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Abstract: Severity of the coronary stenoses and necessity of the percutaneous coronary intervention is usually 
estimated basing on analysis of the pressure and flow signals measured in vivo by a pressure gauge at 
certain distances before and after the stenosis. In the paper the differences in the pressure gradients at 
different stenosis severity are shown and discussed. A method of decomposition of the measured biosignals 
into the mean and oscillatory components is proposed. A mathematical model of the steady and pulsatile 
flow through the viscoelastic blood vessel in the presence of the rigid guiding wire is developed for 
biomechanical interpretation of the measured coronary blood pressure and flow signals. A novel approach 
for estimation the stenotic severity basing on the measured and computed data is proposed.  

1 INTRODUCTION 

Coronary artery disease, which is also known as 
atherosclerotic or ischemic heart disease, has 
become one of the most severe diseases causing a 
large number of deaths each year over the world. 
The partial occlusion of the stenosed artery and 
abnormal blood flow through it to the heart cells 
lead to insufficient oxygen delivery, especially when 
the possibilities of the perfusion regulation by the 
resistive coronary vessels are spent (Vlodaver at al, 
2012). The causes to the formation of atherosclerotic 
lesions and arterial stenosis are still unknown but it 
is well established that the fluid dynamics, 
particularly the wall shear stress (WSS) and local 
pressure oscillations play an important role in the 
genesis of the disease (Layek et al, 2009).  

In the absence of stenosis, the driving pressure 
gradient is constant over the coronary vessels. With 
progressing of the stenosis severity, the pressure 
gradient required to impel the blood through the 
narrowed path increases that results in a higher 
blood pressure at the inlet of the stenosed artery. The 
heart must work harder to increase the produced 
pressure, and when the blood supply to the working 
heart is insufficient the angina and even heart attack 
may occur. In-time diagnostics of the stenosed 
coronary arteries is crucial for timely therapy or/and 
surgery of the coronary lesions.  

Coronary angiography (AG), intravascular 
ultrasound (IVUS) and coronary computed 
tomography angiography (CCTA) are commonly 
used for estimation of the stenosis severity by 
computations of the minimal lumen area (MLA) that 
is determined as the ratio of the minimal Amin to 
normal A0 lumen areas: MLA= Amin/A0 (%). The 
results of the AG, CCTA and IVUS-based MLA 
computations correspond well to each other (Caussin 
et al, 2006), but not in the case of the calcified wall 
(Li Y. and Zhanga, 2012). MLA gives geometric 
approximation of the stenosis and in many cases the 
stenoses with MLA<50% remain insignificant and 
do not need stenting or bypass surgery, because 
sufficient perfusion is provided by autoregulation of 
the resistive vessels and collateral blood supply.  

The functional severity of the stenosis can be 
estimated by the fractional flow reserve (FFR) 
defined as the ratio of the mean distal Pd and 
proximal (anterior) Pa coronary pressures measured 
via the pressure wire at certain distances before and 
after the stenosis during maximal hyperemia 
produced by intravenous adenosine administration 
that leads to relaxation of the myocardial vessels. 
The normal FFR=0.94–1.0, whereas the FFR<0.75 
highly correlates with insufficient perfusion and 
myocardial ischemia. The patients from the grey 
zone 0.75<FFR<0.8 may have had a risk of ischemia 
(Silber et al, 2005; Pijls, 2003). FFR reveals the 
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dangerous ischemia-producing lesions (Tonino, 
2010), and it is recognized as gold standard for 
assessing the hemodynamic significance of coronary 
stenoses (Finn et al, 2012). The similar approach 
based on the flow velocities at rest and the 
hyperaemic state has also been developed. 

Computational fluid dynamics (CFD) is widely 
used in advanced studies on the blood flows in rigid 
and compliant boundaries. The corresponding finite 
element and finite volume models and the 
computational schema have been used for the blood 
flow modeling in the vessels of different size up to 
the cellular level (Hinds et al, 2001). CFD study of 
the flow past symmetric and asymmetric stenoses in 
the straight, curved, helical and bifurcating tubes 
allow computations of the FFR values for every 
single stenosis as well as for the tandem, 
overlapping and bifurcational lesions. CFD approach 
allows virtual planning and estimation the outcomes 
of the surgery (stents, grafts, bypass) (Xiong, 2012), 
and the computed tomography (CT)-based virtual 
FFR estimation is a challenge that is widely 
discussed in recent publications (Taylor et al, 2013; 
Qi et al, 2013; Rajani et al, 2013). In the present 
paper some novel aspects of the FFR assessment and 
analysis of the measured pressure signals are 
proposed and discussed basing on the measurement 
data and the mathematical model of the blood flow 
in different rigid and compliant boundaries. 

2 BLOOD PRESSURE SIGNALS  

2.1 The Measurement Procedure 

CFD computations and virtual FFR estimations are 
based on the 3D models of the viscous 
incompressible blood flow in the rigid patient-
specific geometry of the larger epicardial coronary 
vessels recognized in AG and CCTA images, while 
the invasive FFR calculations are based on the in 
vivo measurements of the blood pressures before and 
after the stenosis at the presence of the guiding 
catheter and wire.  

At local anesthesia, a guide catheter (Figure 1) is 
inserted into the orifice of the coronary artery 
through the femoral or radial artery. The pressure 
and flow signals in the coronary arteries can be 
measured by the pressure and Doppler guide wire 
(2). The diameters of the catheters can be chosen 
between d=1.5–2.3 mm, while the manufactured 
guidewires have the diameters d=0.35–0.89 mm.  

According to the measurement data (Dodge, 
1992),  the  main  coronary  arteries  of adult humans 

 

Figure 1: Schematic representation of the intravascular 
coronary examination: the guide catheter (1) in the 
coronary artery (2) and the guidewire with pressure and 
flow gauges (3) in the coronary stenosis (4). 

have the following diameters: d=4.5±0.6 mm for the 
left main artery; d=3.7±0.4 mm and d=1.9±0.4 mm 
for the proximal and distal parts of the left anterior 
descending artery; d=3.4±0.5 mm for the left 
circumflex artery; d=3.9±0.6 mm and d=2.8±0.5 mm 
for the right coronary artery. The comparison of the 
diameters shows that both the catheter and wire can 
produce disturbances in the natural coronary blood 
flow and wave propagation.  

In this study 45 data samples recorded in the 
epicardial coronary arteries of 32 patients with 
different stenosis severity diagnosed by the pressure 
gauge administrated via the guiding catheter have 
been analyzed. An example of the recorded rata 
digitized from the CathLab software is presented in 
Figure 2. The red and green time-varying curves 
correspond to the pressure signals Pa(t) and  Pd(t) 
accordingly, while the relatively smooth red and 
green lines correspond to their mean values. The 
measurements have been carried out during the 
adenosine  administration  which  dynamics  can be 
followed  by  the shift between the both  oscillating 
and mean value curves. The FFR value indicated 
with yellow color has been  computed  automatically 

 

Figure 2: An example of the pressure signals recorded in 
the coronary artery by the pressure gauge and analyzed by 
the CathLab software. 
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by the CathLab software.    

2.2 Smooth and Oscillatory Signals 

Depending on the presence and severity of the 
stenosis, the pressure gradients in the signals 
measured before Pa(t) and behind Pd(t) the stenosis 
have significant differences. As the stenosis severity 
is progressing, the pressure behind the lesion drops 
first in diastole, while the pressure decrease after the 
peak systole is the same as in the pressure signal 
Pa(t) (Fig.3a). Then the pressure drop in diastole 
becomes more significant (Fig.3b) and the 
differences in the pressure gradients appear also in 
the systole (Fig.3c).  

The contour analysis of the Pa(t) and Pd(t) signals 
characterises their relative differences in slopes and 
values, while some novel information important for 
diagnostics can be driven from the Pa(Pd), pressure-
flow P(U), and phase curves P/(P) and U/(U) 
computed from the measured signals where the 
stroke sign denotes the time derivative (Kizilova, 
2013). For instance, the Pa(Pd) curves computed 
from the Pa(t) and Pd(t) signals by elimination of 
time are presented by loops (Fig.4) slightly varying 
according to the heart rate, blood pressure and flow 
variability (Barclay  et al, 2000; Trzeciakowski and 
Chilian, 2008). In spite of the heart rate and blood 
perfusion variability, the characteristic shape of the 
loop is preserved from beat to beat. When the 
myocardial perfusion is normal, the Pa(Pd) loop is 
elongated and tends to the straight line (Fig.4a). 

When the stenotic flow is critical in the term of 
the FFR values, the loop is shaped as digit ‘8’ and 
the self-intersection point is located in the middle of 
the loop (Fig.4b). When the perfusion is insufficient, 
the FFR value is low and the urgent surgery is 
necessary, the Pa(Pd) becomes ‘thicker’ and is 
looking as asymmetric ‘8’ because of the 
asymmetric location of the self-interaction point 
(Fig.4c). Similar changes in the shapes of the 
dependencies (Pa–Pd) on Pd and (Pa–Pd) on Pa with 
progressing stenotic severity (functional, not 
geometrical!) have been observed in this study.  

Representation of the measured blood pressure 
signals as cycles allows computation of different 
integral parameters like the area located inside the 
loop and its two subparts produced by the 
intersection point, variability of its location and 
slope. 

The measured blood pressure signals Pa(t) 
sometimes exhibit oscillating behaviour (Fig.5a), 
while in many cases they remain relatively smooth 
(Fig.3).   Note   that   the   Pd(t)    curves   do    not 

 
a 

 
b 

 
c 

Figure 3: Blood pressure signals Pa(t) (upper lines) and 
Pd(t) (lower lines) measured in the epicardial coronary 
arteries with progressing stenosis severity (a,b,c). 

demonstrate such oscillating behaviour, because the 
stenosis serves as the wave absorber producing 
reflected waves that propagate in the upstream 
direction and appear in the Pa(t) signal. Similar 
regularity has been found in (Canic, 2006). 
Numerical simulations on the 1D model exhibit 
high-frequency, short wave-length reflected waves 
superimposed over the main wave front, and the 
computed high frequency oscillations were not a 
consequence of the numerical solver. Applying the 
3–5 point smoothing filters or eliminating the high 
harmonics from the Fourier expansion, the Pa(t) 
signals may be transformed in the smooth curves, 
but the computed FFR  values  will be always lower  
for  the  initial  Pa(t) (oscillatory) signals than for the 
smoother ones, because the smoothing procedure 
cuts the high oscillations and decreases the mean 
values of the signals. In that way the FFR computed 
on   the   oscillating   curves   can  overestimate   the 
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Figure 4: Pa(Pd) loops for the stenotic flows at FFR=0.86 
(a); FFR=0.7 (b); FR=0.53 (c).  

stenosis severity. The smoothing leads to elimination 
of information that can be complementary to the 
FFR value and useful for more detailed diagnostics 
of the stenosis rigidity or presence of the atheroma, 
thrombus and fibrous cap. The Pa(Pd) loops 
computed from the oscillating (Figure 6a) and 
smoothed (Figure 6b) pressure signals (see Figure 5a 
and 5b correspondingly) demonstrate the intensity of 
the high-frequency  oscillations produced by 
additional wave reflection. The smoothed curves 
(Figure 5b) still can be classified and explained in 
correspondence to the examples presented in Figure 
4, while the oscillating ones (Figure 5a) needs 
elaboration of new indexes and their biomechanical 
interpretation.  

The pulsatile component of the measured 
pressure signals is not taken into account in the FFR 
computations, so decomposition of the signal P(t) 
into the mean <P(t)> and oscillatory P/(t) terms   and 

 
a 

 
b 

Figure 5: In vivo measured pressure curves before (a) and 
after (b) the smoothing procedure – Pa(t) (1), Pd(t) (2), < 
Pa(t)> (3), <Pd(t)> (4). 

   
a 

 
b 

Figure 6: Pa(Pd) loops for the oscillatory (a) and smoothed 
(b) pressure signals presented in Figures 5 a and 5b 
accordingly. 

examination of the  oscillatory component may be 
interested for the diagnostic purposes, as well as for 
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deeper understanding the blood flow and pressure 
wave propagation through the stenosis. Fir instance, 
the FFR values could be computed separately for the 
mean and oscillatory components as 

FFR=<Pd(t)>/< Pa(t)>  and   FFRosc= P/d(t)/ P/a(t). 

A comparative analysis of the FFR, FFRosc and 
MLA values on a large representative group of the 
measurements in the stenosed arteries will be done 
in the next studies. 

3 MATHEMATICAL MODEL 

3.1 Steady Blood Flow between the 
Rigid Boundaries 

The simplest model of the blood flow in the stenosed 
artery in the presence of the guide catheter (Fig.1) is 
the steady viscous flow between the rigid coaxial 
cylinders. According to the well-know solution of 
the problem the axial flow is 

2 2
2 2 2 1
2

2 1 2

R RP r
V(r) R r ln

4 L ln(R / R ) R




 
       

 (1)

where 2R  is the radius of the artery, 1R  is the 

radius of the wire/catheter,   is the blood viscosity, 

L  is the distance between locations of the proximal 
and distal measurement sites, P is the measured 
pressure drop.  

The virtual FFR in the straight part of the blood 
vessel is computed on the CFD model that in the 
limit of the rigid wall and the steady inflow tends to 
the Poiseuille solution 

 2 2
P 2

P
V (r) R r

4 L




   (2)

From (1) and (2) the error in the FFR values 
computed basing on the measurement signals and 
CFD computations can be estimated.  

3.2 Pulsatile Blood Flow in Compliant 
Vessels 

Heart contraction produces oscillations of the 
pressure and flow that propagate along the vessels, 
and the speed of the pulse waves vary from c=5–8 
m/s in large elastic arteries to c=10–12 m/s in small 
resistive blood vessels. In elderly individuals and in 
the case of atherosclerosis, hypertension and some 
other cardiovascular disorders the pulse wave 
velocity increases up to c=25 m/s (Nichols et al, 
2011). The wave propagation and reflection at the 

arterial branching, atherosclerotic plaques, lesions 
and other non-uniformities produce complex 
superposition of the propagated and reflected waves. 
Spectral and wave-intensity analysis of the 
registered signals can reveal novel features of  
hemodynamics of stenosis and diagnostic indexes.  

In this paper the axisymmetric wave propagation 
between the coaxial cylinders is proposed as the 
model of the pulsatile blood flow and pressure wave 
propagation in the compliant artery when the 
guiding catheter is inserted (Fig.1).  

Fluid flow is governed by incompressible 
Navier-Stokes equations 

2

v 0,

v
(v )v p v,

t
 

 

         




    (3)

the mass and momentum conservation equations for 
the incompressible vessel wall  

2

w s2

u 0,

u
ˆp ,

t
 

 


  





 (4)

where v


 is the flow velocity, u  is the wall 
displacement,   and w  are the mass densities for 

the blood and wall,   is the fluid viscosity, p and 

sp  are the hydrostatic pressures in the fluid and 

solid, ̂  is the stress tensor for the vessel wall. 
The viscoelastic Kelvin-Voight body has been 

used as rheological model for the layers: 

i w i ik k w kA
t t

      
  

 
 (5)

where ikA  is the matrix of elasticity coefficients, 

w  is the wall viscosity, w is the stress relaxation 

time,  T
11 22 33 23 13 12, , , , ,      


 is the stress 

vector,   is similar strain vector, 

ik i k k i( u u ) / 2     , T is transposition sign. 

The boundary conditions include the no-slip flow 
condition at the inner rigid surface; continuity 
conditions for the fluid and solid velocities and the 
stress components at the fluid-wall interface: 

1r R : v 0 


 (6)

2 n n

du
r R : v ,

dt
   


 

 (7)

At the outer surface of the blood vessel the no 
displacement or no stress boundary conditions can 
be taken in the form 
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2 nr R h : 0 or u 0   
 

 (8)

where h is the thickness of the arterial wall, n and τ 
denotes the normal and tangential components. 

At the ends of the tube the fastening conditions 
for the tube   

z 0;L : u 0, 


 (9)
the input wave at the inlet and the wave reflection 
condition at the outlet of the tube  

0z 0 : p(t,0) p (t),   (10)

0z L : p(t,L) p (t),    (11)

where   is the complex reflection coefficient equal 
to the ratio of the amplitudes of the reflected and 
propagates waves (Nichols et al, 2011), 
Re( ) [0,1]   and Im( ) corresponds to resistivity 

and capacity of the downstream vasculature 
(Lighthill, 2001) are considered. 

The solutions of the problem (3) and problem 
(4)–(5) which are coupled via the boundary 
conditions (8)–(11) have been found as a 
superposition of the steady solution and small 
axisymmetric disturbance in the form of the normal 
mode: 

     
     

* * st ikz

* * st ikz

v, p v , p v , p e

u, p u , p u , p e





  

  

 

 

  

    

where v , u , 
p , 

sp  are the amplitudes of the 

corresponding disturbances,  r ik k ik , 

 r is s is , is  is the wave frequency, rk  is the 

wave number, rs  and ik  are spatial and temporal 

amplification rates, z is the axial coordinate. The 

steady part  * *,

v p  is identified with Poiseuille 

flow (1) between the rigid surfaces.  

The amplitudes v , u , 
p , 

sp  can be 

obtained from (3)–(4) as Fourier expansions   
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where 2 2
j j ji     , 2 2 2

j j w w j      , 

j j j/ c  , jc  is the speed of the j-th harmonics, 

kjC  are unknown constants, 0,1J , 0,1Y  are Bessel and 

0,1K  are modified Bessel functions of the 1st and 2nd 

kind.  
The difference of the obtained solution (12) and 

the well-known Womersley solution at different 
boundary conditions (Cox, 1968; Milnor, 1989) is 
the modified Bessel functions 0,1K  in the 

expressions of the fluid velosities and wall 
displacements which become infinite at r=0 and, 
therefore, are absent in the Womersley solution for 
the hollow tube (at 1R 0 ). The constants kjC  can 

be obtained by substitution of (12) into the boundary 
conditions (6)–(11). The resulting expressions are 
not present here because of their complexity.   

4 RESULTS AND DISCUSSIONS 

The pressure and flow distributions in the pulsatile 
flow between the coaxial rigid (guiding 
catheter/wire) and compliant viscoelastic surfaces 
have been computed on (9) using the following 
physiological parameters: ρ=1050 kg/m3, ρs=1000–
1300 kg/m3, μ=3.5·10-3 Pa·s, μs=1 Pa·s, τs=0.01–
0.1 s, R1=0.18–1.25 mm, R2=0.75–2.5 mm, 
Re( ) 0;0.5;0.9 , Im( ) 1 i   . The computed 

p(t, r, x)  and v(t, r, x)


 distributions have been 

averaged over the cross-sectional area between the 
two surfaces and then compared to the solutions of 
the same problem formulation (3)–(11) at R1=0 
(Lighthill, 2001). The aim of the study was to check 
whether the pressure signals measured for the 
pulsatile blood flow between two surfaces and in 
some cases in quite a narrow gap between them 
((R2–R1)/R2~0.5–0.75) are consistent with the CFD 
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computations for the flows in rigid tubes without the 
axial obstacles (Taylor et al, 2013; Qi et al, 2013; 
Rajani et al, 2013).  The input pressure waveforms 

0p (t)  and the wave reflection coefficients   have 

been taken in the same form for both geometries. 
The non-dimensional axial flow profiles Vx(r°) 

computed at the same pressure gradient δP/L=const 
and different relative size of the guiding 
catheter/wire R1/R2=0,1÷0,5, where r°=r/R2 are 
presented in Figure 7. The flow profiles are built at 
r[R1/R2,1], non-dimensioned by the maximal 
Poiseuille velocity, and the axial obstacle is plotted 
at r=±0.1. The non-dimensional WSS at the inner 
and outer surfaces are presented in Figure 8. In the 
presence of the catheter/wire the total energy 
dissipation due to the viscous drag is bigger than in 
the hollow tube (Poiseuille flow). The dissipation is 
bigger for the thin wires located in the centre of the 
blood vessel in the region of the maximal blood 
velocity, because thinner wires produce bigger 
velocity gradients.  

 

Figure 7: Axial flow profiles Vx(r°) at different values 
R1/R2= 0,1; 0,2; 0,3; 0,4; 0,5 (curves 1-5 accordingly). 

 

Figure 8: WSS at the inner rigid (dotted line) and outer 
compliant (dashed line) walls at R1/R2=0,1÷0,5. The solid 
line corresponds to the Poiseuille flow. 

      When the constant flow rate regime Q=const 
between the cylinders is maintained by different 

pressure gradients, the velocity profiles have 
different shapes produced by the main harmonics 
presented by the Bessel function J0(r) (Figure 9). 

 

Figure 9: Axial flow profiles Vx(r°) for the case Q=const. 
The labels are the same as in Figure 7.  

The FFR values have been computed for 
different sets of the material parameters and for the 
individual geometries of the 45 segments of the 
coronary arteries examined in this study (R1,R2,L,h). 
The corresponding distributions are shown in Figure 
10.  

 

Figure 10: Measured FFR (vertical axis) versus the FFR 
computed on the standard (I) and developed (II) models. 

In spite of possible patient-specific variations in 
some material parameters, the numerical 
computations on the developed model are closer to 
the FFR values measured via the CathLab, than the 
one computed for the flows in cylindrical 
geometries. Neglect of the high frequency 
components by smoothing of the measured signals 
leads to lower mean values for Pa but not Pd which 
results in overestimation of the stenosis severity. 
The obtained results must be also checked out on 
more complex geometries like curved/twisted tubes 
and in presence of smooth and irregular stenoses.  
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5 CONCLUSIONS  

Pressure signals registered before Pa(t) and behind 
Pd(t) the stenosis possess different oscillatory 
behaviour, because of the wave reflections at the site 
of the stenosis. The important diagnostic parameters 
crucial for decision making on surgery of the 
stenosis (stenting, bypass, grafts) are made on the 
signals measured in the presence of the guiding 
catheter and wire with the pressure gauge, while the 
computational approaches for estimation of the 
hemodynamic parameters are based on the 
simplified models. It was shown the mathematical 
model of the pulsatile flow between the rigid and 
compliant cylinders is more precise for the virtual 
FFR estimation than the model of the flow in the 
hollow rigid tube without any obstacles along the 
axis.  

Is was shown the mathematical model of the 
steady and pulsatile flow between the rigid and 
compliant surfaces predicts more accurate results for 
the diagnostic index < Pd(t)>/< Pa(t)>. It was also 
shown the pulsatile high frequency component gives 
complementary information on the stenosis severity.  
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