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1 THE RESEARCH PROBLEM 

Is coordination possible when agents are unable to 
communicate? This is an abstract problem that can 
only be made concrete by the specification of a well-
defined goal of the coordination processes. For 
example, the problem of rendezvous of two or more 
agents on a network is one that has been extensively 
studied for non-communicating agents (see, e.g., 
Alpern and Gal, 2003). A less studied and more 
recent problem is the opposite one of achieving 
spatial dispersion. If there are n  agents at k  
locations, we say that they are dispersed if no 
location has more than one agent (this requires of 
course that k  is at least n ). In the case of n k  
(the main case studied here), dispersion implies 
coverage, that is, every location has at least one 
agent.  

Alpern and Reyniers (2002) initiated the study of 
spatial dispersion of agents in the context of non-
communicating agents who could move between any 
two locations, based only on the knowledge of the 
populations at all locations.  

The research problem addressed in this paper is 
to see how the problem of Alpern and Reyniers 
changes if a network (graph) structure is imposed on 
the set of locations: An agent only knows the 
population at his current node (location) and he can 
only stay still or move to an adjacent node. He can 
see the number of arcs at his node, but if he moves 
he must choose among them equiprobably. As we 
are dealing with non-communicating agents with 
limited amount of global knowledge, we shall limit 
our discussion to simple and myopic strategies. In 
particular, our agents adopt common (Markovian) 
stunted random walk strategy, completely specified 
by the probability p  of staying still for another 

period at the same node. Given such strategies, how 
long will it take, on average, for the agents to 
achieve dispersion? The optimization can be simply 
with respect to ,p  or with respect to ,ip  where i  is 

the population at the agent’s current node. For 
example, in the trivial case of a network with two 

nodes, where both agents start at the same node, the 
optimal value of p  is ½ and the expected time to 

dispersion is 2T   periods.  
We shall introduce the network dispersion 

problems by way of the following illustration. 
Suppose that at 11am the guards at the Louvre have 
called a wildcat strike for noon. The Louvre by law 
must be kept open. We know that there are n  
rooms, but at short notice we don’t have a map. We 
can hire in an  hour n  guards, but they may speak 
different languages and will not be able to 
communicate with each other. We have a single 
broadcasting line for communication to all these new 
guards, but we cannot give different guards different 
instructions as we do not even know their names. 
Once all the rooms have guards, we can broadcast a 
command to stay still. To keep things simple, we 
assume that time is divided into periods and that 
each guard visits only one location in each period. 
All we can broadcast is a single number p , the 

probability that a guard should stay still for that 
period. We want this to occur before the word gets 
out that this is a good time to steal a painting, so we 
want to minimise the expected time to reach full 
coverage of all the rooms. How can we define a 
common strategy for the guards that is simple yet 
still effective? And how fast on average will they 
arrive at the goal of getting as dispersed as possible?  

2 STATE OF THE ART 

Our agents are not the smart rational individuals that 
are normally assumed in game theory models. 
Instead, this type of agent is normally studied in the 
domains of Artificial Intelligence and Biology 
(social animals). Therefore we found that the works 
that are most relevant to our study comes from those 
two research communities. 

After the paper of Alpern and Reyniers (2002), 
Grenager et al. (2002) generalized the specific 
problem to a general class of dispersion games. In 
this type of games, agents win positive payoff only 
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when they choose distinct actions. Problems with 
similar characteristics have been studied in many 
research areas. Here we list some of them: 
1. Load balancing: a set of tasks is to be 

assigned to a set of machines, and to minimise 
the overall processing time, the load need to be 
distributed as evenly as possible (see, e.g., 
Azar et al., 1999). 

2. Niche selection: this problem has been studied 
in economics as well as in ecology. In 
economics, it models a situation in which 
producers wish to occupy one of a number of 
different market niches, and they prefer to 
occupy niches with fewer competitions. A few 
examples are the Santa Fe problem (Arthur, 
1994) and the class of minority games (Challet 
and Zhang, 1997). In ecology, this problem is 
also called habitat selection, and an example of 
this is how animals choose feeding patches 
with low population density with respect to 
food supply (see, e.g., Houston and 
McNamara, 1997). In particular, Fretwell and 
Lucas (1969) introduced the equilibrium notion 
of the ideal free distribution for habitat 
distribution in birds. That is a particular 
analogue of our notion of dispersion, where 
some nodes have greater capacity (habitat is 
more supportive of foragers).  

3. Congestion games: proposed initially by 
Rosenthal (1973), in this class of games 
individuals seek facilities or locations of low 
population density, due to the monotonically 
increasing cost of using the facilities. One of 
the subclasses of congestion games that has 
received significant attention is routing games, 
in which a set of players in a network choose 
the route with low congestion level (see, e.g., 
Qiu et al. 2003). 

4. Multi-agent area coverage: a team of agents 
seek to cover an entire area (which may or may 
not be known a priori), and therefore it is 
preferred that each agent covers different part 
of the area. This problem has been studied in 
several research communities, including 
robotics/agents, sensor networks, and 
computational geometry. For a recent survey in 
the fields of robotics, see Galceran and 
Carreras (2013).  

3 OBJECTIVES  

Given a graph G  with k  nodes, we want to see 
which (Markovian) stunted random walk strategies, 

if simultaneously adopted by all agents, lead to the 
least expected time T  to dispersion? In all the 
problems considered, the same optimization 
criterion is used. We consider both (i) a random 
initial placement of the  n  agents onto the k  nodes 
of ,G  and (ii) an initial placement of all the agents 
onto a single node j  of  .G  In the latter case, it is of 

interest to see where the best place to introduce the 
agents is.  

We also will consider two types of stunted 
random walk strategies, and compare them. First, a 
simple type, where there is a common parameter p  

representing the probability of staying still for the 
next period. Second, a probability vector p  in which 

ip  (the i-th entry in the vector) gives the probability 

of staying still (rather than randomly moving) that 
depends on the number i  of agents currently at your 
node (called the agent population of the node).  

A conjecture of Alpern and Reyniers (2002) in a 
related context says that if you are alone at your 
node then you should not move and no one should 
move to your node. While this might work in the 
context of a complete graph, it clearly fails on the 
line graph .nL  In the case when there are many 

agents at node 1 and one agent at node 2, the ones at 
node 1 could never disperse. However the weaker 
property of setting 1 1p   seems to hold for some 

graphs, which does not have the added assumption 
that no one goes to a node with current population of  
1.  

Our objective is to determine the minimum 
dispersal time and optimal levels of p  or of ,p  for 

several classes of networks, including line networks 
,nL  cycle networks ,nC  and complete graphs .nK  

We also wish to compare on nL  the efficiency of an 

initial placement of all agents at a node ,j  as j  

varies. It would seem likely that it is better to place 
them as close as possible to the centre. 

From now on we assume that the graphs we 
consider have n  nodes and that there are n  agents. 

4 METHODOLOGY 

To evaluate the expected dispersal time T  on a 
graph G  as a function of the stationary probability 
p  (or of the vector 1( ,..., )np pp ) we use two 

distinct methodologies. For small graphs (small n ), 
we use the theory of absorbing time for Markov 
chains. The states of the chain are the population 
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distributions, allowing for symmetry. For example, 
the state  1 2 3, ,m m m  says there are 1m  agents at 

node 1, 2m  at 2 and 3m  at 3. By symmetry of nodes 

1 and 3 we may assume 1m  is at least as large as 

3.m  Thus the states when 3G L  are  3,0,0 ,

 2,1,0 ,  2,0,1 ,  1, 2,0 ,  0,3,0 ,  and the absorbing 

(dispersed) state  1,1,1 .  In general, the set nS   of all 

states for the network dispersion problem on nL  can 

be described as follows, where 

1 2 1
1

[ , ,..., ] : ,
n

n n n i
i

S s m m m m m m n


     
 

   

When n  is larger than 3, the number of states in 
this type of analysis becomes too large for 
Markovian analysis, so another methodology is 
needed – simulation. We use the software 
application Mathematica to simulate the movement 
of agents adopting a common p-strategy, and 
minimize the dispersal time numerically. For 
purposes of comparison, and to check our simulation 
program, we analyse the line graph 3L  both ways. 

5 STAGE OF RESEARCH –
RESULTS SO FAR 

5.1 Markovian Analysis for L3 

We first analyse the problem on a line graph 3L  of 

three nodes using Markov chain theory. We define 
six states in 3L  problem (up to symmetry): 

1 [3,0,0],s   2 [2,1,0],s   3 [2,0,1],s   4 [1,2,0],s   

5 [0,3,0],s   and the absorbing state, 6 ˆ [1,1,1].s s   

We do not put any restrictions on the movement of 
the agents, other than if an agent chooses to move in 
the next period, then they can only move to a node 
adjacent to the current node. This implies that each 
state in the Markov chain is accessible from any 
other states (albeit accessing a particular state could 
take more than one or two steps). A Markov chain 
with this characteristic is defined as an absorbing 
Markov chain, for which a set of theoretical 
formulas has been devised to calculate the expected 
time to absorption. In this subsection we follow the 
procedures explained in Grinstead and Snell (1997) 
to find the time to absorption, or more generally, the 
expected dispersal time .T  

Definition (Absorbing Markov Chain) (Grinstead 
and Snell, 1997): A Markov chain is absorbing if it 

has at least one absorbing state, and if from every 
state it is possible to go to an absorbing state (not 
necessarily in one step). 

In an absorbing Markov chain, the probability of 
absorption is 1. This means that for our problem, the 
process will eventually end at the absorbing state 
ˆ [1,1,1].s   However, we have two special situations 

in which our Markov chain is no longer absorbing. It 
is if the value of p, the probability of staying still, is 
set to either 0 or 1. If p is set to 0, three of the states 
([3,0,0],  [2,0,1], and [0,3,0])  cannot access ŝ , 

whereas if p  is set to 1, then all states become 

absorbing states, and thus do not communicate with 
each other. Therefore, the absorbing Markov chain 
theory only applies when we restrict the range of  p  

as 0 1.p   For the case of 0p  , as well as 

1p  , we shall describe another approach separately 

in the following section. 

5.1.1 Simple Stunted Random Walk 

We begin by considering simple strategies based on 
a single probability p  for staying still. In each 

period, each agent independently decides to remain 
at his current node or to move. If he chooses to 
move, he observes the number of arcs from his node 
and choses to move along them equiprobably. In the 
case of a line graph this is elementary: if at an end, 
he moves to the unique adjacent node; otherwise, he 
randomly moves left or right. We wish to find the 
strategy parameter sp p  that minimises the 

expected time  ,T T s p  to reach the unique 

absorbing state ˆ [1,1,1]s   from the state s. We 

denote this minimum time by  , .T T s p   

Sometimes we wish to start from a random state, 
where each state occurs with its probability of 
occurring from a binomial distribution, that is, if 
each of the n  agents was randomly placed on one of 
the n  nodes. In this case the expected absorption 

time is called  ,T T r p , where r  stands for the 

random initial state. To calculate ,T  we first define 
the transition matrix Q  comprising a set of 
transition probabilities between all states in the 
chain. 

In the transition matrix Q, ijq  gives the transition 

probability of moving from state is  to state js in one 

step. For example, for the transition probability from 

3s   to  2 ,s   we  have  2
32 (1 )pq p  ,  which means  
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that, if the current state 3 [2,0,1]s  , then we can 

reach the state 2 [2,1,0]s   in the next period if the 

two agents at the left stay still 2( ),p  and the agent at 

the right moves to the middle (1 ).p  

We then construct the matrix Q (a submatrix of 
Q ), which is a 5-by-5 matrix consisting of the 
transition probabilities of all the transient states (all 
states except ŝ ), that is, the upper left submatrix. 

 
We wish to determine the column vector 

 pτ τ  whose i-th entry is  ,i iT s p  , the 

expected  dispersal time from state is . Then we can 

minimise this expression, for each  ,i  with respect to 
the parameter .p  According to the theory of 

absorbing Markov chains  (Grinstead and Snell, 
1997), the vector is given by the formula: 

  1
  τ I Q c  

where I  is the identity matrix, and c  is a column 
vector, of which all of the entries are 1. In the simple 
stunted random walk strategy, the value of τ  as a 
function of p  is: 

 

Before we present the results for optimal stunted 
random walk strategy, we now come back to the two 
specials situations in which the chain is not 
absorbing. It is when the value for p  is either 0 or 1.  

For 1,p   it is quite obvious that if no agent moves, 

then we will never reach the equidistribution state. 
We then focus on the case of 0.p   Let us see the 

value for the transition matrix in this case: 

 
From the transition matrix above, we can see that 

the equidistribution state 6ˆ( )s s  is only accessible 

(not necessarily directly) from two states, 2s  and 

4 ,s  meaning that it is only possible to achieve 

dispersal if the agents start from state 2 [2,1,0]s   or 

4 [1,2,0].s   From 4 ,s  if all agents move, the one at 

the left end must move to the center. The two at the 
center equiprobably move to different ends 
(reaching state 6s ) or to the same end (state 2s ). We 

can now simplify the chain into the following 
diagram: 

 

Figure 1: The state transition diagram for 3L with. 0.p   

Now we can calculate the expected time to reach 
s6 from those two states: 
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which gives the values 2( ,0) 4T s   and  

4( ,0) 3.T s   These values happen to be the optimal 

expected time from 2s  and 4 ,s  as the expected times 

for other values of p are bigger than 4 and 3, 
respectively. In other words, for  2i   or 4,  the 
minimising value of p  is 1. For other values of ,i  

we minimise the expressions for  each row of the 
vector τ  with respect to  p  in (0,1).   

We can now list our results on the optimal 
expected time using simple stunted random walk 
strategy as well as the accompanying p values 
(Table 1). 

Table 1: Optimal expected times for simple stunted 
random walk on L3. 

Starting state T  p  

Random, r 4.2274 0.2332 
s1 = [3,0,0] 6.2125 0.2415 
s2 = [2,1,0] 4 0 
s3 = [2,0,1] 5.3333 0.5000 
s4 = [1,2,0] 3 0 
s5 = [0,3,0] 5.2836 0.3219 

We can see that on average, the agents can 
achieve their goal the fastest by starting from state 

4 ,s  and setting their probability of staying still p  as 

zero.  It is unlikely, though, that setting 0p   

would provide an optimal solution in larger line 
graphs. This occurrence is mainly due to the 
simplicity of the graph. Other solutions that give 
good values are from random placement 
( 4.2274)T   and when all agents start at the middle 

node ( 5.2836)T  . These values provide us with a 

benchmark for checking the validity of our 
simulation techniques for the 3L . 

5.1.2 Compound Stunted Random Walk 

In the compound stunted random walk model on 

3 ,L  we allow the stationarity probability (of 

remaining at the current node) to depend on the 
population of agents at that node. That is, if the total 
number of agents at your node is ,i  then stay at that 

node with probability ;ip  otherwise move randomly 

to a neighbouring node. In this case we get a 
transition matrix  Q  whose elements are functions 

of the three probabilities 1,p  2 ,p  and 3.p            

For example   the     transition      probability      
from [1, 2,0]  to [1,1,1]  is given by

     1 2 2 1 2 22 1 1/ 2 1 .p p p p p p    The agent 

who is alone at the left must stay still, which 
happens with probability 1p , and one of the two at 

the middle must move while the other one stays, 
which happens with probability  2 22 1p p . 

Finally, the one who moves must move to the 
unoccupied end (probability ½ in a random walk).  
Then, using the same formula for τ  as in the 
previous section, we get dispersal times from state  
i  as a function of 1,p  2 ,p  and 3.p  Minimising 

these five expressions (and an average expression 
for the top line corresponding to the random start r ) 
with respect to varying all three probabilities gives 
the solution to the minimum problem as seen in 
Table 2. Note that except for the two states 
discussed separately above, we have that the optimal 
value of 1p  is 1. This says that if you are the only 

agent at your node, stay still. This is similar to a 
conjecture in Alpern and Reyniers (2002) for a 
related problem, that singleton agents should stay 
still, and other agents should not move to their 
locations.  

Table 2: Optimal expected times for compound stunted 
random walk on L3. 

Starting 
state T  1p  2p  3p  

Random, r 3.4006 1.0000 0.4646 0.1331 
s1 = [3,0,0] 5.3672 1.0000 0.4987 0.0831 
s2 = [2,1,0] 4 0 0 any 
s3 = [2,0,1] 2.7405 1.0000 0.5696 0.0537 
s4 = [1,2,0] 3 0 0 any 
s5 = [0,3,0] 4.3076 1.0000 0.4973 0.1425 

5.2 Simulation Analysis for L3 

For line graphs  nL  with large n  ( 3),n   the 

Markov solution technique is not feasible, so we will 
use simulation. To check the validity of the 
simulation technique, we apply it also to the solved 
case of 3L . We shall see that we get a close fit to the 

Markovian solution. For the simulation programme, 
we modify the state formulation, by numbering the 
three agents. The state , ,i j k  says that agent 1 is at 

node i, agent 2 is at node  j and agent 3 is at node k. 
For example, state 1,3,2 . The first entry, 1, shows 

that the first agent is at location 1. The second entry, 
3, means that the second agent is at location 3, and 
the final entry means the third agent is at location 2. 
So this state is actually one of our absorbing states, 
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in which every agent choose distinct locations. 
There are in total 33 = 27 states in this formulation. 

5.2.1 Simple Stunted Random Walk 

We perform 50000 runs of simulation using simple 
stunted random walk strategies. We found the results 
are similar to the ones using exact method using 
Markov chain theory (see Table 3). We also show 
the comparison between the two results for the case 
of initial random placement, ( , ),T r p  on the graph in 

Figure 2. This graphs shows that our simulation 
provides outcomes which closely approximate the 
ones calculated using the exact method. 

Table 3: Simulation results of optimal expected times, 
simple stunted random walk on L3 (50000 runs). 

Starting state T   p   

Random, r 4.1950 0.2350 
s1 = [3,0,0] 6.2000 0.2300 
s2 = [2,1,0] 3.9760 0.0600 
s3 = [2,0,1] 5.3110 0.4900 
s4 = [1,2,0] 2.9810 0.0400 
s5 = [0,3,0] 5.2220 0.3100 

 

Figure 2: Comparison of the expected times between the 
two methods (exact method and simulation) for the case of 
random initial placement T(r,p). 

5.2.2 Compound Stunted Random Walk 

From Table 4 below, we can see that the simulation 
also gives results similar to the exact method shown 
in Table 2. In particular, simulation can handle both 
absorbing and non-absorbing chain in the same way, 
unlike in the exact method where we need to 
differentiate the approach between the two classes of 
Markov chain. 
 

Table 4: Simulation results of optimal expected times, 
compound stunted random walk on L3 (10000 runs). 

Starting 
state T  1p  2p  3p  

Random, r 3.3115 1.0000 0.4900 0.1200 
s1 = [3,0,0] 5.3159 0.9900 0.4900 0.1000 
s2 = [2,1,0] 3.9385 0.0000 0.0400 0.6100 
s3 = [2,0,1] 2.7392 0.9900 0.5400 0.0600 
s4 = [1,2,0] 2.9532 0.0000 0.0000 0.0600 
s5 = [0,3,0] 4.2666 0.9900 0.4700 0.1600 

6 EXPECTED OUTCOME – 
FURTHER RESEARCH 

There are several directions of further research to be 
carried out. The most obvious is to continue the 
investigation to larger line graphs, such as 4 ,L  5 ,L  

and eventually the class of nL  in general. We also 

plan to study other classes of graphs, in particular 
the class nK  of complete graphs and the class nC  of 

cycle graphs. As both are transitive, all initial 
placements of agents at a single node are equivalent, 
which will simplify the analysis.  

A second direction of research is to analyse how 
strategies work on unknown graphs (mazes) or 
random graphs. When sending in robots to search a 
large house whose interconnecting room structure is 
unknown, what is a good stationary probability  p to 
program them with? 

Another possibility is the manager of the agents 
observes the state and then broadcasts a ‘state-
dependent’ value of p  or of the vector .p   

Finally, we could give our agents some limited 
eyesight, so for example they might know the 
current population of all nodes adjacent to their own. 
The walk they choose in this case need not be 
random, as neighboring nodes are distinguished by 
their populations. Presumably one would go more 
likely to a less populated node.  
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