MOOC and Mechanized Grading

Christian Queinnec
Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005 Paris, France

Keywords: MOOC, Mechanized Grading.

Abstract:

As many others, we too are developping a Massive Online Open Course or MOOC. This MOOC will teach

recursive programming to beginners and will heavily use an already existing infrastructure for mechanical
grading (Queinnec, 2010). This position paper discusses how these two components are combined in order to

increase students’ involvement.

1 INTRODUCTION

Developping a MOOC is now a common activity in
the Academia and so are we doing. This paper is
a position paper that presents the main characteris-
tics of our future MOOC: it makes an heavy use of
an infrastructure to mechanically grade students’ pro-
grams. How we intend to combine our MOOC with
that infrastructure and how we want to create incen-
tives for the students in order to increase their involve-
ment is addressed in this position paper.

Programming exercises are proposed in between
the videos of the course. These exercises ask for
real programs from students. These programs are
then mechanically graded and grading reports are sent
back to the students. Reading grading reports allows
students to evolve their programs but additional in-
centives may better help students. We propose to
combine three means which should help students to
progress by themselves.

Students may program in pair: video-chatting
around a common, shared program, that both stu-
dents can edit, recreates conviviality. The under-
lying question is how to provide a good partner
for a student who looks for one ?

We also propose to students to peep slightly bet-
ter programs from other students’ and learn from
them. The underlying question is how to select
the most adequate programs to be peeped ?

Finally, we ask student to recommend (or not) the
peeped programs that were helpful, this ranking
should help answering the previous item.

Section 2 presents the main lines of our MOOC
and Section 3 presents the grading infrastructure

Queinnec C..
MOOC and Mechanized Grading.
DOI: 10.5220/0004942102410245

while its new features appear in Section 4. Proposed
incentives are described in Section 5 and Section 7
concludes this position paper.

2 PREPARATION OF A MOOC

We are currently developping a MOOC on recur-
sive programming. The e-learning part is based on a
course created in 2000 (Brygoo et al., 2002) and since
then delivered every year at UPMC to hundreds of
young scientific students as an introduction to Com-
puter Science. The course material was, from 2000
to 2003, provided as a physical CDrom then, from
2004 to 2006, as a CDrom image (300MB) download-
able from UPMC web servers. An innovative char-
acteristics of these CDroms was that they contained
a programming environment (based on DrScheme
(Felleisen et al., 1998)) with a local mechanized
grader, see (Brygoo et al., 2002) for details. The
students could then read the course documents, write
programs, run them and be graded without requiring
an Internet connection.

This new MOOC?!, adequately named “Program-
mation récursive”, is an endeavour to extend this
course to a broader French-speaking audience, to ex-
periment with the aspects related to social networks
and, finally, to collect and study students’ answers to
the proposed exercises in order to build appropriate
error taxonomy and thus better future editions of the
MOOC.

Of course, the context has dramatically evolved
from 2000 to now. The mechanical grader of 2000

Lhttp://programmation-recursive-1.appspot.com

241

In Proceedings of the 6th International Conference on Computer Supported Education (CSEDU-2014), pages 241-245

ISBN: 978-989-758-021-5

Copyright ¢ 2014 SCITEPRESS (Science and Technology Publications, Lda.)

CSEDU 2014 - 6th International Conference on Computer Supported Education

which was grading Scheme programs (Scheme is
the programming language used by that course) has
now evolved into a multi-language grading infras-
tructure running in the cloud (Queinnec, 2010). The
MOOC uses CourseBuilder (Google, 2013), is hosted
on Google App Engine for elasticity, uses YouTube
for video streaming and a Google group for forum.

The programming environment, named
MrScheme is now provided as a Scheme inter-
preter, written in Javascript by Frédéric Peschanski
and his colleagues (Peschanki, 2013). This pro-
gramming environment runs locally in students’
browsers. With help of MrScheme, students must
test their programs (an habit we enforce) before
requesting their program to be graded thus saving
servers’ computing power. We require students to
write programs satisfying a given specification but
also to write their own tests for their own programs.
The machinery don’t accept to grade programs that
fail their own tests.

3 GRADING INFRASTRUCTURE

The grading infrastructure is named FW4EX and de-
scribed in (Queinnec, 2010). This is a cloud-based in-
frastructure controlled by REST protocols. Teachers
uploads exercises that are tar-gzipped sets of files con-
taining scripts to grade students’ programs. Students
submit their programs and receive a grading report in
return. The infrastructure also offers additional ser-
vices such as the whole history of their submissions
and their associated grading reports.

The infrastructure was carefully defined to scale
up, see Figure 1. Students submit (1) to some acqui-
sition servers which act as queueing servers that are
regularly polled (2) by some marking drivers. As their
name implies it, marking drivers grade student’s sub-
mission and send (3) the resulting grading reports to
long term storage servers (Amazon S3 for instance).
Finally storage servers are polled (4) by the waiting
students. Student’s browsers choose the acquisition
server which in return tells where to fetch the result-
ing future grading report.

Marking drivers are isolated, they cannot be
queried. Moreover they run inner virtual machines
to run the grading scripts. This allows to confine (po-
tentially malicious) students’ and teachers’ programs
in memory, time, cpu, access to Internet, etc.

Marking drivers also record (5), when connected,
the details of the performed grading into a central-
ized database. Acquisition and storage servers don’t
perform heavy computations but there are more than
one in order to offer some redundancy to ensure con-

242

tinuity of service. The number of marking drivers is
handled elastically that is proportionally to the num-
ber of submissions to grade. To grade a submission
more than once is not a problem: this is the price to
pay to absorb grading peaks.

In 2011, we added a new service, see (Queinnec,
2011), that tries to rank students according to their
skills. To submit a program is considered as a move
in a game that this student plays against all other stu-
dents who try the same exercise. If a student gets a
higher mark in fewer attempts then the student wins
over all other students who got a lower mark or a
similar mark but in more attempts. Using a ranking
algorithm inspired from Glicko (Glickman, 1995) or
TrueSkill (Graepel et al., 2007), it is then possible to
rank students on a scale bounded by two virtual stu-
dents:

the best student succeeds every exercise with the
right answer at first attempt

and the worst student fails every exercise with one
more attempt than the worst real observed student.

This approach can only rank students having tried
a sufficient number of exercises in order to appreciate
their skill.

4 GRADING PROCESS

When a student submits a program, this program con-
tains functions and their associated tests, let’s call
them fs and ts. For instance, the next snippet shows
a student’s submission for an exercise asking for the
perimeter of a rectangle:

(define (perimeter height width)
(* 2 (+ height width)))

(check perimeter
(perimeter 1 1) => 4
(perimeter 1 3) => 8)

This snippet contains the definition of the
perimeter function followed by a check clause (an
extension we made to the Scheme language) check-
ing perimeter on two different inputs. The check
clause implements unit testing. With other languages,
Java for instance, we use the JUnit framework instead,
(Beck and Gamma, 2012).

The author of the exercise (a teacher) has also
written a similar program that is, a function f; and
some tests t;. The grading infrastructure uses an in-
strumented Scheme interpreter and executes the fol-
lowing steps:

1. ts(fs) should be correct. Student’s program that
fail student’s own tests are rejected. This ensures

MOOC and Mechanized Grading

Acquisition Markir:gu(:jl
servers drivefrs
2) - Storage
Al (€| MD1 servers
. >< S @ s
° =0
°
A2 |<€¢— MD2 :
e \
e / s2
(1)submit -
MD3

©,

'@ ...@

(4) re

grading feport

Figure 1: Architecture of FWA4EX infrastructure.

that students don’t forget to check their own code.
We also check that the student does not obviously
cheat i.e., t; really calls function fs.

2. ts(fy) should be correct that is, student’s tests
should be related to the problem solved by f;. The
number of student’s successful tests and the num-
ber of time the teacher’s function has been called
are used to provide a partial mark.

3. t:(fs) should be correct that is, student’s function
should pass teacher’s tests. The number of suc-
cessfully passed tests also provides a partial mark.

4. The Scheme interpreter was instrumented in or-
der to compute coverage profiles. Comparing
the coverage of the student’s tests with respect to
teacher’s test provides the last component of the
final mark. Student’s tests should at least execute
all the code parts of their own code that are ex-
ecuted by teacher’s tests. This again provides a
partial mark.

5. All these partial marks are weighted and com-
bined to form the final mark.

While steps 1, 2 and 3 were already present in the
old CDroms, step 4 is new and measures the com-
pleteness of student’s tests with respect to teacher’s
tests (which might be not perfect!).

Most exercises are graded in less than 15 seconds.
The grading report returned to the student verbalizes
what was submitted, which tests had been done and
which kind of results were obtained with student’s
code compared to teacher’s code. These reports are
often lengthy but reading them carefully to under-
stand the discrepancies develop students’ debugging
skill.

5 INCENTIVES

Equiped with such a grading machinery, we must of-
fer incentives to the students so they may progress by
themselves. Some incentives are currently under de-
velopment and will be tested when the MOOC starts
in 2014. The rest of the Section describes these incen-
tives and the scientific challenges behind them which
are not completely solved today.

5.1 Pair Programming

The first incentive is to provide an infrastructure for
pair of students to work conjunctly on an exercise.
This is pair programming as advocated by eXtreme
Programming (Beck, 2000). A pairing server will
be provided from which students will get a peer, the
server will then provide a shared (Google) doc or
equivalent and will let the two students work together
and submit together. The server will choose a peer
with roughly the same skill as determined by the rank-
ing algorithm explained in Section 3. Of course, this
might only work if a sufficient number of students
in need of a peer are simultaneously present there-
fore, for every week of the MOOC, we intend to de-
fine peering periods. This feature will also require a
widget in the shared doc to submit the joint work and
see the resulting grading report. Accompanying this
shared document with a Google hangout allowing to
share voice and/or video will probably be attractive.
The quality of the peering process depends on the
accuracy of the skill ranking. Conversely, to be able
to appreciate students’ skills allow the pairing server
to also provide opponents with roughly the same skill:

243

CSEDU 2014 - 6th International Conference on Computer Supported Education

the goal is then to propose, at the same time, the same
exercise to the opponents and to compare their results
in mark and time to reach that mark.

5.2 Epsilon-better Peeping

The second incentive is to propose to students hav-
ing obtained a mark m and eager to progress, to peep
two other students’ submissions with slightly better
marks i.e., m+e. This is what we called “Epsilon-
better peeping”. This will favour reading other’s code,
another important skill worth stressing since begin-
ners often think that they code for computers and not
for humans! The slightly better mark may have been
obtained by a better definition of the function or by
better tests. Both allow to improve students’ work.
Reading these others’ submission carefully and deter-
mine why they are better may be eye-opening.

To prevent students to just copy-paste better solu-
tions, we will limit the number of times students may
peep at other’s submissions.

For students who stick to very low marks, we will
probably have to set e to a bigger value. If a huge
number of students attend this MOOC, we may try
various settings for this parameter to help students
climb the first step.

5.3 Recommendation

After being served other’s submissions, students will
have to tell whether one of these other’s submission
was useful or not. This is a kind of recommendation
system (or crowd ranking) from which the best help-
ing submissions should emerge. However, differently
from recommandation systems where a huge number
of persons recommand a few items (movies for in-
stance) here, we have a few students producing a huge
number of submissions. Therefore to select the most
appropriate submissions is a real challenge.

What we envision is to ask the teaching assistants
to write a set of programs with increasing marks and,
for the first edition of the MOOC, to favour these pro-
grams. This also solves the bootstrap problem since
there must be other’s submissions in order to imple-
ment this incentive.

Accumulating students’” submissions should allow
to elaborate a taxonomy of programs and errors. This
taxonomy will help improving grading reports. Re-
ports may include hints triggered by the kind of rec-
ognized error. The recommandation system that se-
lects the best helping submissions, may also use that
taxonomy. But this taxonomy will only be taken into
account for the next edition of the MOOC.

244

6 RELATED WORK

Mechanical grading has been used for many years in
many different contexts and programming languages.
However generic architectures such as (Striewe et al.,
2009), that support multiple languages, that are scal-
able and robust are not so common. Our infrastructure
is one of them.

The estimation of students’ skill is also a well
studied domain (Heiner et al., 2004). Many works
exist that try to characterize the student’s model that
is, its shape and its parameters (Jonsson et al., 2005)
(Cen et al., 2006). They often start from an analy-
sis relating exercises and the involved primitive skills
then, they observe students’ progress (mining the
logs) in order to determine the parameters that best
fit the model mainly with the “expectation maximiza-
tion” technique (Ferguson, 2005).

The previous studies use far more information
than us since they mine the logs of an intelligent tu-
tor system where are recorded which exercise is deliv-
ered, how long the student read the stem, what help he
requires, etc. By contrast, our grading infrastructure
only gives us access to marks. Our set of proposed
exercises is not (yet) related to the involved skills nor
the set of skills is clearly stated. Therefore we are cur-
rently more interested to provide incentives to work in
pairs with an attractive but rigorous feedback.

While recommendation systems are legion, to rec-
ommend the slightly better programs that helped to
progress may be an interesting idea. We will see if
our MOOC stands up to its promises.

7 FINAL REMARKS

In this paper, we present some ideas that are currently
under development for a MOOC teaching recursive
programming for beginners. This MOOC will start in
March 2014 hence results are not yet known.

However and as far as we know, the conjunction
of a grading machinery, a skill ranking algorithm and
a recommendation system for help seems to be inno-
vative and worth studying.

REFERENCES

Beck, K. (2000). eXtreme Programming.
wikipedia.org/wiki/Extreme_programming.

Beck, K. and Gamma, E. (2012). The JUnit framework,
v4.11. http://junit.org/.

Brygoo, A., Durand, T., Manoury, P., Queinnec, C., and
Soria, M. (2002). Experiment around a training en-

http://en.

gine. In IFIP WCC 2002 — World Computer Congress,
Montréal (Canada). IFIP.

Cen, H., Koedinger, K., and Junker, B. (2006). Learn-
ing factors analysis - a general method for cognitive
model evaluation and improvement. In Paper pre-
sented at the 8th International Conference on Intel-
ligent Tutoring Systems, pages 164-175.

Felleisen, M., Findler, R., Flatt, M., and Krishnamurthi, S.
(1998). The DrScheme Project: An Overview. SIG-
PLAN Notices, 33(6):17-23.

Ferguson, K. (2005). Improving intelligent tutoring sys-
tems: Using expectation maximization to learn stu-
dent skill levels.

Glickman, M. (1995). The Glicko system. Technical re-
port, Boston University. http://glicko.net/glicko.doc/
glicko.html.

Google (2013). CourseBuilder. https://code.google.com/p/
course-builder/.

Graepel, T., Herbrich, R., and Minka, T. (2007).
TrueSkill™: A bayesian skill rating system. Techni-
cal report, Microsoft. http://research microsoft.com/
en-us/projects/trueskill/.

Heiner, C., Beck, J., and Mostow, J. (2004). Lessons on us-
ing its data to answer educational research questions.
In Workshop Proceedings of 1TS-2004, pages 1-9.

Jonsson, A., Johns, J., Mehranian, H., Arroyo, I., Woolf, B.,
Barto, A., Fisher, D., and Mahadevan, S. (2005). Eval-
uating the feasibility of learning student models from
data. In Proceedings of the Workshop on Educational
Data Mining at AAAI-2005, pages 1-6. MIT/AAAI
Press.

Peschanki, F. (2013). MrScheme. http://github.com/
fredokun/mrscheme.

Queinnec, C. (2010). An infrastructure for mechanised
grading. In CSEDU 2010 — Proceedings of the sec-
ond International Conference on Computer Supported
Education, volume 2, pages 37-45, Valencia, Spain.

Queinnec, C. (2011). Ranking students with help of mech-
anized grading. See http://hal.archives-ouvertes.fr/
hal-00671884/.

Striewe, M., Balz, M., and Goedicke, M. (2009). In
Cordeiro, J. A. M., Shishkov, B., Verbraeck, A., and
Helfert, M., editors, CSEDU (2), pages 54-61. IN-
STICC Press.

MOOC and Mechanized Grading

245

