
Interoperability for Web Services based Smart Home Control Systems

Hannu Järvinen and Petri Vuorimaa
Department of Media Technology, Aalto University School of Science, Espoo, Finland

Keywords: Ambient Intelligence, Building Automation, oBIX, REST, Rule Engine, Smart Home, Web Intelligence, Web
of Things, Web Services.

Abstract: One of the problems in smart home systems today is the lack of interoperability on different levels. While
applying closed, non-standard, and complex protocols can cause the problem on a lower level, the architecture
and design of a common building control system can cause it on a higher level. We present a solution for
enabling the interoperability on the higher level in building automation systems with XML based rules and a
Web API. To ensure the interoperability, we define requirements for Web services based building automation
control systems. A standard building automation guideline, oBIX, is used to provide interoperability on the
low level, and adopted for the rule management and description on the high level. The resulting rule engine
architecture and implementation are evaluated against the requirements. The solution provides interoperability
using standard Web technologies and supports employing several control systems simultaneously.

1 INTRODUCTION

In the Ambient Intelligence (AmI) world, our living
environments consist of distributed embedded devices
cooperating with one another while the intelligence of
the system resides hidden in the network. These envi-
ronments comprise of different kind of technology re-
quired to properly function together towards common
goals. To achieve true interoperability between these
technologies, four layers of interoperability need to
be addressed: protocol layer, logic layer, semantic
layer, and intelligence layer. In this paper, we present
a solution for enabling smart home interoperability on
the logic layer, and for supporting it on the semantic
layer.

Common approach in smart home research has
been to connect devices to a central control system
that functions as a home server. Such a system can
offer remote access interface for the users to manage
their devices. The system can also offer means for
a user to program certain logic by defining rules be-
tween the device states. While these kind of systems
can help people to better manage their homes, they
share two common constraints. In many cases, they
are using closed and non-standard protocols for the
communication, which restricts interoperability with
generic devices. They also handle their logic inter-
nally in the control system blocking third party so-
lutions out and forcing users to only use what is in
hands. Hence, the system can function well with the

devices that are connected to it, but is unable to in-
teract with other systems or consider a new type of
logic when built in functionality is felt insufficient.
These independent systems can easily manage their
internal behavior but the inter-system communication
and logic is still a challenge.

In this paper, we present a solution for enabling
higher level interoperability in smart homes. After a
short introduction to home automation, we first dis-
cuss related recent research on smart homes and rule
based systems, and then, considering the domain spe-
cific needs, define the requirements for Web services
based building automation control system with basic
logic interoperability and support for semantic inter-
operability. Next, we describe our architecture, use
case and implementation, and finally evaluate the re-
sults against the requirements. The main contribu-
tions of our work are the requirements for the Web
services based building automation control systems,
and the rule engine implementation with high-level
oBIX XML abstraction for the rule definition and
management through a RESTful Web API.

2 BACKGROUND

Intelligent buildings have a long history and first at-
tempts to make our homes smarter were planned al-

93Järvinen H. and Vuorimaa P..
Interoperability for Web Services based Smart Home Control Systems.
DOI: 10.5220/0004948500930103
In Proceedings of the 10th International Conference on Web Information Systems and Technologies (WEBIST-2014), pages 93-103
ISBN: 978-989-758-023-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

ready in the 1940s (Mozer, 1998). After that, the in-
dustry and research have periodically become inter-
ested in the idea of smart homes, and more lately the
concepts of ubiquitous computing, pervasive comput-
ing and physical browsing have hyped the discussion
on ambient intelligence up again.

Recent advancements in communication technol-
ogy have brought us with possibility to network our
home and building automation systems. The Internet
is considered ubiquitous in modern buildings and pro-
vides a natural way to connect these systems together
and with the rest of the IT world, offering the basic
network infrastructure on both local and global scales.
While the technology has been ready for smart build-
ings for a long time, they have not yet become reality
for the people. Main reason for that has been the long
battle between the standards on both national and in-
ternational levels (Felser and Sauter, 2002). Agree-
ments are not done on neither level, and today we
have a huge set of competing device protocols.

The diversity of the device protocols forced to de-
velop alternative solutions for modern Building Au-
tomation Systems (BASs). To cope with numerous
non-interoperable standards, developers implemented
first protocol converters between different devices,
and later integration platforms, which are able to com-
municate over a variety of different protocols, and
thus function as central servers for the device com-
munication. An integration platform is basically a
combination of hardware and software that is able
to convert messages from different formats to oth-
ers and communicate over different physical layers
using a number of protocols (Järvinen et al., 2011)
(Valtchev and Frankov, 2002). It can offer a high level
interface to support information exchange with enter-
prise applications. Usually this interface, and more
and more often the backbone network of the integra-
tion platform, is based on the Internet Protocol (IP)
(Maile et al., 2007). Indeed, IP based communica-
tion is already widely applied in home automation
systems. This allows exploiting successful and well-
known Web technologies and tools in this domain.

Integration platforms partly solve the interoper-
ability problem bringing information and controls
from the devices available to the BASs. They unify
numerous different protocols and data representa-
tions under one format, hopefully an agreed standard.
However, after the interconnectivity, more is needed
to make the devices to actually interoperate with each
other. In practice, the interoperability on this level
is realized with some kind of logic that makes deci-
sions and strategies to execute commands based on
the available information. In this paper, we refer to
any system dedicated on handling this kind of logic

in a building as acontrol system. Such system per-
ceives the relevant environment states through, for
example, current device state values, device history
data, weather information and forecasts, or alterna-
tion of electricity price depending on the time of the
day. It can also use any other external data available
or a prediction made based on any of the mentioned
data. Internal logic of the control system then eval-
uates this information with some reasoning and can
decide to take actions based on the results.

In literature, various types of control systems have
been studied. In addition to simple rule definition,
other approaches such as fuzzy rules (Rutishauser
et al., 2005) and Artificial Intelligence (AI) (Mozer,
1998) based solutions are suggested. What is com-
mon in traditional approaches is that they concentrate
only on one type of control and handle it in a closed
module with a specific user interface to manage the
functioning.

The success of Web services as a solution for the
integration of distributed heterogeneous systems has
capitalized the research of service-oriented commu-
nications in the last decade. Web services are nowa-
days ade factostandard used to solve interoperabil-
ity problems in distributed computing, which has mo-
tivated us to support interoperability offering a Web
API for the rule management. Thus, in addition to de-
vices, also the logic is controllable through the Web
services interface.

In this paper, we concentrate on rule based control
systems. However, we suggest supporting a whole
horizontal layer of control systems simultaneously,
thus enabling the interoperability also between the
control systems. The focus of our research is on XML
based rules in a distributed environment. In the next
section, we describe earlier research on that area.

3 RELATED WORK

Rule based control systems generally describe rules
with events, conditions, and actions. Such systems
are able to automatically perform actions based on the
occurring events and evaluated conditions. The idea is
to have central management of the application logic,
instead of implementing the functioning in separate
programs, and to describe the rules with high-level,
declarative syntax (Papamarkos et al., 2003). The
composed Event-Condition-Action (ECA) rule struc-
ture has its roots in active databases. Originally, ECA
rules were developed in eighties as a solution for the
inability of the database management systems to trig-
ger actions based on the alarms. Later on, ECA rules
have been adopted by various other domains includ-

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

94

ing XML, semantic web, and ubiquitous computing
(Chakravarthy and Adaikkalavan, 2007).

Considering the event part particularly in XML
documents, W3C has standardized Document Object
Model (DOM) Event Module (Schepers et al., 2011)
for that purpose. In addition to UI events, it defines
mutation events which are triggered on any change
to the structure of a document. Corresponding event
handlers can thus be created in a standard manner to
handle required actions when the DOM is altered.

Similarly for the condition and action part,
the Extensible Stylesheet Language Transformations
(XSLT) (Kay, 2007) provides a standard way for ap-
plying rules to XML documents. It can be used to
create an XML document based on two source docu-
ments. The source documents are an input XML data
file, and an XSLT rule file describing which elements
and attributes of the input XML are included and how
the output file is then constructed. The application
area of XSLT is well defined and narrow, thus offering
a common tool for the application development. Ad-
ditionally, related to our solution, extensions such as
XSLT 2.0 Extensions for Saxon1 and EXPath HTTP
Client2 offer support for making HTTP requests from
the XSLT.

For the semantic layer, W3C has a recommenda-
tion for Rule Interchange Format (RIF). It has been
developed for the exchange of rules between the rule
languages, such as the oBIX based rule language we
propose in this article. RIF thus maps different rule
languages together using a common syntax and se-
mantics. Our approach for the interoperability here
however focuses on the logic layer providing an open
way for managing the rules through a Web API. To-
gether with addition of semantic layer, rule engine
would benefit from RIF, as it would be interoperable
also with other RIF supported rule engines.

One common format for describing rules in XML
format is the Rule Markup Language (RuleML). (Bo-
ley et al., 2001) It defines a general and flexible rule
language and is specified by a group of international
experts on the field. However, in this paper we wanted
to concentrate on the smart home control systems, and
to unify the markup and the interface for both the de-
vices and rules.

A number of approaches for applying ECA rules
on XML has been proposed. Typically, they consider
XML as a data description format for the database,
otherwise keeping a close relation to the traditional
database systems. This means that the rules operate
on XML documents but are themselves described in
various non-XML formats (Bailey et al., 2002) (Pa-

1http://www.fgeorges.org/xslt/saxon-ext/
2http://www.expath.org/modules/http-client/

pamarkos et al., 2003) (Bonifati et al., 2002), and that
the operations are done with a local database.

An approach from (Bonifati et al., 2001) defines
the rules in XML, but also operates on XML doc-
uments locally. As the target documents are local,
the system does not offer interoperability for dis-
tributed systems as we propose. Another approach
from (Bernauer et al., 2004) tackled the problem of
deciding on which events to react. As every mod-
ification of the document triggers Document Object
Model (DOM) event, it is difficult to decide when
conditions needs to be evaluated. Thus, they pro-
posed a solution for detecting composite events for
XML. However, they concentrate on the object node
relations inside an XML document, and on the DOM
events. This binds the solution to the local and com-
plete XML documents. An article from (Papamarkos
et al., 2004) presents an ECA language for Resource
Description Framework (RDF). The language is able
to function in distributed environments, as it supports
path expressions with requests to resource URIs. The
language itself is described in non-XML format, and
the rule management is not discussed.

A recent research from (Leong et al., 2009) con-
centrated on rule based interaction. They employed
ECA rules to enable interoperation between different
heterogeneous subsystems in a smart home environ-
ment. They used SOAP as a backbone network proto-
col and stored rules in table form on a home applica-
tion server. Subsystems reported their state changes
to the home application server, which then fetched
the related rules from the database, evaluated them
and informed the subsystems if necessary. They de-
fined an SQL based Application Programming Inter-
face (API) for the management of the rules. The sys-
tem could handle interoperation between the subsys-
tems, but due to an additional API for the rule base,
management of the rules could only be done using a
specific user agent, not by other system modules.

4 REQUIREMENTS

Our approach is to gain the requirements for the Web
services based building automation control systems
from the properties of an Intelligent Agent (IA) de-
fined in the Multi-Agent System (MAS) domain. An
intelligent agent is a piece of software that is situ-
ated, autonomous, reactive, proactive, flexible, robust,
and social (Padgham and Winikoff, 2004). We recog-
nize four main properties of an IA that match with
the properties needed for the control logic of a build-
ing automation system. These properties are:au-
tonomouscontrol,reactiveresponding to the changes

Interoperability�for�Web�Services�based�Smart�Home�Control�Systems

95

in the environment,proactiveobservation of the envi-
ronment, andsocial interaction with other agents.

We have derived the requirements from these
properties and divided them into four categories. We
suggest that the control descriptions should be based
on standard XML description format, system be able
to operate in distributed environments, support active
knowledge base updates, and offer a standard inter-
face for the management.

4.1 Description Format

To support social interaction, and for the simplicity
of the control description, there are two requirements.
The logic provided by the system should be described
based on a common language utilized on the Web
based building systems, similarly as all the data in the
system should be presented using one standard XML
based format. An XML based format is preferred due
to its popularity in the Web, flexibility, both human
and machine-readable nature, and direct support with
Semantic Web techniques.

The description of the control logic in XML of-
fers a way to hide the complexity behind a high-level
abstraction layer. If a standard XML based building
system language is utilized, there is no need to learn
and implement new language syntax and semantics.
Using a standard language also facilitates social inter-
action within different system modules and with the
third party solutions. In addition to the XML encod-
ing, the control logic should be described in a simple
fashion. Declarative definition style defines the logic
without describing the control flow. It contributes to
the simplicity by offering a natural and intuitive way
for presenting the logic. (Lloyd, 1994)

• R1: high-level standard XML abstraction for the
control logic description

• R2: declarative control logic definition

4.2 Interaction in Distributed
Environments

By their very nature, Web services based BASs are
distributed device environments. In such environ-
ment, control systems should offer functionality for
creating interoperability between various devices that
provide their data and controls on the Web. Social
interaction of the control logic and the devices can
realize this behavior. Thus, control systems need to
be able to both access web resources that are referred
in their logic with URIs, and similarly to send re-
quests to URIs for controlling web resources based
on the following actions. A control system thus

keeps up its knowledge base by perceiving the en-
vironment through references to multiple distributed
web resources, instead of referring to path expres-
sions within one XML document. This active inter-
device communication also enables the interoperabil-
ity in the action part of the logic. If the environment
meets a certain state that changes the output of the
logic, firing actions can reactively make requests to
web based device resources, or similarly command
other web resources, such as control systems.

• R3: ability to perceive the environment with web
resource requests

• R4: ability to command actions with web resource
requests

4.3 Knowledge Base Updates

Distributed nature and real-time requirements of
building control systems require some considerations
to be made for the knowledge base of the control sys-
tem. One such requirement is the support for getting
informed, or proactive/automatic updates of the web
resource states that the system is aware of. A control
system thus needs to be able to periodically request
web resources for updating the knowledge base con-
taining the relevant current perception of the environ-
ment.

• R5: active knowledge base updates

4.4 System Management

For the general interoperability, the control system
management should be supported through a standard
Web services interface. In addition, direct support for
URIs as an addressing method simplifies the integra-
tion with the Web, and partly enables the social in-
teraction. It also ensures that the logic is manageable
the same way than other objects in the Web of Things
(WoT) (Guinard and Trifa, 2009). While the control
system expects devices to expose their functionality
for the interaction, it should apply the same guideline
to itself and provide its services through a Web API.

These requirements ensure that the application
logic implementing the interoperation between the
devices and subsystems is accessible for all system
modules. Hence, the control modules of the sys-
tem are manageable using the same standard interface
than all the other modules of the system. This also al-
lows logic to access other logic in the same control
system, or in another type of control system.

Following these requirements in various control
systems allows different modules to build a uniform

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

96

system, where management of any module is accom-
plished following the same consistent principles. In
practice, modules can exploit the functionalities of-
fered by other modules, thus supporting interoperabil-
ity on a higher level.

• R6: control system management through standard
web interface

• R7: logic identifiable with URIs.

5 ARCHITECTURE

We have defined an architecture for smart home sys-
tems following the requirements from the previous
section, and apply those across all the system mod-
ules. As depicted in the Figure 1, on the high level all
modules of the system are using the same Web ser-
vices interface for the communication between them.
This allows flexible management of the modules to
achieve a configuration of the system that the user de-
sires. Opposed to more complex SOAP approach, we
promote use of RESTful Web services to simplify the
communication and the design, and to facilitate the
development of the following implementations. It is
notable, that the applied Web service technique has to
be open and standard to achieve interoperability with
third party solutions.

As the communication interfaces are unified into
one standard RESTful Web API, it is easy for modules
to communicate with each other. In our model, this
is the only interface for the management of a certain
module. This important design principle assures, that
the management of the modules is open for the whole
system. As seen in the Figure 2, this is a conceptually
different approach than having, for example, the ap-
plication logic managed inside a closed module that is
configurable only by a specific user interface or appli-
cation. Now, control logic can be easily created and
modified using the Web API that the modules provide.

While usage of only one interface makes the sys-
tem simple, it also sets specific requirements for it.
The interface standard has to allow a flexible way for
developers to define their own diverse data models for
describing their data. It has to be flexible enough to
also allow the management of the control systems and
be able to describe their functionality sufficiently. The
network includes various different types of modules,
and there can be multiple instances of any module
type functioning at the system simultaneously.

An integration platform brings the information
from the home devices available to the system. It
communicates using various underlying low-level de-
vice specific protocols and unifies their representa-
tions to a standard data format offering an interface

!"#$%&$'(")*

+#,)'
-$./0$

12'$3),'/"2
45,'6")#

785$
923/2$

:;,<'/.$
="2')"5
+>?'$#

@?$)
:3$2'

92'$)<)/?$
:<<5/0,'/"2?

7$?/;$2'/,5
A,'$(,>

7$#"'$
@?$)%:3$2'

!BB4

!BB4

Figure 1: A smart home system model with distributed in-
telligence. A standard Web services based building automa-
tion guideline is applied for the communication.

for managing the devices that are connected to it.
Smart devices instead are able to directly communi-
cate using the standard backbone network protocol
applied in the system. They do not need to be con-
nected to any integration platform but if desired, they
can do that as well. A smart device can also in-
clude application logic and it can, for example, di-
rectly communicate with other modules.

A rule engine is one type of control system. Using
the standard RESTful Web API, other modules can
create, modify and delete rules that run on the rule
engine. Rules are a way to define interoperating logic
to the system. Actions defined in an individual rule
are executed if a certain logical condition is fulfilled.
The rule engine then commands the related devices to
take the appropriate actions. Rules are the most ba-
sic form of device independent interoperation in the
smart home system. Similarly to a rule engine, adap-
tive control system is responsible for implementing
interoperability to the system. The type of the logic,
however, differs from the one in rule engines. The
goal of the module is to learn from the behavior of
the system and adapt the functioning to it. It can, for
example, analyze the device history data and try to
improve the efficiency and the user comfort. Because
of this, the actual resulting behavior is not directly
manageable but the related parameters are.

6 IMPLEMENTATION

The implementation focused mainly on the rule en-
gine and the smart device but also included an inte-
gration platform and a couple of devices. As depicted
in the Figure 3, the rule engine played a central part
in the system. The following scenario was applied to
test the implementation:

Interoperability�for�Web�Services�based�Smart�Home�Control�Systems

97

!"#$%"&'()"*+,%"-

.*,/0$%,1&2-"*&'()"*+,%"

!"#$%"
!,),

34()*41&546$%
&&&&74891"-

:;-)"<&34*"

'()"*(,1&54=&5"#"1&'()"*+,%"

'()"*(,1&54=&5"#"1&'()"*+,%"

>4)$+;

34()*41

7,(,6"&!"#$%"-
&&&&,(8&546$%

!"#$%"&'()"*+,%"-

.*,/0$%,1&2-"*&'()"*+,%"

!"#$%"
!,),

34()*41&546$%
&&&&74891"-

'()"6*,)$4(
&&?1,)+4*<

@A)"*(,1&B$60&5"#"1&'()"*+,%"

@A)"*(,1&
&&B$60&
&&5"#"1&
'()"*+,%"

>4)$+;C
34()*41

@A)"*(,1&
&&B$60&
&&5"#"1&
'()"*+,%"

@A)"*(,1&B$60
5"#"1&'()"*+,%"

7,(,6"
!"#$%"-

7,(,6"
&&546$%

&&&&&&@A)"*(,1&B$60&
5"#"1&'()"*+,%"

,D

ED

Figure 2: Communication between system modules in a
system using a) Closed Control Logic; b) Open Control
Logic.

Michael is watching television at the living room
but wants to arrange some things at home at the same
time. When he enters a room to pick up something, the
light goes on in the room. When he leaves the room to
put the thing in its correct place, the light switches off.
However, when wandering around the flat he does not
miss anything on the television, as always when he
leaves the sofa, the program pauses. Similarly, when
he sits down to the sofa again, the program continues.

For our implementation, we decided to use the
open Building Information eXchange (oBIX) (Con-
sidine and Ehrlich, 2006) from the Organization for
the Advancement of Structured Information Stan-
dards (OASIS). The data format is based on XML
and defines, similarly to any common programming
language, a small set of primitive data types for de-
scribing the data. It supports definition of contracts
based on the primitives to allow developers to define
data structures for their own devices and systems. The

Figure 3: Communication flow of the implemented system.

extendibility suits well to our needs, as we want to
describe multiple types of devices and control sys-
tems. The specification defines both SOAP and HTTP
REST bindings. To simplify the development of the
applications, we have selected to use the latter. An ad-
ditional protocol layer is left out and the information
can be directly read using an HTTP browser.

The environment had two rooms, both having
three lights. For connecting devices to the integration
platform, we decided to follow the same communi-
cation method than the rest of the system. Thus, the
integration platform works as a standalone server and
devices can connect to it through the Local Area Net-
work (LAN). A camera based tracking system was
used to get the location of the user. The tracking
was implemented as a smart device and included ad-
ditional logic. It used Linear Discriminant Analysis
(LDA)3 to predict if the user was about to enter the
room or not. It was able to anticipate this behavior of
the user and directly communicate with other system
modules. The purpose of the rule engine was to al-
low interoperation in the system using simple logical
rules, referred here assmart applications.

The idea of the prediction in the tracking system
was to remove the general system delay so that the
interaction with the environment would be pleasant.
Rule agents provided backup functions for the light
control, in case that the prediction would fail to rec-
ognize the behavior. In short, the overall system logic
switched the lights on in the room which was entered
and off in the room that was left. This happened ex-
actly when the user entered the room without a de-
lay. Additionally, the logic played and paused a TV
program based on the user’s presence on the sofa.
The implemented system modules and especially the

3http://www.psychometrica.de/lda.html - Java imple-
mentation of the LDA.

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

98

different parts of the rule engine are described in
more detail in the following subsections. Communi-
cation between these different system parts is empha-
sized. Detailed description of the user tests and mea-
surements are presented in (Järvinen and Vuorimaa,
2012).

6.1 Rule Engine

An oBIX standard based rule engine was developed
for the implementation. It is a further development
result of our Java based open Facility Management
Server (oFMS) (Järvinen et al., 2011). Thus, in ad-
dition to the rule management, the rule engine can
simultaneously function as an integration platform.
However, in this experiment we wanted to use a sep-
arate integration platform to follow the proposed ar-
chitectural design.

The rule engine is not following the ECA structure
as there is no separate event part in the rules. Its active
component, the smart application executor takes care
of regularly updating all the individual device states
that are referred in any of the rule conditions. Thus,
the conditions are evaluated only when needed. The
actual triggering event is a change in any of the de-
vice states referred in the condition. The Algorithm 1
illustrates the behavior of the six rules that were used
in the experimentation.

6.2 Smart Application Service

Smart application service offers an access point for
external modules to create rules. Following the oBIX
principles, it publishes information in the oBIX lobby
object, access point to any oBIX based system (Figure
4). After the creation of a new smart application, all
the needed references to it are found in the returned
smart application oBIX object. This object provides
functionality for management of the rule conditions
and actions and the logical parameters affecting the

<obj href="obix:Lobby">
<ref name="about" href="about/"

is="obix:About"/>
<ref name="smartApplicationService"

href="smartApplicationService/"
is="smartApplicationService"/>

</obj>

<obj href="smartApplicationService">
<op name="make" href="make" in="obix:Nil"

out="smartApplication"/>
</obj>

Figure 4: The smart application service is found in oBIX
lobby. The service provides a way to create smart applica-
tions.

Algorithm 1: Rules used in the experimentation.
Rule 1: When someone enters or leaves this room, switch
on and off the lights accordingly

if rulestate.has.changedthen
if rulestate= true then

lamp1← on and lamp2← on and lamp3← on
else

lamp1← o f f and lamp2← o f f and lamp3← o f f
end if

end if
Rule 2: When someone enters or leaves this room, switch
on and off the lights accordingly

if rulestate.has.changedthen
if rulestate= true then

lamp4← on and lamp5← on and lamp6← on
else

lamp4← o f f and lamp5← o f f and lamp6← o f f
end if

end if
Rule 3: When the user moves to this room, notify the light
batch rules and start observing when the user goes back
to the other room

if user.at.room.1 then
rule1.rulestate← onand rule2.rulestate← o f f and
rule4.active← onand rule4.statechangestolive← 1

end if
Rule 4: When the user moves to this room, notify the light
batch rules and start observing when the user goes back
to the other room

if user.at.room.2 then
rule1.rulestate← o f f and rule2.rulestate← onand
rule3.active← onand rule3.statechangestolive← 1

end if
Rule 5: When the user sits on the sofa, turn on
the TV and start observing when the user leaves the
sofa

if user.sitting.on.the.so f athen
tv← on and rule6.active← onand
rule6.statechangestolive← 1

end if
Rule 6: When the user leaves the sofa, pause the pro-
gram and start observing when the user returns to the
sofa

if user.not.sitting.on.the.so f athen
tv← o f f and rule5.active← onand
rule5.statechangestolive← 1

end if

rule behavior. Smart application service is able to re-
store smart applications from the XML presentations
stored in the database.

6.3 Smart Application Executor

Rule conditions can include references to a number of
device and object states. The main task of the smart

Interoperability�for�Web�Services�based�Smart�Home�Control�Systems

99

Figure 5: Smart application executor periodically updates
the watchstate objects. If an object state has been changed,
it creates a smart application evaluator to evaluate the con-
ditions that refer to this watchstate.

application executor is to take care that these states are
kept up to date. Based on the polling intervals defined
in the rules, it periodically requests updates for the
state values. When any of the states change, it creates
a new smart application evaluator to evaluate the rules
that include conditions that were affected (Figure 5).

6.4 Smart Application Evaluator

Smart application evaluator is spawned for every
change in any of the device states that the smart appli-
cation executor is updating. Executor passes a list of
affected smart applications to the evaluator. Affected
smart applications are all the rules that refer to the
changed state in their conditions. Evaluator then goes
through all the smart applications in this list evaluat-
ing their conditions. For the evaluation, it requests
state values of the devices. If the return value of the
evaluation differs from the current smart application
state stored in its XML representation, corresponding
rule actions are executed.

6.5 Rule Agent

In practice, rule agent describes a rule as a smart ap-
plication (Figure 6). An individual rule includes rule
properties defining its behavior, a conditions clause,
and a list of actions. A conditions clause can in-
clude many condition clauses. All watch state rules
in an individual condition clause have to be true for
the rule condition to be fulfilled. Instead, for a con-
ditions clause to be fulfilled, even one fulfilled con-
dition clause is sufficient. An individual watch state
object inside a condition defines a primitive condition
for one device state (Figure 7). The resulting sim-

<obj is="smartApplication">
<int name="stateChangesToLive"/>
<bool name="active"/>
<bool name="manualControl"/>
<bool name="falseStateChange"/>
<bool name="currentState"/>
<reltime name="pollInterval"/>
<op name="makeCondition" in="obix:Nil"

out="condition"/>
<op name="deleteCondition" in="obix:ref"

out="obix:Nil"/>
<op name="makeWatchState" in="obix:ref"

out="watchState"/>
<op name="deleteWatchState" in="obix:ref"

out="obix:Nil"/>
<list is="conditions" of="condition"/>
<op name="makeAction" in="obix:Nil"

out="action"/>
<op name="deleteAction" in="obix:ref"

out="obix:Nil"/>
<list is="actions" of="action"/>
<op name="delete" in="obix:Nil"

out="obix:Nil"/>
</obj>

Figure 6: The smart application contract in oBIX. In prac-
tice, smart application instances also include href attributes,
so that the individual elements can be referred. Thus, each
rule and its sub elements have unique URIs.

<obj is="watchState">
<str name="target"/>
<enum name="relation"

range="relationshipRange"/>
<val name="ComparisonValue"/>
<reltime name="pollInterval"/>
<obj name="state">
<bool name="active"/>
<str name="message"/>

</obj>
</obj>

Figure 7: An oBIX contract for a watch state object defining
a simple condition which refers to only one device state.
Instances of the contract also include href attributes for each
of the elements.

ple or-and mechanism can handle basic logic needed
for common purposes. For more complex logic, rules
can be chained together. This type of chaining is pos-
sible because rules are able to refer to the states of
each other. Actions list defines the resulting actions
that are executed if the state of the smart application
is changed.

6.6 Integration Platform

We used an integration platform provided by C oBIX
Tools (CoT)4 from Andrey Litvinov. It handles all the

4C oBIX Tools is published as an open source project at
http://code.google.com/p/c-obix-tools/

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

100

basic oBIX features and additionally offers a more ef-
ficient technique for polling than the original oBIX
specification. The integration platform was used by
the lighting system oBIX client, virtual television
oBIX client, and, of course, the rule engine and the
smart device for the interoperation.

6.7 Smart Device

The tracking system oBIX client was implemented as
a smart device. It was able to predict the user entering
into a room and managed to compensate the common
system delay of approximately one second in that be-
havior. It used LDA for the prediction when the user
was close to the door. LDA considered walking di-
rection and the turning angle as factors to define the
behavior. Smart device did not command the lights
directly but used the batch rules (Rules 1 and 2) on
the rule engine to easily command multiple lights in
one room with one request.

7 EVALUATION

The results are evaluated against the requirements for
Web services based BA control systems defined in
Section 4.

7.1 Description Format

The control system logic is implemented as rules. The
system is based on the oBIX standard, which defines
an XML-based data description format. The use of
oBIX XML data model for the rule description ful-
fills the requirement R1 per se. This language is used
to define rules in a declarative manner by describ-
ing them with condition clauses, watch states, actions,
and general rule parameters, fulfilling the requirement
R2. For further interoperability to exchange rules
with other systems, RuleML could be used as a rule
description format, and the rule management interface
could handle the translation into oBIX for the Web
API.

7.2 System Management

In the XML description, a rule element and its sub el-
ements all have unique URIs. Thus, they are manage-
able through the HTTP oBIX interface. This direct
support for URIs as an addressing method simplifies
the rule management, provides an access method for
the control systems to perceive and control the envi-
ronment, and facilitates the integration with the rest
of the Web. These fulfill the requirements R6 and R7.

7.3 Active Interaction in Distributed
Environments

The implemented smart application executor regu-
larly requests updates for the device states that the
rules depend on, fulfilling the requirement R5. Ad-
ditionally, the rule engine contains a smart applica-
tion evaluator, which evaluates the rule conditions and
commands the actions if the conditions are fulfilled.
Both the executor during the regular update cycle and
the evaluator during the rule evaluation and action
commanding, are able to make HTTP requests to Web
resources. These fulfill the requirements R3 and R4.

8 DISCUSSION

According to Zelkha, et al. (Zelkha et al., 1998), the
ambient intelligence paradigm is characterized by the
systems that are:

• Embedded;

• Personalized;

• Adaptive;

• Anticipatory.

The system presented in this paper can be char-
acterized with these features. The integration plat-
form provides a solution for interconnecting the de-
vices embedded in the environment. Functioning of
the devices can then be managed and the system per-
sonalized through standard BA interface, and auto-
matic behavior be programmed with the rule engine.
Utilizing a standard interface enables usage of mul-
tiple control systems at the same time, thus allowing
modules for adaptive and context aware control to be
added to the system. Similarly, the system demon-
strates the possibilities for anticipatory behavior with
a simple prediction module for lighting control.

We believe that the defined system requirements
offer a basis for developing interoperable smart home
systems. From the architectural point of view, the
main advangement is the support for multiple control
systems at the same time. While it offers a possi-
bility for modular system design, it also introduces
new challenges for the management of the system
functioning as a whole. Cooperative functioning of
this kind of distributed applications have been stud-
ied in the MAS domain (Weiss, 1999) (Wilmott et al.,
2001). Thus, applying advanced MAS techniques and
principles for the flexibility, robustness, and concep-
tual reasoning of the control system agents is one of
our future research lines. In contrast to similar exist-
ing systems, our solution is based on Web technolo-

Interoperability�for�Web�Services�based�Smart�Home�Control�Systems

101

gies and provides a Web API for the rule manage-
ment, which allows user agents to create and remove
rules, but also to modify the content of existing rules
in the rule engine. These with an XML based descrip-
tion format are compatible with Semantic Web tech-
niques and allow us to add a new semantic layer on
top of the system in the future, and integrate MASs
with the smart home systems to further build intelli-
gence with semantic reasoning.

9 CONCLUSION

We presented a logic layer interoperability solution
for distributed smart home systems. The system was
based on requirements that ensure the support for
features that contribute to the interoperability on the
logic layer and enable it on the semantic layer. The
implementation considered a rule engine able to ob-
serve and control devices through standard Web ser-
vices interface. Similarly, the rule engine offered a
Web services interface for the rule management fol-
lowing the same building automation guideline. The
implemented system was functional, fulfilled the re-
quirements, and proved the applicability of the ap-
proach. However, the system does not offer all the
needed functionalities at the moment. Proper meth-
ods are needed for security, authentication, authoriza-
tion as well as managing conflicts in the logic. As the
system is using RESTful Web services, it can partly
exploit same well-known techniques that are used in
the traditional Web applications to overcome some of
the challenges.

We believe that Web services based control sys-
tems can offer solutions to gain better interoperability
in smart home environments. The interoperability in
the system is not achieved by offering a single man-
ner to control the system. It is a joint effort of multi-
ple control systems offering their services openly for
managing the logic. Individual control systems can
concentrate on their main functions and exploit ser-
vices from each other, shaping the smart home to a
fully functional ecosystem where every service does
its own part and interacts with the others.

ACKNOWLEDGEMENTS

Part of the work was done as part of TIVIT De-
vices and Interoperability Ecosystem (DIEM) project
Building Automation work package and supported by
The Doctoral Programme in the Built Environment
(RYM-TO) funded through the Academy of Finland
and the Ministry of Education and Culture.

REFERENCES

Bailey, J., Poulovassilis, A., and Wood, P. (2002). An event-
condition-action language for xml. InProceedings of
the 11th international conference on World Wide Web,
pages 486–495. ACM.

Bernauer, M., Kappel, G., and Kramler, G. (2004). Com-
posite events for xml. InProceedings of the 13th inter-
national conference on World Wide Web, pages 175–
183. ACM.

Boley, H., Tabet, S., and Wagner, G. (2001). Design ratio-
nale for ruleml: A markup language for semantic web
rules. InSWWS, volume 1, pages 381–401.

Bonifati, A., Braga, D., Campi, A., and Ceri, S. (2002).
Active xquery. InData Engineering, 2002. Proceed-
ings. 18th International Conference on, pages 403–
412. IEEE.

Bonifati, A., Ceri, S., and Paraboschi, S. (2001). Active
rules for xml: A new paradigm for e-services.The
VLDB Journal, 10(1):39–47.

Chakravarthy, S. and Adaikkalavan, R. (2007). Ubiqui-
tous nature of event-driven approaches: A retrospec-
tive view.

Considine, T. and Ehrlich, P. (2006). Open building infor-
mation exchange (oBIX).

Felser, M. and Sauter, T. (2002). The fieldbus war: History
or short break between battles? InIEEE WFCS, pages
73–80.

Guinard, D. and Trifa, V. (2009). Towards the web of things:
Web mashups for embedded devices. InWorkshop on
Mashups, Enterprise Mashups and Lightweight Com-
position on the Web (MEM 2009), in proceedings of
WWW (International World Wide Web Conferences),
Madrid, Spain.

Järvinen, H., Litvinov, A., and Vuorimaa, P. (2011). In-
tegration platform for home and building automation
systems. InConsumer Communications and Network-
ing Conference (CCNC), 2011 IEEE, pages 292–296.
IEEE.

Järvinen, H. and Vuorimaa, P. (2012). Anticipatory lighting
in smart building. InConsumer Communications and
Networking Conference (CCNC), 2012 IEEE, pages
390–394. IEEE.

Kay, M. (2007). Xsl transformations (xslt) version 2.0.
W3C Recommendation, 23.

Leong, C., Ramli, A., and Perumal, T. (2009). A rule-
based framework for heterogeneous subsystems man-
agement in smart home environment.Consumer Elec-
tronics, IEEE Transactions on, 55(3):1208–1213.

Lloyd, J. (1994). Practical advantages of declarative pro-
gramming. InJoint Conference on Declarative Pro-
gramming, GULP-PRODE, volume 94, page 94.

Maile, T., Fischer, M., and Huijbregts, R. (2007). The vision
of integrated IP-based building systems.Journal of
Corporate Real Estate, 9(2):125–137.

Mozer, M. (1998). The neural network house: An envi-
ronment hat adapts to its inhabitants. InProc. AAAI
Spring Symp. Intelligent Environments.

Padgham, L. and Winikoff, M. (2004).Developing intelli-
gent agent systems: a practical guide, volume 1. Wi-
ley.

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

102

Papamarkos, G., Poulovassilis, A., and Wood, P. (2003).
Event-condition-action rule languages for the se-
mantic web. InWorkshop on Semantic Web and
Databases, page 2003. Citeseer.

Papamarkos, G., Poulovassilis, A., and Wood, P. (2004).
Rdftl: An event-condition-action language for rdf. In
Proc. of the 3rd International Workshop on Web Dy-
namics.

Rutishauser, U., Joller, J., and Douglas, R. (2005). Control
and learning of ambience by an intelligent building.
Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, 35(1):121–132.

Schepers, D., Rossi, J., Höhrmann, B., Le Hégaret, P., and
Pixley, T. (2011). Document object model (dom) level
3 events specification.W3C Working Draft.

Valtchev, D. and Frankov, I. (2002). Service gateway archi-
tecture for a smart home.Communications Magazine,
IEEE, 40(4):126–132.

Weiss, G. (1999).Multiagent systems: a modern approach
to distributed artificial intelligence. The MIT press.

Wilmott, S., Dale, J., Burg, B., Charlton, P., and O’Brien, P.
(2001). Agentcities: A Worldwide Open Agent Net-
work. AgentLink News, Issue 8.

Zelkha, E., Epstein, B., Birrell, S., and Dodsworth, C.
(1998). From devices to ambient intelligence. InDig-
ital living room conference.

Interoperability�for�Web�Services�based�Smart�Home�Control�Systems

103

