avoiding
the violation of SLAs. None of the SLA monitor-
ing approaches discussed in the above deals with the
category-based violation detection of cloud services.

7 CONCLUSION AND FUTURE
WORKS

In this paper, we have highlighted the challenges
of monitoring and predicting of SLA violations in
cloud service based applications. Thus, we moti-
vated emerging requirements for the monitoring, de-
tection, and configuring of SLA violation in a real
world scenario. We argued that the specific nature
of cloud service based applications using a mixture of
SaaS, PaaS and IaaS solutions - possibly from var-
ious providers, makes classic approaches incapable
of meeting these requirements. Consequently, we
proposed a PAEAN4CLOUD, a generic framework
monitoring, detecting, and configuring SLA viola-
tions. The framework relies on components and al-
gorithms for automated reasoning with CSBA for de-
tecting SLA. Currently we are exploring the idea of
root cause analysis for preventing SLA violations in
such as way that monitoring can play a pivotal role to
predict violations of the QoS requirements as stipu-
lated in the SLA and to suggest (manually or automat-
ically) some adjustment to enforce the running appli-
cation to comply with the agreed-on SLA. The adjust-
ment could be (1) to change the service infrastructure
in such way, that the application will be processed and
respect the SLA. Another possibility is to (2) apply
self-scaling (up/out) techniques to enable/enforce the
application to comply with the SLA of the application
as a whole.

REFERENCES

Boniface, M. J., Phillips, S., Perez, A. S.-M., and Surridge,
M. (2007). Dynamic service provisioning using gria
slas. In NFPSLA-SOC’07. Event Dates: 17th Septem-
ber 2007.

Chandrasekar, A., Chandrasekar, K., Mahadevan, M., and
Varalakshmi, P. (2012).

Comuzzi, M., Kotsokalis, C., Spanoudakis, G., and
Yahyapour, R. (2009). Establishing and monitoring
slas in complex service based systems. In ICWS, pages
783–790.

DeveloperWorks (2010). Review and summary of cloud ser-
vice level agreement.

Emeakaroha, V. C., Ferreto, T. C., Netto, M. A. S., Brandic,
I., and Rose, C. A. F. D. (2012a). Casvid: Application
level monitoring for sla violation detection in clouds.
In COMPSAC, pages 499–508.

Emeakaroha, V. C., Netto, M. A. S., Calheiros, R. N.,
Brandic, I., Buyya, R., and Rose, C. A. F. D. (2012b).
Towards autonomic detection of sla violations in
cloud infrastructures. Future Generation Comp. Syst.,
28(7):1017–1029.

European Comission: Information & Communication Tech-
nologies Unit (2010). 4CaaSt: Building the PaaS
Cloud of the Future. Project Objectives Document.

Ferrer, A. J., Hernndez, F., Tordsson, J., Elmroth, E., Ali-
Eldin, A., Zsigri, C., Sirvent, R., Guitart, J., Badia,
R. M., Djemame, K., Ziegler, W., Dimitrakos, T., Nair,
S. K., Kousiouris, G., Konstanteli, K., Varvarigou, T.,
Hudzia, B., Kipp, A., Wesner, S., Corrales, M., Forg,
N., Sharif, T., and Sheridan, C. (2012). Optimis: A
holistic approach to cloud service provisioning. Fu-
ture Generation Computer Systems, 28(1):66 – 77.

Fu, W. and Huang, Q. (2006). Grideye: A service-oriented
grid monitoring system with improved forecasting al-
gorithm. In GCC Workshops, pages 5–12.

Hammadi, A. M. and Hussain, O. (2012). A framework
for sla assurance in cloud computing. In AINA Work-
shops, pages 393–398.

Koller, B. and Schubert, L. (2007). Towards autonomous sla
management using a proxy-like approach. Multiagent
and Grid Systems, 3(3):313–325.

Nguyen, D. K., Lelli, F., Papazoglou, M. P., and van den
Heuvel, W.-J. (2012a). Blueprinting approach in sup-
port of cloud computing. Future Internet, 4(1):322–
346.

Nguyen, D. K., Lelli, F., Papazoglou, M. P., and van den
Heuvel, W.-J. (2012b). Issue in automatic combina-
tion of cloud services. In ISPA, pages 487–493.

Sukwong, O., Sangpetch, A., and Kim, H. S. (2012).
Sageshift: Managing slas for highly consolidated
cloud. In INFOCOM, pages 208–216.

Wood, T., Shenoy, P. J., Venkataramani, A., and Yousif,
M. S. (2009). Sandpiper: Black-box and gray-box re-
source management for virtual machines. Computer
Networks, 53(17):2923–2938.

Wu, L. and Buyya, R. (2010). Service level agreement (sla)
in utility computing systems. CoRR, abs/1010.2881.

PAEAN4CLOUD�-�A�Framework�for�Monitoring�and�Managing�the�SLA�Violation�of�Cloud�Service-based�Applications

371

