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1 STAGE OF THE RESEARCH 

Interfaces that enable human-computer interaction 
have progressed significantly. In the past decade a 
lot of effort has been directed to the development 
and improvement of perceptual interfaces, i.e., 
interfaces that promote interaction with the 
computer without the use of conventional keyboard 
or mouse. This type of interface combines the 
understanding of natural human capabilities (e.g., 
communication, motor, cognitive and perceptual 
skills) with the use of these for interaction with the 
computer, taking into account the ways in which 
people naturally interact with each other and with 
the world. The search for more natural forms of 
interaction has directed recent research for the study 
of biological signals that have the potential to 
encode control strategies adopted by the central 
nervous system (CNS). In this context, information 
obtained through the activity of motor units - such as 
firing rate, waveform of action potentials and 
recruitment strategy - can be used in the 
development of human-computer interfaces. 
Therefore, this research proposes in an 
unprecedented manner, the development and 
evaluation of a human-computer interface based on 
information extracted from motor units (MUs). The 
interface development will consist of two steps: i) 
preparation of a flexible sensor array capable of 
detecting activity of MUs of facial muscles; ii) 
implementation of tools for signal processing 
capable of extracting information from MUs and 
translation of this information into control signals. 
The evaluation of the interface will consider: i) the 
quantification of learning related to the use of the 
interface; ii) the analysis of the correlation between 
learning and the dynamics of neural oscillation 
obtained by means of electroencephalographic 
signals; iii) the comparison of the new proposed 
interface with the Muscle Academy (Andrade et al., 
2012), which is a myoelectric interface recently 
developed by our research group. The current stage 

of this study is described below. 

1.1 The Choice of the Biosignal 
Acquisition System 

The experiments that will be carried out in this 
research require the use of a large number of input 
channels. Since we will be collecting simultaneous 
information from EMG sensor array together with 
brain activity (EEG) it was necessary to find 
commercial equipment, flexible enough to deal with 
particularities of distinct biosignals and also with the 
requirement of a large number of channels. 
 

  
                         a)                                                 b) 

Figure 1: The designed box to accommodate the 
acquisition system board. a) Front view with cover open; 
b) Back view. 

Based on the analysis of a number of available 
commercial systems it was verified that the 
RHD2000-series amplifier (Intan Technologies, 
USA) would be suitable for the research. The main 
features of this signal conditioner are: A/D converter 
of 16 bits; support of up to 256 input channels 
(configurable to distinct types of biopotential 
according to their inherent characteristics); 
possibility of sampling rates varying from 1 kS/s to 
30 kS/s; and finally, customizable multi-platform 
software based on the C++/Qt graphical user 
interface. Figure 1 shows a box designed to 
accommodate the printed circuit board and the 
acquisition system and via connectors provide 
access to some input and output signals (analog and 
digital). Figure 2 shows an example of the main 
screen of the graphical user interface during the 
acquisition of several EMG signals. 
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Figure 2: Main screen shot of the graphic user interface 
control software (Intan Technologies, USA). 

1.2 EMG Sensor Array 

The development of a human-computer interface 
based on the activity of MUs requires sensors with 
contact areas of adequate size to provide the 
selectivity required to detect isolated action 
potentials of MUs. However, this selectivity should 
not require high accuracy in repositioning the sensor 
near the MU of interest which would prevent 
everyday usage of the interface for non-technical 
people. Thus, taking into account these aspects, we 
developed the sensor arrays in two shapes: circular 
and concentric surface. This current design was 
made on a rigid surface and it is illustrated in Figure 
3. 
 

 
            a)                              b)                                    c) 

Figure 3: The three sensors array designed. a) Circular 
sensor array (diameter of 2mm and distance between 
electrodes (DE) of 4mm); b) Circular sensor array 
(diameter of 3mm and DE of 4mm); c) Concentric sensor 
array (internal diameter of 2mm, external diameter of 6m 
and DE of 7mm). 

To avoid the repositioning difficulties of 
circulars arrays between usage sections, the pairs of 
bipolar sensors (electrodes) in arrays were spatially 
distributed in such way to facilitate the alignment of 
at least one couple in the direction of the muscle 
fibers. Figure 4 shows the two adopted forms of 
distribution for bipolar channels.  In both settings the 
electrode pairs were oriented at 45° but with 
different distances between electrodes. 

 
Figure 4: Scheme of distributing the pair of electrodes 
(bipolar) oriented every 45° with different distances 
between electrodes. b) Short distance b) Large distance. 

The capture of input signals of the proposed 
human-computer interface is composed of three 
arrays, one for the Frontal and two for the Temporal 
muscles. To design this set of arrays, we explored 
the fact that the conditioning circuit and the digital 
converter are miniaturized, so it is possible to place 
them closer to the detection region, aiming to 
capture data with better signal to noise ratio. Figure 
5a shows a set of sensor array and Figure 5b shows 
its use by an individual. The signal conditioner and 
digital converter circuit (1) and the connector (2) are 
highlighted in the figure. 

 

 
 
 
 

a) b) 

Figure 5: a) Set of sensor arrays used to capture EMG 
signals from facial muscles. b) Set of sensor arrays in use 
by an individual. The signal conditioner and digital 
converter circuit (1) and the connector (2) are highlighted. 

2 OUTLINE OF OBJECTIVES 

The general objective of this research is to develop 
and evaluate a human-computer interface based on 
facial motor unit activity.  

The specific objectives to achieve this goal can 
be divided into: i) develop and evaluate a flexible 
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array sensor fabricated by using silver ink, 
composed of nano-silver particles of high purity, 
developed by researchers at the Institute of 
Chemistry, Federal University of Uberlândia; ii)  
evaluate and implement techniques of 
multidimensional signal processing capable of 
mapping the MU activity of facial muscles in 
commands necessary for human computer 
interaction; and iii) evaluate the learning of a user 
while a user employs the human-computer interface 
activated by facial movements. 

 

Figure 6: Human-computer interface based on 
electromyography of facial muscles. Source: extracted 
with permission from (Andrade et al., 2012). 

3 RESEARCH PROBLEM 

Recently, our group developed and evaluated a 
human-computer interface (Andrade et al., 2012) 
called Muscle Academy that allows complete 
control of a computer cursor through the activation 
of the frontal and temporal muscles.  

The use of this interface has already been 
evaluated by healthy individuals and people with 
disabilities of upper limbs motor. Figure 6 presents a 
basic schematic about how the sensors are 
positioned on the facial muscles. The system 
evaluation was performed by analysis of three 
different protocols with progressive levels of 
difficulty.  

The evaluation results showed that there is a user 
learning curve during the interface usage in five 
different experimental sessions for all protocol types 
(see Figure 7). However, there is a significant 
discrepancy among the learning curve protocol 3 
(with greater difficulty) and other protocols. This 
reflects the difficulty of users access the smaller 
objects in a computer interface, and also the 
difficulty of fine motor control while performing this 
task. 

 

Figure 7: Results related to the learning to use the "Muscle 
Academy". The mean time in seconds is the unit of 
measure used to quantify the learning. Source: extracted 
with permission from (Andrade et al., 2012). 

 

Figure 8: Concentric sensor used in detection of Motor 
Units Action Potentials developed by our research group  
(Júnior, 2013).  

 

Figure 9: Graphical interface illustrating sequences of 
action potentials extracted in real time and translation of 
them into commands (Júnior, 2013).  

In order to solve this problem and allow the user 
greater control interface, we developed a second 
control strategy based on the detection of the activity 
of MUs of only one facial muscle. For this purpose 
we designed a concentric sensor (see Figure 8) able 
to detect activities of MUs and a strategy to translate 
this information in commands similar to those 
reported in (Andrade et al., 2012). Examples of the 
activity of MUs detected by the concentric sensor 
are shown in Figure 9. 

The results of the evaluation of this new 
interface, illustrated in Figure 10, show that the 
incremental learning over experimental sessions, and 
that the discrepancy of learning is less among the 
three protocols when compared to the results shown 
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in Figure 7. Thus, the problem of fine control 
detected in Muscle Academy was largely solved. 
However, from a practical standpoint, the use of this 
interface is limited due to the great difficulty of 
positioning of the sensor in the proximity of MUs of 
interest.  

 

 

Figure 10: Results concerning on learning of the use of the 
system based on analysis of motor activity detected by 
concentric electrode (Júnior, 2013). The mean time in 
seconds is the unit of measure used to quantify the 
learning. 

 

Figure 11: Prototype of flexible sensor array for detection 
of motor unit activity. 

Given this context, the main purpose of this 
research is to propose, implement and evaluate a 
new control strategy based on processing of the 
myoelectric activity from the facial MU detected by 
sensor array (see an example of the prototype 
flexible sensor array in Figure 11). It is expected that 
whit this new control strategy, the sensor placement 
problem is solved by expanding the contact area of 
the sensor, and, also, that the learning on how to use 
the interface is facilitated. 

4 STATE OF THE ART 

With the advancement of perceptual interfaces, i.e. 
interfaces that promote interaction with the 

computer without using keyboard or mouse 
conventional, each time more research and 
technologies have emerged in order to understand 
the natural human capabilities (e.g., communication, 
motor, cognitive and perceptual skills) and to 
consider them in the process of human-computer 
interaction (Oviatt and Cohen, 2000). 

The use of perceptual interfaces is of particular 
interest, but not limited to the field of rehabilitation 
and assistive technology. Patients suffering motor or 
cognitive limitations can benefit by the use of this 
technology to facilitate and encourage interaction 
with the environment and especially with computers. 
Such interaction is each more present in our lives, 
for example, television sets and video games can 
now be controlled by body movements. 

Currently there are many strategies that can be 
used to obtain user information from a perceptive 
interface. The basic idea is to convert information 
from user input into commands that can be 
interpreted by an application (Oviatt and Cohen, 
2000); (Turk and Robertson, 2000). 

The strategies can be broadly divided into the 
following categories with respect to the type of 
sensor used for the detection of the input signal 
(Higginbotham et al., 2007): (i) pressure / touch 
(Bourhis et al., 2002), (ii) motion and gesture 
recognition (Javanovic and MacKenzie, 2010), (iii) 
speech recognition (Majewski and Kacalak, 2006) 
and (iv) biopotentials (Chin et al., 2008). 

The main motivation for using biopotentials is, 
unlike on-off approaches, the possibility to obtain a 
more natural and proportional control of the human-
computer interface (Higginbotham et al., 2007); 
(Ahsan et al., 2009). An evaluation of review studies 
(Andrade et al., 2011); (Tai et al., 2008) that have 
been published recently about the applications of 
different types of biopotentials (e.g., 
electroencephalogram, electromyogram, electro-
oculogram) in human-computer interaction suggests 
that the use of electromyographic (EMG) is probably 
the most common and the reason may be the great 
success of the use of this signals acting as the input 
informations of interfaces that control prosthetic 
devices (Englehart et al., 2001); (Hargrove et al., 
2007); (Huang et al., 2005); (Jiang et al., 2009). 

5 METHODOLOGY 

For the development and evaluation of human-
computer interface is proposed an experimental 
scheme with appropriate resources to enable the use 
of the interface by two distinct groups and the 
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recording of data from central and peripheral 
nervous system. 

5.1 Definition of Experimental Groups 
and Criteria for Inclusion and 
Exclusion 

In total, 20 individuals of both genders, from 
different ages groups, divided into two groups, will 
be recruited to participate in the experiments 
proposed in this research.  

Experimental group 1 (G1): it will be composed 
of 10 healthy subjects (i.e. without disabilities in 
upper limbs), of both genders, aged over 18 years. 

Experimental group 2 (G2): it is composed of 
individuals over 18 years, both genders, with motor 
disorders of the upper limbs (i.e. paralysis, 
amputations, congenital malformations, changes in 
motoneuron) that prevents the individual to move 
the mouse with his hands. Individuals should not 
present neurological disorders which disturb the 
concentration or physical limitation that prevents the 
contraction of the muscles Temporal and Frontal. 
Subjects who are unable to perform the contraction 
of these muscles will be excluded from the 
experimental group.  

The subjects of the experimental group G1 will 
be recruited randomly in the population, whereas 
subjects in the experimental group G2 will be 
recruited in institutions that serve people with 
neuromotor disabilities. All individuals participate 
voluntarily in this study. The procedures of this 
research will be previously explained to the subjects 
for their full awareness about what will be 
accomplished. Each individual and/or his legally 
responsible will fill in and sign an Informed Consent 
Form proving that will be aware about the protocols 
and research, and also, that agrees to perform the 
experiment, without receiving any charge for 
participation. The confidentiality and personal 
information of research participants will be 
maintained. 

5.2 Definition of Training Protocols 
and Data Collection 

The training protocol and evaluation of human-
computer interface of this research is similar to that 
used in the evaluation of the Muscle Academy 
(Andrade et al., 2012). The main difference is that 
this protocol will include the recording of brain 
activity (electroencephalogram detected as standard 
10-20) simultaneously to the MU activity (detected 
by arrays of flexible sensors, placed on facial 

muscles) in order to provide a more detailed 
evaluation of the learning process due to the use of 
the interface. This type of analysis will be performed 
off-line and it is detailed in the next section. 

The system evaluation will be performed in 
acclimatized room, with only the presence of the 
evaluator and the subject (with the accompanying, if 
necessary) and equipment to carry out the research. 

This study is divided into three protocols varying 
the size of the buttons to be clicked according to 
each protocol (Protocol 1, buttons 2 cm x 2 cm, 
Protocol 2 buttons 1 cm x 1 cm and protocol 3, 
buttons 0.5 cm x 0.5 cm), and each button has a 
different colour (GREEN, YELLOW, RED and 
BLUE) being arranged in a cross shape (Figure 12). 

 

Figure 12: Interface of experimental protocols with 
different difficulty levels. Source: (Andrade et al., 2012). 

The distance between the centers of the buttons 
in the 3 protocols is constant, and its area varies 
from one protocol to another, thereby increasing the 
difficulty as decreases the area of the buttons. 

The goal of this interface is to allow the subject 
to control the cursor, and so, the learning can be 
quantified, considering the time taken to perform the 
specific tasks as a good parameter to measure 
learning progress. The following tasks will be 
requested to the subjects:  
1. Clockwise: move the cursor to the green button 

and click, move the cursor to the yellow button 
and click, move the cursor to the red button and 
click, move the cursor to the blue button and 
click, and finally move the cursor to the green 
button and click; 

2. Counterclockwise: move the cursor to the green 
button and click, move the cursor to the blue 
button and click, move the cursor to the red 
button and click, move the cursor to the yellow 
button and click, and finally move the cursor to 
the green button and click; 

Figure 13 shows a schematic which includes the 
main elements involved in data collecting where 
muscle and brain activities are simultaneously 
recorded and stored on a workstation with high 
performance for offline analysis. The standard 10-20 
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will be used for the positioning of EEG sensors. The 
MU activity, detected by sensor arrays on facial 
muscles, is converted in real time by software 
available in a high-performance laptop in commands 
that enable the control of a cursor for interacting 
with the graphical interface shown in Figure 12. The 
user will receive continuous feedback audible and 
visual interaction. 

 

Figure 13: Main components involved in data collection 
and analysis. 

5.3 Analysis of Learning through the 
Record of Muscle and Brain 
Activities 

During the interaction with the graphical interface, 
shown in Figure 12, the activities of the MUs and 
brain (EEG) will be recorded simultaneously. The 
purpose of this registry is to perform offline analysis 
in order to understand the correlation between motor 
learning and brain dynamics, arising from the use of 
the interface. This analysis will enable the 
development of alternative indices that can quantify 
and characterize learning in human computer 
interaction. These indices will be confronted with 
the traditional for the measurement of runtimes tasks 
illustrated in Figures 7 and 10. 

The analysis of the correlation between muscle, 
brain and learning activities will be studied using the 
technique of signal processing PLS (Partial Least 
Squares), which is a multivariate statistical tool 
widely used in studies with the aim of verifying 
correlations between brain activity and behaviour 
(Martı́nez-Montes et al., 2004, Krishnan et al., 
2011). 

6 EXPECTED OUTCOME 

Considering the main objective of this doctoral work 
is to develop and evaluate a human-computer 

interface based on MU activity of the facial muscles 
and taking into account the methodology adopted, it 
is expected to achieve some goals.  

A first expected practical outcome is the 
development of a flexible sensor array based on an 
ink composed of nanoparticles of pure silver capable 
of detecting biopotentials which has numerous 
applications in rehabilitation, neurology, assistive 
technology, and others. This type of technology can 
integrate tools used in the assessment of the 
neuromuscular system, for the purpose of diagnosing 
diseases that affect nerves and muscles. The great 
advantage of using this technology is its low cost 
and ease of application. This approach eliminates the 
usage of sophisticated and expensive technologies to 
silver deposit on surfaces and allows the sensors 
production with different shapes so adapting to 
various muscles.   

Once we have the right conditions to capture the 
desired biopotentials, another important achievement 
is to obtain a computer program which implements a 
human-computer interface capable of interpreting 
the MU activity. When compared to other existing 
technologies, it is expected that this enables the user 
to more precise control of the interface through the 
more subtle and natural movements, and thus reduce 
the incidence of muscle fatigue and discomfort to 
the user. Whereas the developed interface is 
independent of the system or device to be controlled, 
then the same has applications in games (serious 
games) used for rehabilitation purposes, control 
environments (e.g., smart homes), automated 
wheelchairs, bioefeedback systems to control stress 
or emotions.  

Finally, because of the need to evaluate the 
interface developed, it is expected the development 
of a neuromotor learning index capable of 
quantifying and evaluating the learning of 
individuals using the human-computer interface. The 
main innovation of this index is take into account 
components of the central nervous system (brain - 
EEG) and peripheral (muscle - EMG), and not only 
the user´s response time. From a practical 
perspective, this index can be used to measure the 
contribution level of the central and peripheral 
nervous system on learning. Furthermore, it can be 
used for assessment of human-computer interface, 
because this index can help diagnose of learning 
disabilities that do not have standardized tests. 
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