Distributed XML Processing over Multicore Servers

Yoshiyuki Uratani, Hiroshi Koide and Dirceu Cavendish
1Global Scientific Information and Computing Center, Tokyo Institute of Technology,
O-okayama 2-12-1, Meguroku, Tokyo, 152-8550, Japan
2Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology,
Kawazu 680-4, lizuka, Fukuoka, 820-8502, Japan
3Network Design Research Center, Kyushu Institute of Technology, Kawazu 680-4, lizuka, Fukuoka, 820-8502, Japan

Keywords: Distributed XML Processing, Task Scheduling, Pipelining and Parallel Processing, Multicore CPU.

Abstract: Nowadays, multicore CPU become popular technology to enhance services quality in Web services. This
paper characterizes parallel distributed XML processing which ffaload the amount of processing at their
servers to networking nodes with varying number of CPU cores. Our implemented distributed XML process-
ing system sends XML documents from a sender node to a server node through relay nodes, which process the
documents before arriving at the server. When the relay nodes are connected in tandem, the XML documents
are processed in a pipelining manner. When the relay nodes are connected in parallel, the XML documents
are processed in a parallel fashion. For well-formedness and grammar validation tasks, the parallel processing
reveals inherent advantages compared with pipeline processing regardless of document type, number of CPU
cores and processing environment. Moreover, the number of CPU cores imfia@sey of distributed XML
processing via kier access contention.

1 INTRODUCTION This paper augments practical distributed XML
processing characterization scope by varying the
Web services become necessary infrastructure for ournumber of CPU cores in processing nodes; using syn-
society. Various services are being provided and they thetic and realistic XML documents; on pipelining
need much resources, such as CPU power and memmodel for XML data stream processing systems, on
ory spaces, to enhance their services quality. Nowa- parallel model for parallel processing system. Re-
days, multicore CPU is popular approach to improve garding processingfléciency, we investigate XML
processing capacity. The processing for Web servicesprocessing performance relation to XML document
are generally provided at only server nodes in the characteristics,as well as the impact of number of
current Web services. In this situation, we propose CPU cores to well-formedness and grammar valida-
offloading approach, which assign a part of server’s tion tasks. Our results can be summarized as follows.
load to intermediate nodes in network, to reduce the Parallel processing performs better than pipeline pro-
load and to improve services throughput. This ap- cessing regardless the number of CPU cores, docu-
proach will lead éicient resource usage witlfec- ment types and processing environment; Processing
tive scheduling and higher quality of services. On the with more CPU cores leads to faster processing; but it
other hand, XML data is one of the basic commu- also includes drawbacks, such asfifgent resource
nication format in the Web services and the servers consumption, due to lfier contention.
often processes the XML data in various situation The paper is organized as follows. In section 2, we
(e.g. collaborative services). PASS-Node (Cavendish describe generic models of XML processing nodes.
and Candan, 2008) had already proposed distributedin section 3, we describe experimental environments
XML processing with using intermediate nodes and and characterize XML processing performance of the
had studied from an algorithmic point of view for pipeline and parallel computation models on multi-
well-formedness, grammar validation, and filtering. core machines. In section 4, we address related work.
We have also focuses on distributed XML process- In section 5, we summarize our findings and address
ing with offloading approach and have studied their research directions.
processing characteristics (Uratani et al., 2012).

200 Uratani Y., Koide H. and Cavendish D..
Distributed XML Processing over Multicore Servers.
DOI: 10.5220/0004947802000207
In Proceedings of the 10th International Conference on Web Information Systems and Technologies (WEBIST-2014), pages 200-207
ISBN: 978-989-758-023-9
Copyright ¢ 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Distributed XML Processing over Multicore Servers

2 XML PROCESSING ELEMENTS node. If the tag checking has not been finished

yet, the EndNode processes all unchecked tags, in
Distributed XML processing requires some basic ~ order to complete XML processing of the entire

functions to be supportedocument Partition: The document. Components of the EndNode are sim-
XML document is divided into fragments, to be pro- ilar to the RelayNode, except that the EndNode
cessed at processing nodedDocument Annota- has DeleteThread instead of SendThread. The

tion: Each document fragment is annotated with ~ DeleteThread cleans the document from process-
current processing status upon leaving a processing ing and checking information.

node.Document Merging: Document fragments are MergeNode (MN) receives data from multiple pre-

merged so as to preserve the original document struc- vious nodes, serializes it, and sends it to a next

ture. XML processing nodes support some of these npode, without performing any XML processing.

taSkS, aCCOfding to their role in the distributed XML MergeNode has mu|t|p|e threads for receiving

system. data from previous node, so as not to block pre-
vious nodes from sending data.

XML document processing involves stack data
o) structures for tag processing. When a node reads a
We abstract the distributed XML processing elements gt tag, it pushes the tag name into a stack. When a
into four types of nodes: StartNode, RelayNode, node reads an end tag, it pops a top element from the
EndNode, and MergeNode. The distributed XML "~ stack, and compares the end tag name with the popped
processing can then be constructed by connectingtag name. If both tag names are the same, the tags
these nodes in specific topologies, such as pipelining match. The XML document is well-formed when all
and parallel topologies. Distributed processing ap- tags match. In addition, in validation checking, each
plications may be constructed with both parallel and node executing grammar validation reads DTD files,
pipeline manner. So the study of pipelined approach anq generates grammar rules for validation checking.
is to opportunistically process XML documentsonar- g5ch node processes validation and well-formedness
work. against grammar rules. Details of these node dis-

StartNode(SN) is a source node that executes any tributed processing is_ described in (Cavendish and
pre-processing needed in preparation for piece- Candan, 2008; Uratani et al., 2012).
wise processing of the XML document. This
node also starts XML document transfer to relay
nodes and adds some annotation which are used3 DISTRIBUTED XML
for distriputed XML processing. The StartNode CHARACTERIZATION
has multiple threads for reading part of the docu-
ment and sending fragments simultaneously.

2.1 XML Processing Nodes

_ 3.1 Experimental Environment

RelayNode (RN) executes XML processing on parts
of an XML document. It is placed as an in- \ye yse &M Env, which consists of a VMware ESX 4
termediate node in paths between the StartN- 5,5 Sun Fire X4640 Server, for providing distributed
ode and the EndNode. The RelayNode has yy processing system. We use VMware ESX 4,
three types of threads: ReceiveThread, TagCheck-5 \jiryal machine manager, to implement a total of
Thread and SendThread. The ReceiveThread re-goyen counts of virtual machines as distributed XML
ceives data containing lines of an XML document, ,cessing nodes. This environment consists of two
together with checking and processing informa- tyneg of virtual machine. We allocate two CPU cores

tion, and stores the data into a share@@u The 4 one of them (Node06), and four CPU cores to all
TagCheckThread attempts to process the data, if

the data is assigned to be processed at the node.
SendThread sequentially sends data to a next
node. CPU

EndNode(EN) is a destination node, where XML

Table 1: X4640 Server Specification.

Six-Core AMD Opteron Processof
8435 (2.6GHz) 8
256G bytes (DDR®67

documents must reach, and have their XML pro- Memory ECC registered DIMM)

cessing finished. This node receives data con- VMM VMware ESX 4

taining the XML document, checking informa- Guest OS Fedoral5x86 64
JVM JavdM1.5.022

tion and processing information, from a previous

201

WEBIST 2014 - International Conference on Web Information Systems and Technologies

other nodes. The server specification is described inusage patterns in this topology; i) Allocation of 1 CPU
Table 1. core only to RelayNodes and EndNode; ii) Alloca-
tion of all 4 CPU cores to RelayNodes and EndNode.
These document partition and allocation patterns are
defined beforehand as static task scheduling. We also
We prepare several topologies and task allocation experiment four RelayNode topology for both pro-
patterns to characterize distributed XML processing, cessing types with the five parted XML documents.
within the parallel and pipelining models. We vary the In the processing types, we also vary number of CPU
number of RelayNodes, within topologies, as well as cores of the RelayNodes and the EndNode.

the number of CPU cores in processing nodes, toeval- Notice that, even though the parallel model
uate their impact on processinfiieiency. To charac- has one extra node, the MergeNode, as compared
terize the performance, we use a total of four topology with corresponding pipeline model. However, the
types: two stage pipeline system (Figure 1), two path MergeNode does not perform any XML processing,
parallel system (Figure 2), four stage pipeline system, so the number of nodes executing XML processing is
and four path parallel system. In the Figure 1 and still the same in both models.

2, tasks are shown as light shaded boxes, underneath

nodes allocated to process them. CPU core countis3.3 Tasksand XML Document Types
shown above the task boxes.

4core 1 or 4core 1 or 4core
StartNode HRelayNodeDZ RelayNode03|
node01 node02 node03 node07
/ fragment02 | | fragment01

3.2 Node Allocation Patterns

The distributed XML processing system can exe-
cute two types of processing: well-formedness check-
ing, and grammar validation checking of XML docu-

fragment01
fragment02
XML Document

Figure 1: Two Stage Pipeline System.

1 or 4core 2core 1 or 4core

[RelayNode02] MergeNode EndNode
| node02 node06 node07
fragment01

RelayNode03|
node03

StartNode
node01

=
=]
IS
8
o
@

first 2 lines
fragment01
fragment02
XML Document

Figure 2: Two Path Parallel System.

o e ments. Hiciency of these XML processing tasks may

be related to: processing model, pipelining and paral-
lel; topology, number of processing nodes and their
connectivity; XML document characteristics. We use
different structures of XML documents to investi-
gate which distributed processing model yields the
most dficient distributed XML processing. For that
purpose, we create seven types of synthetic XML
documents by changing the XML document depth
from shallow to deep while keeping its size almost
the same. We have also used three types of re-

alistic XML documents, dad&ernel, docstock and
docscala. The da&ernel encodes directory and file
hierarchy structure of linux kernel 2.6.39.3 in XML
dformat. The docstock is XML formatted data from
MySQL data base, containing a total of 10000 entries
of dummy stock price data. The dscala is based

For instance in two stage pipeline case (Figure 1),
we divide the XML documents into three parts: first
two lines (it contain a meta tag and a root tag), frag-
ment01 and fragment02. These fragments are divide
into segments of roughly the same size. Data flows
from StartNode to EndNode via two RelayNodes. Re- ; I ; »
layNodeO2 is allocated for processing fragment02, ©" “The Scala Language Specification Version 2.8
RelayNode03 is allocated for processing fragmento1, (NttP7/www.scala-lang.org, which consists of 191

and the EndNode is allocated for processing the first pggfes, totaling 1.3M bytzs. Th.E original ccjiofcument in
two lines, as well as processing all left out unchecked paf format was converted to Libre ite odt format,
data. and from that to XML format. Their characteristics

In Figure 2, we depict two path parallel system. are shown in Table 2, For VNEnv, we combine four

The XML document is also divided into three parts. node allocation patterns, two processing patterns and

They flow from StartNode to EndNode via RelayN- ten XML document types to produce a total 80 types

ode01 and MergeNode. The StartNode reads concur-° €xperiments.

rently these fragments from the XML document and .

sends them to the RelayNodes. Fragment02 and re-3.4 Performance Indicators

lated data flow from the StartNode to the EndNode

via RelayNode02 and the MergeNode. In addition, We use two types performance indicators: system per-
we can use a maximum of 4 CPU cores in hode02, formance indicators and node performance indicators.
node03 and node07, which are allocated for the Re- System performance indicators characterize the pro-
layNodes and EndNode. We apply two types of CPU cessing of a given XML document. Node perfor-

202

Distributed XML Processing over Multicore Servers

Table 2: XML Document Characteristics.
| doc01 | doc02 | doc03 | doc04 | doc05 | doc06 | docO7 || kernel | stock | scala]

Width 10000 | 5000 | 2500 100 4 2 1 - - -
Depth 1 2 1 100 | 2500 | 5000 | 10000 . . .
Tag set count 225 66717 | 26738
(Empty tags) 10000 (0) (36708) | (146) | (1206)
Line count 10002 | 15002] 17502 | 19902 | 19998 | 20000 | 20001 || 41219 | 78010 | 72014
File size [Kbytes]|| 342 | 347 | 342 | 343 342 3801 | 2389 | 2950

mance indicators characterize XML processing at a
given processing node. The following performance
indicators are used to characterize distributed XML
processing: formance indicator, by averaging node processing

Job Execution Timeis a system performance indi- time across all nodes of the system.
cator that captures the time taken by an instance Parallelism Efficiency Ratio is a system perfor-
of XML document to get processed by the dis- mance indicator defined asystem thread work-
tributed XML system in its entirety. As several ing time/ system active tinie
nodes are involved in the processing, the job ex- Ngge Buffer Access Time is a node performance
ecution time results to be the period of time be- indicator that captures the amount of time a
tween the I_ast node (typu;ally EndNode_) finishes node spends accessing internal sharetfebst
its processing, and the first node (typically the Aq previously mentioned in section 2, threads

execute XML processing only, excluding commu-
nication and processing overheads. We also de-
fine System Processing Time as a system per-

StartNode) starts its processing. The job execu-
tion time is measured for each XML document
type and processing model.

Node Thread Working Timeis a node performance
indicator that captures the amount of time each
thread of a node performs work. It does not in-
clude thread waiting time when blocked, such as
data receiving wait time. It is defined as the total

in each node access the sharedfdiu while
receivingprocessingsending data. The node
buffer access time includes not only the time for
addgetremove operation, but also waiting time
during blocking. We also definBystem Buffer
Access Time as a system performance indicator,
by totaling the node Kiter access time of all nodes
across the system.

file reading time, data receiving time, data sending
time and node hiier access time a node incurs.
For instance, in the MergeNode, the node thread
working time is the sum of receiving time and
sending time of each Recej@endThread. As-
sume the MergeNode is connected to two previous
nodes, with two Receiy8endThreads. We also
derive aSystem Thread Working Time as a sys-
tem performance indicator, as the average of node
thread working time indicators across all nodes of

3.5 Experimental Results

For each experiment type (scheduling allocation and
distributed processing model), we collect perfor-
mance indicators data over seven types of XML
document instances. On all graphs, X axis de-
scribes scheduling, processing models and process-
ing environment, for well-formedness and gram-
the system. mar validation types of XML d.ocu.ment process-
)]] o ing, encoded as follow®IP_wel:Pipeline and Well-
Node Active Time is a node performance indica- formedness checkingPAR wel:Parallel and Well-
tor that captures the amount of time each node formedness checkingPIP_val:Pipeline and Vali-
runs. The node active time is defined from the gation checking, PAR val:Parallel and Validation
first ReceiveThread starts receiving first data un- checking. Y axis denotes specific performance in-
til the last SendThread finishes sending last data gicator, averaged over 22 XML document instances.
in the RelayNode or finishes document process- These figures are only part of the experimental results
ing in the EndNode. Hence, the node active time _ yetajls of other results are omitted for space’s sake.
may_c_ontaln waiting t|me (e_.g, wait time for da_lta Regarding job execution time (Figures 3 — 6), par-
receiving, thread blocking time). We also define gjie| processing is faster than pipeline processing for
System Active Time as a system performance in- 5 documents. Job execution time gets lengthened
dicator, by averaging the node active time of all j, pineline processing due to the fact that the nodes
nodes across the system. relay extra data that is not processed locally. In addi-
Node Processing Time is a node performance in- tion, we can see that the job execution time speeds
dicator that captures the time taken by a node to up faster with increasing number of relay nodes in

203

WEBIST 2014 - International Conference on Web Information Systems and Technologies

Edoc01 B doc02 O doc03 COdoc04 Mdoc05 EBdoc06 E doc07 Dkernel B stock Oscala

3 2500 5 9000
W 7 U
| % |
o I/ | |
i | |

Z

s o 8
g€ g8
T

7

o
8
NN

MY

|
‘ .
PIP_wel ‘PAR,WEI‘ PIP_val ‘ PAR_val | PIP_wel ‘PAR,weI‘ PIP_val ‘ PAR val PIP_wel | PAR wel | PIP_val | PAR.val | PIP_wel | PAR wel | PIP_val

Job Execution Time [ms:

|
.

2

D
1

Z

=)

PAR_val

4core processing 1core processing

4core processing Tcore processing
Env./Scheduling and Processing Type (2RelayNode: VM Env)

Env./Scheduling and Processing Type (4RelayNode: VM_Env)

Figure 3: Job Execution Time (Syn. Doc. Proc. by 2 RN). Figure 6: Job Execution Time (Real. Doc. Proc. by 4 RN).
— 2500 [Edoc01 Bdoc02 O doc03 Cldoc04 Mdoc05 @ doc06 Bdoc07 | 5 6000 [@kernel Estock Oscala
€ 2000 | £ 5000 -
- - . 7
Eis00 | gaoo | 7 r |
e 1500] = 2000 % 7 g] é
-8 1000 3 % i] 7 |
2 3 2000 7 . L . o L A
X I : i : . £ 1000 o | I U U]
= [ILLREL T VY DV (00 L et Imi It N nl
N PIP_wel ‘ PAR_wel ‘ PIP_val ‘ PAR_val | PIP_wel ‘ PAR_wel ‘ PIP_val ‘ PAR_val @ PIP_wel | PAR.wel | PIP_val | PAR.val | PIP.wel | PAR.wel | PIP_val | PAR val

4core processing
Pedulne o8

Env./

Figure 4: Job Execution Time (Syn. Doc Proc. by 4 RN). Figure 7: System Active Time (Real. Doc. Proc. by 2RN).

1coreprocessing 4core processing Tcore processing
Node: VM

d Pi Type (4Rel L Env) Env./Scheduling and Processing Type (2RelayNode: VM_Env)

[Ekernel @ stock O scaﬁ[

[Bkernel Bstock Oscala |

PIP_wel | PAR wel | PIP_val | PAR.val | PIP_wel | PARwel | PIP_val | PAR val

4core processing 1core processing 4core processing Tcore processing
Env./Scheduling and Processing Type (2RelayNode: VM_Env) Env./Scheduling and Processing Type (4RelayNode: VM_Env)

Figure 5: Job Execution Time (Real. Doc. Proc. by 2 RN). Figure 8: System Active Time (Real. Doc. Proc. by 4RN).

parallel processing than in pipeline processing. The realistic documents, regardless of document partition,
extra data transfer time also appears in pipeline pro- processing allocation, node topology andfbucon-
cessing. Moreover, increased number of relay nodestention. The system active time also depends on the
reduces further job execution time of realistic docu- amount of processing to be executed.

ments (bigger documents), as compared with that of processing time is similar in both parallel pro-
synthetic documents (smaller documents) processedcessing and pipeline processing (Figures 9 and 10).
with pipeline model. So, it is more advantageous \xjigation checking needs more time than well-
to process bigger XML document using the pipeline ormedness checking. The extra activity time in the
model with more nodes. Regarding the number of inaline processing is due to extra sendiageiving
CPU cores, 4 core processing is better than 1 coreiread times. Regarding number of CPU cores, 1 core
processing for both small (synthetic) and large (real- yrocessing is better than 4 core processing in well-
istic) document processing. In Table 2, stalc s formedness checking (small processing). In contrast,
the smallest document in the three types of realistic 4 e processing is better than 1 core processing in

document, and it has more XML tags than other doc- y4jigation checking (large processing) for synthetic
uments. kernetloc has more tags than scalac but gocuments (small document). But for some realis-

most of them are empty tags. The empty tag process-iic documents (bigger document), 1 core processing
ing needs less time than normal tag sets because thg,as petter validation checking processing time. If
nodes can determine results of processing to emptythe number of tags that each node should process is
tags earlier. Job execution time is sensitive to docu- roughly the same, 4 core processing leads to more
ment types (number of tags and types of tags), nodeper contention than 1 core processing. Generally,
topology and processing type. Such characteristicshe system processing time reduces as the number
also appears in other system indicators. of RelayNodes increases. However, sometimes (e.g.
Regarding system active time (Figure 7 and 8), synthetic doc06) few RelayNodes are moficeent,
parallel processing is better than pipeline processing due to specific document partition and processing al-
in all experiments. Regarding number of CPU cores, location. Average processing time is greatfieated
system active time is better for 4 core processing than by whether we can allocate XML datdfieiently. In
for 1 core processing in both synthetic documents and addition, system processing time is also sensitive to

204

Distributed XML Processing over Multicore Servers

[Bkernel Bstock Oscala

Dkernel Bstock Oscala

1400
1200
1000
800 -
600

Time [msec]

N
=]
=3

System Processing

200 |

Parallelism Efficiency Ratio
cococooooo0
c2RERG538G~

B I ' b
I z
. I
Z 7 I A /A Z)

PIP_wel | PAR wel | PIP_val | PAR val | PIP_wel | PAR wel | PIP_val | PAR val PIP_wel | PAR wel | PIP_val | PARval | PIP_wel | PARwel | PIP_val | PAR. val

4core processing 1core processing 4core processing 1core processing,
Env./Scheduling and Processing Type (2RelayNode: VM _Env) Env./Scheduling and Processing Type (4RelayNode: VM _Env)
Figure 9: Sys. Processing Time (Real. Doc. Proc. by 2RN). Figure 12: Parallel. ficien. Ratio (Real. Doc. Proc. by
4RN).

[Bkernel B stock Oscala |

1400 Edoc01 Fdoc02 Odoc03 Cdoc04 Mdoc05 Edoc06 Edoc07

1200
~ 1000 [
800 |-
600 |t
400 |
200

System Processing
Time [msec]

System Buffer Access
Time [msec:

PIP_wel | PAR wel | PIP_val | PAR.val | PIP_wel | PAR wel | PIP_val | PAR_ val

E:s_"/'e P"°°esii"fnd o g Type (4F 1core P'_"”j;fé‘f\/) PIP_wel ‘ PAR wel ‘ PIP.val ‘ PAR_val | PIP_wel ‘ PAR_ wel ‘ PIP_val ‘ PAR val
4core processing 1core processing
Figure 10: Sys. Processing Time (Real. Doc. Proc. by Env./Scheduling and Processing Type (2RelayNode: VM_Env)
4RN). Figure 13: Sys. Buf. Access Time (Syn. Doc. Proc. by

2RN).

Bkernel B stock Oscala |

‘ Edoc01 Edoc02 (doc03 Odoc04 M doc05 Edoc06 Edoc07

©

=Y

&

Parallelism Efficiency Ratio
o o o o
o

o

System Buffer Access
Time [msec]

L] P

.
|
f

 veverszzsen|
mazmmn

PIP_wel | PAR wel | PIP_val | PAR.val | PIP.wel | PAR wel | PIP_val | PAR.val

e Semonting and Processing Type (2Relaytlodo. Vot Ems) PIP_wel ‘ PAR wel ‘ PIP_val ‘ PAR val | PIP wel | PAR wel| PIP val | PAR val
. 4core processing Tcoreprocessing
F|gure 11: Parallel. Hcien. Ratio (ReaL Doc. Proc. by Env./Scheduling and Processing Type (4RelayNode: VM Env)
2RN). Figure 14: Sys. Buf. Access Time (Syn. Doc. Proc. by
4RN).

XML document structure, number of tags and depth,

which gtects the amount of processing at each node. is because extra data transfer at each RelayNode
Regarding parallelismf&ciency ratio (Figures 11 is reduced in parallel processing, as compared with

and 12), 4 core processing is mor@iaent than 1 pipeline processing. Regarding the number of CPU

core processing excluding few cases of 2 RelayNode cores in these figures, 4 core processing is better for

validation checking of realistic documents. In these StartNode, RelayNode and EndNode processing syn-

cases, 1 core processing is a little mofécéent. thetic document. For MergeNode, 1 core performs
Regarding system Ifier access time (Figure 13 better when processing synthetic documents. Across

and 14), pipeline processing incurs largeffbu ac- all node type, realistic document processing is supe-

cess time than parallel processing. In addition, most rior when 4 cores are used.

of 4 RelayNode processing incurs largerfiien ac- Figures 17 and 18 further show node thread work-

cess time than 2 RelayNode processing, because theng time for processing kerngloc. Generally, node
amount of data passing through a node and assignedhread working time is better for parallel processing
for process to the node is larger in the former case. using more RelayNodes. Regarding varying number
In general, 1 core processing shows lowefféucon- of CPU cores, 4 core is better for StartNode when
tention than 4 core processing, as Systerfidiac- processing synthetic documents. However, 1 core
cess time increases with more cores. Comparing theRelayNode, EndNode and MergeNode present better
system bifer access time with other indicators, some node thread working time than their 4 core counter-
indicators (e.g. system job execution time) are bet- parts. Roughly, 1 core synthetic document processing
ter for more CPU core processing but they also in- is better in the following cases: less processing (e.g.
clude indficient performance because of useless wait- well-formedness checking) and good document parti-
ing time caused by Hier contention. tion on RelayNodes; bad document partition, which
Figures 15 and 16 further show node active leads to more processing for EndNode, for EndNode;
time when processing doc01, for each node in the Merge node, which leads to low fiar contention.
system.Generally, parallel processing is better than For convenience, we organize our performance
pipeline processing regarding node activity. This characterization results about number of CPU cores

205

WEBIST 2014 - International Conference on Web Information Systems and Technologies

Table 3: Distributed XML Processing Characterization Stamm

| [Synthetic docs (smaller docs) | Realistic docs (larger docs) |
Job execution time - 1 core is better in large proc.
System active time 4 core s better 4 corelis bettegrl :
System proc. time 1 core is better in WEL Sometimes, 1 core is better in large proc.
Parallelism @éiciency ratio 4 core is more @icient 4 core is more &icient in most cases
Sys. bufer access time 1 core is better
Node active time 4 core is better in SN, RN and EN 4 core is better
4 core is better in SN; 4 core is better in SN;
Node thread working time Sometimes, 1 core is betterin | 1 core is better in EN;
RN, EN and MN Sometimes, 1 core is better in RN and MN

700 @SN @RNO2 COJRNO3 OMN IEN‘ ‘

D total reading time BAtotal sending time Oreceiving time
Oprocessing time M sending time Eltotal receiving time

~
o
=}
s

e
3
5 — 2000
im & 1500
EE 1000 |
 E
7 = 500 | Z
I g7 =l i nphf
3F SR EHEEEEHEBEEE
L] o x| | |
PIP_wel ~ PARwel PIP_val PAR val PIP_wel PAR wel PIP_val PAR val
Scheduling and Processing Type(doc01: VM_Env: 4core) Scheduling and Processing Type and Nodes (kernel_doc: VM_Env: 4core)
Figure 15: Node Ac. Time (doc01; 2RN; 4core). Figure 17: Node Th. Work. Time(kerneloc; 2RN: 4core).

[E@'SN ZRNO2 ORNO3 OMN MEN] Dtotal reading time Btotal sending time _ Dreceiving time

M sending time Dtotal receiving time

Dprocessing time

Time [msec]

Node Thread Working

Node Active Time [m:

£

PIP_wel PAR wel PIP_val PAR_val
Scheduling and Processing Type (doc01: VM Env: Tcore) Scheduling and Processing Type and Nodes (kernel_doc: VM.Env: 1core)

Figure 16: Node Ac. Time (doc01; 2RN; 1core). Figure 18: Node Th. Work. Time(kerneloc; 2RN; 1core).

into Table 3 (WEL means well-formedness checking). a virtual machine. These researches provide not only

A detailed analysis is also carried on at (Uratani et al., transport function but also processing function in the

2012), our previous work. network. We address these intermediate processing
model as a platform to achieve our distributed pro-
cessing system.

4 RELATED WORK Next we show current researches of processing in
networks. In transcoding (Kim et al., 2012),a con-
In this paper, we focus onfiboading approach which tent server deliver data (e.g. video data) to clients
assign a part of server’s load to intermediate nodes invia a transcoding server. The transcording server
network for Web service. We here show some related fixes the original data to another data which reflects
works similar with our approach which have pro- user’'s demands. For instance, the data may be trans-
cessing function at intermediate nodes. Active Net- formed from high resolution to low resolution at the
work (Tennenhouse and Wetherall, 2007) is also focus transcoding server to adapt a mobile devices. A cache
processing at intermediate switches. The processingserver(Nishimura et al.,, 2012; Kalarani and Uma,
manner is described to two types: type-1) be capsuled2013) is a key technology of content delivery net-
into a packet, type-2) be assigned to the switches be-work. The cache servers are allocated to wide dis-
forehand. The type-1 manner executes only simple tributed places and they stock contents as cache from
processing but can process faster because of hardeother content servers beforehand or with users re-
ware execution. The type-2 manner, which like our quest. Then the users’ content request will lead to
system design, can describe even complicate processthe nearest cache servers then the users receive con-
ing. VNode(Kanada et al., 2012) also provides a pro- tents with lower network latency. (Fan and Chen,
cessing environment at intermediate switches. In this 2012; Solis and Obraczka, 2006) focus sensor net-
research, the processing function is also provided atwork. The researches propose to consolidate the large
customized switches and its processing environmentamount of sensing data at some intermediate nodes
is provided as virtualized environment likewise using before the large data reach data collection servers.

206

Distributed XML Processing over Multicore Servers

Such approach can reduce energy consumption andng is different than XML processing, given the less
network load for mobile sensor devices. (Shimamura structured nature of streaming data, as compared with
et al., 2010) compress packets near a sender then exXML data.

tract the packets near a receiver duringfeuqueue-

ing time to achieve low load network. In these re-

searches and technology, we can assume the networia CK NOWLEDGEMENTS

provides special function such as video transforming

function, data caching function and so on for a certain pat of this study was supported by a Grant-in-Aid for
Services. Scientific Research (KAKENHI:24500043).

5 CONCLUSIONS REFERENCES

In this paper, we have studied the impact of number Cavendish, D. and Candan, K. S. (2008). Distributed XML
Processing: Theory and Applicationfournal of Par-

of CPU cores n d_lstrlbuted XML prog€ssing using allel and Distributed Computing8(8):1054—-1069.

_two _models of distributed XML document processing Fan, Y.-C. and Chen, A. (2012). EnergyfiEient Schemes

in virtual environments for two types of XML doc- for Accuracy-Guaranteed Sensor Data Aggregation
ument: parallel and pipeline models, on virtual ma- Using Scalable Counting. IEEE Transactions on
chines with multicore CPUs, for synthetic and realis- Knowledge and Data Engineering4(8):1463-1477.

tic XML documents. Regarding number of CPU cores Kalarani, S. and Uma, G. (2013). Improving th&i&ency

for distributed XML processing, few CPU cores lead of Retrieved Result through Transparent Proxy Cache

Server! InProc. of fourth International Conference on

to less bier contention. In contrast, more CPU cores Computing, Communications and Networking Tech-
leads to higher performance of some indicators, but nologies (ICCCNT) 201%ages 1-8.

with the drawback of incurring in wasteful fier ac- Kanada, Y., Shiraishi, K., and Nakao, A. (2012). Network-
cess waiting time. In addition, appropriate number of virtualization Nodes that Support Mutually Indepen-
CPU cores depends on document characteristics. We dent Development and Evolution of Node Compo-
can enhance the processingi@ency by improving nents. InProc. of IEEE International Conference on

. T Communication Systems (ICCS) 20pages 363-367.
buffer usage mechanism. As we have shown, pipeline Kim, S. H., Kim. K., Lee. C., and Ro, W, (2012). flbad-

processing is in@cient than parallel processing re- ing of Media Transcoding for High-quality Multime-
gardless documenttypes and processing environment. dia Services. Consumer Electronics, IEEE Transac-
The pipeline processing should treat parts of the doc- tions on 58(2):691-699.

ument that are not to be processed at them. Such a.iu, C. and Wu, J. (2013). Fast Deep Packet Inspection
specific node needs to be received and relayed to other ~ with a Dual Finite AutomatalEEE Transactions on

nodes, consuming node resources and increasing pro- Computers62(2):310-321.
cessing overhead. Nishimura, S., Shimamura, M., Koga, H., and lkenaga, T.

(2012). Transparent Caching Scheme on Advanced

So far, we have focused on distributed well- Relay Nodes for Streaming Services. Mmoc. of
formedness and validation of XML documents. These International Conference on Information Networking
functions are a must for XML applications. The (ICOIN), 2012 pages 404—409.

PASS-Node system guarantees the soundness of th&himamura, M., lIkenaga, T., and Tsuru, M. (2010). Ad-
XML document and it should lead to less battery con- V@gﬁgeﬁe;% Np?gteost fog égagﬂ\r/ﬁemet&{""ggk (?felrr;/ices
sumption of mobile devices bgcause dﬂmad_lng._ ternatior?al Conferenc)(lepon Bﬁ)adband, Wireless Com-
Moreover, other XML processing, such as filtering puting, Communication and Applications (BWCCA)
and XML transformations, can be studied. Internet 201Q pages 701-707, Los Alamitos, CA, USA.
routers in the future can do XML processing the same Solis, I. and Obraczka, K. (2006). In-network Aggregation
way routers today do deep packet inspection (Liu and Trade-dfs for Data Collection in Wireless Sensor Net-
Wu, 2013), as well as fast (hardware based packet) ~ Works.Int. J. Sen. Netw1(34):200-212.
routingforwarding. Tennenhouse, D. L. and Wetherall, D. J. (2007). Towards

We intend to study processing of streaming data é%g%'ﬁﬁ N;é\\'/vgi((é?rg{'fgfuréleco'\ﬂ'\ﬂ Comput,
other than XML documents at relay npdes (Shima- Uratani, VY., Koide,,H., Cavendish, D., and Qie, Y. (2012).
mura et al., 2010). In such scenario, many web Distributed XML Processing over Various Topolo-
servers, mobile devices, network appliances, are con- gies: Characterizing XML Document Processing§-£
nected with each other via an intelligent network, ciency. InWeb Information Systems and Technologies

volume 101 ofLecture Notes in Business Information

which executes streaming data processing on behalf Processingpages 57-71. Springer Berlin Heidelberg,

of connected devices. The type of node process-

207

