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Abstract: Cancer classification through high-throughput gene expression profiles has been widely used in biomedical 
research. Most recently, we portrayed a multivariate method for large scale gene selection based on 
information theory with the central issue of feature interdependence, and we validated its effectiveness 
using a colon cancer benchmark. The present paper further develops our previous work on feature 
interdependence. Firstly, we have refined the method and proposed a complete framework to select a gene 
signature for a certain disease phenotype prediction under high-throughput technologies. The framework has 
then been applied to a brain cancer gene expression profile derived from Affymetrix Human Genome 
U95Av2 Array, where the number of interrogated genes is six times larger than that in the previously 
studied colon cancer data set. Three information theory based filters were used for comparison. Our 
experimental results show that the framework outperforms them in terms of classification performance 
based upon three performance measures. Additionally, to demonstrate how effectively feature 
interdependence can be tackled within the framework, two sets of enrichment analysis have also been 
performed. The results also show that more statistically significant gene sets and regulatory interactions 
could be found in our gene signature. Therefore, this framework could be promising for high-throughput 
gene selection around gene synergy. 

1 INTRODUCTION 

In recent biomedical research, transcriptome 
analysis using high-throughput screening (HTS) 
technologies, such as microarrays, has been a 
prevailing approach to obtain gene expression 
profiles of cells of interest in response to 
physiological and genetic changes in several tissues. 
Since HTS is capable of interrogating many 
thousands of oligonucleotide probes simultaneously, 
the analysis of expression profiling data has shown 
enormous potential for the discovery of biological 
markers in carcinogenesis studies and in the 
diagnoses of diseases (Nevins and Potti, 2007). 
Different types of tumor cells can be marked by 
discriminating genes at expression level. Thus, 
biomarkers for distinct tumorigenesis stages and 
cancer classification under HTS experiments could 
be explored by selecting discriminating genes. The 
identification of subsets of these genes contributing 

to the predictive power is the process of finding so-
called gene signatures and is subject to change (Kim, 
2009). Out of an abundance of transcripts in a tissue, 
a few genes are differentially expressed, while a 
tremendous amount of mRNAs would be regarded 
as noise. Also, biologists favor a small number of 
candidate genes to achieve greater efficiency for in 
vitro validation. 

Identification of differentially expressed genes in 
bioinformatics can be referred to as feature 
selection, the domain of dimensionality reduction 
techniques, commonly termed in the context of data 
mining, machine learning and pattern recognition 
(Saeys et al., 2007). In particular, feature subset 
selection is a technique not only to reduce the 
feature dimension of data points without changing 
their initial representation, but also to select the 
minimal subset that maximizes the classification 
performance. In terms of knowledge discovery, this 
is actually based on the principle of parsimony (Bell 
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and Wang, 2000), leading to a preferred model 
having as few as possible variables that sufficiently 
fit with the data – this is very similar to the need of 
gene signature determination. Unfortunately, a 
typical microarray-based cancer experiment might 
only consist of tens to a hundred of clinical samples, 
but each sample has thousands to tens of thousands 
of genes to be questioned (Ein-Dor et al., 2006). The 
presence of experimental noise is another widely 
criticised issue in the experimental design of 
microarrays. The noise is unavoidable and doomed 
to existence from the early stages of sample 
preparation, extraction and hybridization, largely 
due to the principles of microarray technology. 
Feature subset selection is known to be an NP-
complete problem (Davies and Russell, 1994), and 
the curse of dimensionality and the common 
occurrence of experimental noise would make the 
procedure of discriminating gene selection and the 
process of finding a parsimony model even more 
challenging. 

Over the past decade, one can categorize feature 
selection methods into three groups: filters, wrappers, 
and embedded techniques, depending on how they 
interact with a classification method (Saeys et al., 
2007). A filter method measures features with 
respect to different phenotypes by considering the 
intrinsic properties of the data and does not make 
use of a classification algorithm within its selection 
scheme. There are two types of filters, univariate 
and multivariate methods. Univariate filters 
disregard feature interaction and evaluate features 
individually. Both parametric statistics (e.g. 
paired/unpaired student t-test & ANOVA) and 
nonparametric statistical tests like Wilcoxon rank 
sum are univariate. On the other hand, multivariate 
filters that consider feature-feature correlations to 
some extent are sometimes referred to as space 
search methods (Lazar et al., 2012). A wrapper 
employs a classification method to evaluate the 
prediction performance of a selected feature subset 
and an iterative selection process is wrapped around 
the classifier. The procedure is terminated with a 
stop criterion in order to obtain the best predictive 
model. Although the wrapper is able to manage 
feature-to-class relevance and feature-to-feature 
dependence, it seems prone to overfitting and is 
computationally time-consuming because of a small 
sample size and a large feature dimension. 
According to search strategies, the wrapper can be 
deterministic or randomized. Sequential forward 
selection and sequential backward elimination are 
two typical examples of deterministic wrappers, 
whereas simulated annealing or genetic algorithms 

serve as an illustration of randomized ones (Albrecht 
et al., 2003, Gheyas and Smith, 2010). Similar to the 
wrapper, an embedded approach is also dependent 
on a classification method and takes feature 
correlations into account. However, the embedded is 
less computationally intensive than the wrapper as 
feature subset selection is embedded in a base 
classifier. As soon as a classifier is built, features are 
about to be ranked or weighted. SVM-RFE and its 
variants are one of the most representative examples 
of embedded feature selection (Guyon et al., 2002, 
Zhou and Tuck, 2007, Mundra and Rajapakse, 2010). 
The main idea is to rank features by the weight 
vector of a linear SVM hyperplane and to select 
features using a recursive feature elimination 
strategy. 

In recent years, several feature selection methods 
based on information theory have been developed to 
deal with feature-to-feature dependence and the 
correlation between a feature and the selected 
feature subset in large scale gene expression data. 
Moreover, more recently a probabilistic 
interpretation has been established, derived from 
optimizing the conditional likelihood, for unifying 
information theoretic feature selection (Brown et al., 
2012). Three space search feature selection methods 
are now briefly described and then compared to a 
new gene selection filter proposed in the present 
paper. The three multivariate methods are all based 
on information theory and focus on the issue of 
feature-feature dependence and feature-phenotype 
correlation. Ding and Peng proposed the minimum-
Redundancy and Maximum-Relevance framework 
(mRMR) to explore high order gene interactions 
(Ding and Peng, 2005). This method uses mutual 
information to cope with a tradeoff between the 
reduction of feature redundancy within a feature 
subset and the strength of feature-to-class correlation. 
Their experimental results show that the defined 
criterion could lead to features with least redundancy. 
Using conditional mutual information as an 
evaluation criterion, Fleuret proposed a fast binary 
feature selection (cmim) to select features having the 
largest association with respect to sample classes 
conditioned on the selected feature subset (Fleuret, 
2004). As the cmim criterion would select features 
having more information about sample classes 
evaluated only by pairwise feature statistics, some 
informative features, in which biologists could be 
interested, would be removed, even though the 
author claims that the selected features are 
informative and weakly pairwise dependent. The 
third feature selector, fcbf, was designed by Yu and 
Liu to efficiently eliminate a considerable number of 
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irrelevant and redundant features (Yu and Liu, 2004). 
While mRMR and cmim define evaluation criteria, 
fcbf introduces an approximate Markov blanket as a 
search strategy for an efficient feature removal by 
using symmetrical uncertainty. This method 
therefore selects much fewer features than mRMR 
and cmim and is very prone to removing 'less 
informative' but important features that might be of 
interest to the domain expert. Although feature 
relevance and feature redundancy are well addressed 
by the three multivariate filters just discussed, 
feature interdependence is discarded in favour of 
reduced computational complexity. Feature inter-
dependence may point to an important feature that is 
strongly discriminative together with other features 
in the selected feature subset, but is individually less 
informative relative to a class. The approach could 
be biologically meaningful within gene signatures in 
post-genomics. 

Most recently, we portrayed a multivariate gene 
selection method around feature interdependence by 
using information theoretic measures and validated 
its effectiveness with colon cancer classification data 
(Lai et al., 2013). Based on the preliminary results, 
we have now refined the method by appropriately 
fine-tuning parameter settings, by establishing an 
aggregation scheme for gene signatures, and by 
proposing an RC plot to demonstrate how gene pairs 
could bring more information about sample classes 
than individual genes can do. Finally, we present a 
complete framework for identifying high-throughput 
gene signatures for a certain disease phenotype 
prediction, based on brain cancer gene expression 
profiles (Nutt et al., 2003) using Affymetrix Human 
Genome U95Av2 Array, in which the dimension of 
features is six times larger than that in the colon 
cancer data matrix (Alon et al., 1999) examined in 
our previous work. It implies that the discovery of 
biologically discriminative genes based on the brain 
experiment would be more demanding than that in 
the colon expression matrix. 

2 PRELIMINARIES 

2.1 Domain Description 

In this section, the domain of HTS gene selection for 
phenotype prediction is briefly described. Given a 
gene expression dataset ܦ ൌ ሼܺ ∈ Թ௠, ܥ ∈ Թሽ ൌ
ሼሺݔ௜, ܿ௜ሻሽ௜ୀଵ

௡ , where ܦ includes n samples ܺ labeled 
by  a class vector C, and each sample is profiled 
over m gene expressions, i.e. ݔ௜ ൌ ሼݔ௜ଵ,⋯ , ௜௠ሽ௜ୀଵݔ

௡ , 
݉ ≫ ݊. The domain expert expects to find a small 

number of discriminating genes (from tens to a 
hundred) for clinical classification to be validated in 
vitro and to identify a gene signature for a specific 
disease. To address the issue of HTS-based gene 
signatures, we can refer to it as a feature selection 
problem. Let F be a full set of features (genes) 
ܨ ൌ ሼ ௜݂ሽ௜ୀଵ

௠ , then feature selection aims at choosing 
a feature subset ܩ ⊂  that maximizes the prediction ܨ
performance; moreover, if G is aimed at a minimum, 
a parsimonious subset is sought for. 

2.2 Information Theory Basics 

Entropy is the rationale behind information theory 
and is an intuitive measure to evaluate the 
uncertainty of a random variable. Given a variable, it 
is computed at the level of probability distributions 
(Cover and Thomas, 2012). Let X be a nominal 
random variable, Shannon entropy is defined as 

HሺXሻ ൌ െ∑ ሻݔሺ݌ log ࣲ∋ሻ௫ݔሺ݌ , (1)

where x denote the values of the random variable X 
over its alphabet ࣲ (the domain), and ݌ሺݔሻ  is the 
marginal probability distribution of X. Without loss 
of generality, the domain ࣲ will be ignored in the 
rest of the paper. Unlike conventional statistics, an 
entropy-based measure does not make any a priori 
assumption. For instance, one is required to ask 
whether data is normally distributed before using the 
student’s t-test. Additionally, other information 
quantities can also be defined through applying 
probability theory to entropy. The conditional 
entropy of X given Y is represented as 

HሺX|Yሻ ൌ െ∑݌ሺݕሻ∑݌ሺݕ|ݔሻ log  ሻ, (2)ݕ|ݔሺ݌

where ݌ሺݕ|ݔሻ  is the conditional probability of X 
given the observed values of Y. This quantity 
evaluates how much uncertainty of X is left given 
that the value of another random variable Y is 
known. Similarly, the joint entropy of two random 
variables X and Y is denoted as 

HሺX, Yሻ ൌ െ∑∑݌ሺݔ, ሻݕ log ,ݔሺ݌  ሻ, (3)ݕ

where ݌ሺݔ,  ሻ is the joint probability distribution ofݕ
X and Y. It quantifies the amount of information 
needed to describe the outcome of two jointly 
distributed random variables. Another important 
information theoretic measure, mutual information, 
quantifies the amount of information shared by two 
random variables X and Y, and can be obtained by 
the definition of entropy and conditional entropy 

MIሺX, Yሻ ൌ HሺXሻ െ HሺX|Yሻ.  (4) 

The mutual information is the reduction of entropy 
of one variable, if the other is known. This measure 
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is symmetric and non-negative, and the value of zero 
implies that the two variables are statistically 
independent. The mutual information of X and Y 
can also be conditioned on Z, conditional mutual 
information, and defined by 

CMIሺX, Y|Zሻ ൌ HሺX|Zሻ െ HሺX|Y, Zሻ.  (5) 

The quantity measures the information amount 
shared between X and Y, if Z is known. Finally, we 
introduce symmetrical uncertainty that will be 
heavily utilized in our gene selection framework 
throughout the paper. The measure could be viewed 
as one type of normalized mutual information and 
defined as 

ܵ ௑ܷ,௒ ൌ 2 ቂ
ୌሺଡ଼ሻିୌሺଡ଼|ଢ଼ሻ

ୌሺଡ଼ሻାୌሺଢ଼ሻ
ቃ. (6) 

If X is a joint random variable, the joint symmetrical 
uncertainty could be acquired by exactly the same 
idea as the joint entropy. 

2.3 Feature Relevance 

Given a full set of features F and a feature ௜݂, then 
let ܨ௜ ൌ \ܨ ௜݂  denote that the feature ௜݂  is removed 
from the set F. Kohavi and John (hereafter KJ) 
defined three feature types of relevance to sample 
classes via the probability distribution of the class C 
conditioned on the features of ௜݂  and ܨ௜ , as in the 
following Definition 1-3 (Kohavi and John, 1997). 
Definition 1: KJ-Strong Relevance: 
A feature ௜݂ is strongly relevant to C iff 

|ሺC݌ ௜݂, ௜ሻܨ ്  ௜ሻ. (7)ܨ|ܥሺ݌

Definition 2: KJ-Weak Relevance: 
A feature ௜݂ is weakly relevant to C iff 

|ሺC݌ ௜݂, ௜ሻܨ ൌ  ௜ሻ andܨ|ܥሺ݌
௜ܨ∃

ᇱ ⊂ |ሺC݌ ௜ such thatܨ ௜݂, ௜ܨ
ᇱሻ ് ௜ܨ|ܥሺ݌

ᇱሻ. 
(8) 

Definition 3: KJ-Irrelevance: 
A feature ௜݂ is irrelevant to C iff 

௜ܨ∀
ᇱ ⊆ |ሺC݌ ,௜ܨ ௜݂, ௜ܨ

ᇱሻ ൌ ௜ܨ|ܥሺ݌
ᇱሻ. (9) 

The three definitions imply that an ideal feature 
subset should include all strongly relevant features 
and some weakly relevant features with least feature 
redundancy, and all irrelevant features should be 
removed. Given two jointly distributed random 
variables ௜݂ ௝݂  (or ௜݂௝), similar to KJ definitions, we 
can define a strongly relevant feature pair ௜݂௝ by the 
conditional probability distribution of the class C. 

Definition 4: Strongly Relevant Feature Pair: 
A feature pair ௜݂௝ is strongly relevant to C iff 

|ሺC݌ ௜݂௝, ௜௝ሻܨ ്  ௜௝ሻ,  (10)ܨ|ܥሺ݌
 

where ܨ௜௝ denotes the feature set F with the features 

௜݂ and ௝݂ both together eliminated from F. Therefore, 
a feature pair is referred to as a united-individual 
(feature fusion) and must be selected or removed 
together during the process of selection. The strong 
relevance of a feature pair will be the basis for the 
framework presented in our paper for finding HTS 
gene signatures. 

2.4 Feature vs Feature Fusion 

We propose a ‘Ratio by Correlation’ (RC) plot in 
order to demonstrate if feature pairs can reveal more 
information about the class C than single features 
could do and whether or not feature fusion can 
provide insight into feature interdependence, 
revealing potentially some genetic regulatory 
interactions between features. Out of the probe-sets 
(features) designed in the Affymetrix Human 
Genome U95Av2 Array with a real gene expression 
data set (Nutt et al., 2003), ten thousand feature pairs 
fij were randomly selected to generate the RC plot as 
shown in Figure 1. Given the population of the 
selected pairs and a gene expression matrix with the 
corresponding sample class vector, we used 
symmetrical uncertainty to calculate two correlation 
measures between two features and C (SUi,c and 
SUj,c, respectively), and additionally one correlation 
value between a feature fusion and C (SUij,c). Then 
the mean of SUi,c and SUj,c was computed and 
represented by M, followed by three computations 
displayed below: 

ܵ ூܷி,஼ ൌ logଵ଴  (11) ;ܯ
 

ܷܵிி,஼ ൌ logଵ଴൫ܵ ௜ܷ௝,௖൯; (12) 
 

ܴ ൌ logଶ൫ܵ ௜ܷ௝,௖൯ െ logଶ  (13) .ܯ

The RC plot is constructed by plotting R against 
ܵ ூܷி,஼ and against ܷܵிி,஼, respectively. Here, ܵ ூܷி,஼ 
represents the average correlation between 
individual feature and C, whereas ܷܵிி,஼  denotes 
correlation between feature fusion and C. Thus, R is 
the ratio between feature fusion correlation and 
individual feature correlation. For the convenience 
of visualization, a logarithmic scale is used, with 
twofold changes for the ratios and tenfold increases 
for correlations. 

While most feature fusions have a significantly 
increased joint effect, there still exist many cases 
where two features coupled together do not provide 
more information about a class, and this happens 
especially for those features that might potentially be 
considered as strongly relevant to the class. 
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Figure 1: Ratio by Correlation Plot. 

Moreover, a few cases have been found where a 
feature fusion has a decrementing joint effect if two 
strong features are joined together. It might imply a 
common phenomenon in gene regulation where one 
gene can be silenced or deactivated by another gene 
or its products. On the other hand, there are only a 
few feature fusions from very weak features having 
exceptionally high strength of association between 
them and the class due to some kind of their 
underlying interdependence. Overall, we observe 
that single features (red scatter plot) move 
rightwards towards feature fusions (blue scatter plot) 
in Figure 1. It means that there is a clear tendency 
for features to combine to stronger pairs. Therefore, 
we believe that feature pairs would play more 
important roles than individual features in gene 
selection based on high-throughput gene expression 
profiles. Feature fusion could either bring more 
information about C or have a potential for dealing 
with feature interdependency that could take more 
gene synergy into account. 

3 iRDA – A FRAMEWORK FOR 
FINDING GENE SIGNATURES 

A complete framework for selecting high-throughput 
gene signatures is shown in Algorithm 1. This novel 
gene selector is named iRDA, abbreviated by gene 
selection guided by interdependence with redundant-
dependent analysis and a gene aggregation. The 
framework is based on information-theoretic 
measures, an appropriate search strategy, a suitable 
parameter estimation criterion, a mixture of forward-
backward phases, and a simple aggregation scheme. 
The rationale for devising such a framework is to 
select a gene signature around gene synergy that 
could potentially discover genetic regulatory 
modules or disease-related factors. Interdependence 
between features is, therefore, a matter of concern. 

The proposed gene selection method is a four-
step framework with a vast body of feature pairs, 
including a set of analyses of feature relevance, 
feature   interdependence,   feature   redundancy  and 

Algorithm 1: iRDA Gene Selector. 

Given: ܦ ൌ ሼܺ ∈ Թ௠, ܥ ∈ Թሽ ൌ ሼሺݔ௜, ܿ௜ሻሽ௜ୀଵ
௡  and 

ܨ ൌ ሼ ௜݂ሽ௜ୀଵ
௠  

Parameter:  
Find: gene signature G 

RELEVANCE: 
1      ∀ ௜݂, calculate ܵ ௜ܷ,௖
2      Sort ܵ ௜ܷ,௖  into descending order 

3      Perform k‐mean clustering (k=5) on the sorted 
ܵ ௜ܷ,௖  

4      Label 5 clusters R1‐R5 whose centroids are in 
descending order 

INTERDEPENDENCE: 
5      Forward Phase 
6      t=1 
7      for i=1 to sup(R1) 
௦௧ܩ          8 ൌ ∅ 
9          for j=i+1 to sup(R4) 

10            if ܵ ௜ܷ௝,௖  > , where  is estimated by Eq. (14) 

11                add feature pairs  ௜݂ ௝݂  to ܩ௦௧,  ௜݂ followed by 

௝݂  

12                where  ௜݂ is a seed ( ௦݂
௧) and added once 

only 
13        end 
14        t=t+1 
15    end 
16    Let ܩ௣௥௘ ൌ ሼܩ௦௧|ܩ௦௧ ് ∅, 	by	led	௦௧ܩ ௦݂௧ሽ 

REDUNDANCY AND DEPENDENCE: 
17    Backward Phase 
18    for each ܩ௦௧ do 
19        for each  ௜݂ ∈  ௦௧ do first in last checkܩ
20             ௜݂ 	 is removed instantly if ܫܯܥሺ ௜݂,  ௦௧ሻ=0ܩ|ܥ
௦௧ܩ            21 ൌ ∅ if ܫܯܥሺ ௦݂

௧,  ௦௧ሻ=0ܩ|ܥ
22        end 
23    end 
24    Insertion Phase 

25    ∀ ௦݂,௝ ∈  ௣௥௘, addܩ ௦݂ to ܩ௝
௧ if applicable 

௣௥௘ᇱܩ    26  is then established 

27    perform backward phase on ܩ௣௥௘ᇱ  

28    Let 

௣௢௦௧ܩ ൌ ൛ܩ௦௧หܩ௦௧ ് ∅, ௦௧ܩ# ൐ 1, ܵ ௦ܷ,௖
௧ିଵ ൐ ܵ ௦ܷ,௖

௧ ൟ  

AGGREGATION: 
29    t=1, G=∅ 
30    do 
31        G=G	∪  ௦௧ܩ
32        t=t+1 
33    while G=ܩ௣௢௦௧ or G is defined 

dependence, and feature aggregation. Features 
relevant to C defined by KJ looks sensible in theory, 
but it would hardly work in practice, specifically for 
the analysis of large-scale gene expression profiles. 
In general, high throughput gene expression 
profiling has only a relatively small number of 
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differentially expressed genes, and correlations 
between features and labels are exponentially 
distributed. In this paper, we estimate the degree of 
features relevant to a target class via an analysis of a 
partition method working on a selected correlation 
measure. Given a random value for feature fi, 
symmetrical uncertainty SUi,c is used to quantify the 
strength of association between features and labels. 
After sorting all of the calculated correlations in 
descending order, k-mean clustering is proceed upon 
the sorted list of SUi,c to partition features into five 
groups. We label the five clusters as ܴଵ ⋯ܴହ  in 
descending order according to their centroids, to 
gradually make the way down the scale of KJ-
relevance/-irrelevance to C. These feature types will 
be a prerequisite to conduct our main idea of feature 
interdependent analysis. 

The consideration of multi-way gene interactions 
would have the potential for a road map of feature 
interdependence. However, because of the immense 
complexity of gene regulatory mechanisms, it would 
not be a good strategy to infer multi-way feature 
interdependence in a direct way. Unlike traditional 
feature selection filters working on a search space of 
individual features, feature pairs will be our main 
body throughout the framework and individual 
features with various scale of relevance to sample 
classes will only be an indicator in the subsequent 
analyses. It is impractical to perform exhaustive 
search for visiting all feature pairs if the number of 
features is very large. Therefore, feature relevance 
partitions from the previous step could be an 
indicator to produce potential feature fusions that are 
KJ relevant to C. In the second step, given a joint 
random variable of two features fifj (or fij), joint 
symmetrical uncertainty SUij,c is used to measure the 
strength of correlation between a feature fusion and 
a class variable. The aim of this step is to search for 
those strongly relevant feature pairs whose joint 
symmetrical uncertainty values are greater than a 
threshold . We assume that one feature in ܴଵ 
partition colliding with the other feature in the 
partitions of ܴଵ, ܴଶ, ܴଷ and ܴସ might have a positive 
joint effect for producing potential feature fusions. 
Based on this assumption, an estimation of the 
threshold  will be a critical task for exploring 
feature pairs. We propose to estimate the critical 
value by the following equation: 

ε ൌ ܵ ௜ܷ௝,௖ , (14) 
  where ௜݂௝ ∈ Ω, 

Ω = ቄ ௜݂௝
ሺ்ሻหܶ ൌ 1,⋯ , ܶ∗; ܵ ௜ܷ௝,௖ ൐ ܵ ௜ܷ,௖; ܵ ௜ܷ,௝ ൏ ܵ ௝ܷ,௖ቅ. 

Given the number of trials T, two features (fi, fj) in

 the sorted list of SUi,c are coupled in turn, where 
SUi,c > SUj,c, to test if the conditions of ܵ ௜ܷ௝,௖ ൐
ܵ ௜ܷ,௖  and ܵ ௜ܷ,௝ ൏ ܵ ௝ܷ,௖  are satisfied. Then when ܶ∗ 
successful feature fusions that meet the conditions 
are executed, the mean of their SUij,c is computed to 
be the estimation of the threshold . The conditions 
reveal that a feature fusion has positive joint effect 
and less redundancy between the two coupled 
features even though a feature correlation sometimes 
does not necessarily mean redundancy. Once a 
feature fusion succeeds in the examination of SUij,c > 
, the feature is then added to a subset of ܩ௦௧ led by a 
seed feature fs. It means, every feature fusion fsj in ܩ௦௧ 
has the same feature fs, and every feature belongs to 
the subset in the order of its relevance to C. Finally, 
there could be a collection of ܩ௦௧s led by various seed 
features. Through the approximation of high-order 
feature interdependence led by seed features and 
their feature fusions, feature interdependence could 
be extended from mutual dependence on feature 
pairs to high dimensional gene interactions. 

If a subset is formed, it is necessary to ask if 
there are any redundancies among features within a 
selected feature subset. A minimal feature subset 
must include the most discriminative features, but 
avoid redundant features. Thus the third step is 
mainly to check and remove redundant features as 
many as possible to form a parsimonious set of 
features. Given a collection of subsets derived from 
interdependent analysis, Gpre, the conditional mutual 
information CMIሺ ௜݂,  ሻ of a feature ௜݂ and label Cݐݏܩ|ܥ
conditioned on a subset ܩ௦௧ ∈ ݁ݎ݌ܩ  is used for this 
purpose by using an approximation of backward 
elimination with first in last check policy. For any ܩ௦௧, 
we test if the value of CMIሺ ௜݂,  ሻ is zero for everyݐݏܩ|ܥ
feature checked one by one and from the end of ܩ௦௧ 
to the beginning of ܩ௦௧. A feature whose CMI value 
is zero will instantly be removed and the next less 
relevant feature will then be checked until the 
features in ܩ௦௧ have all been tested. If a seed feature 
is eliminated, the subset ܩ௦௧ led by this feature will 
be discarded; otherwise, features that remain in a 
retained subset are considered to be dependent on 
the seed feature. When redundancy analysis of Gpre 
is finished, for any feature fusions with seed features 
(fsj) in Gpre, a seed feature fs might be added to the 
subset led by feature fj if applicable. This procedure 
is in order to complement the greedy formulization 
of ܩ௦௧. Therefore, we might have a new collection of 
subsets ܩ௣௥௘ᇱ  so that a second round of redundant 
analysis would be required for ܩ௣௥௘ᇱ . iRDA actually 
includes a forward phase and a backward phase. 
Interdependent analysis carries out forward addition 
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and more false positive features might be selected in 
this phase while redundant and dependent analysis 
performs backward elimination to identify and to 
remove false positive features. An insertion phase 
included in redundant and dependent analysis 
increases a chance that true positive features might 
enter some potential subsets. Through these phases, 
a final collection of parsimonious subsets Gpost is 
able to safely accomplish. 

As biomedical researchers are always more 
interested in candidate genes regarding a specific 
disease, in a word, a gene signature is a main issue 
to find potentially biomarkers, biological process, 
molecular function, cellular mechanism, and 
regulatory motifs. Conventional gene selectors 
usually allow people select genes as many as they 
can to define a gene signature so the final step of our 
method is to aggregate genes to establish a gene list 
where an appropriate gene signature might be found. 
Since each subset ܩ௦௧ ∈ ݐݏ݋݌ܩ  is built by a seed 
feature fs, the strength of relevance between fs and C 
is able to use as an indicator for gene aggregation. 
We first select a subset having the most relevant 
seed feature, and aggregating genes by considering 
next subset whose seed feature is the next most 
relevant to C. This procedure proceeds until no 
genes can be accumulated (G=Gpost) or a preferred 
gene signature G is defined. 

4 EXPERIMENTAL RESULTS 

To show the proposed framework is potentially 
capable of selecting the most discriminative gene 
signature for phenotype prediction and of finding 
significant genetic regulation within the selected 
signature, a publicly available microarray-based 
brain cancer classification data was used (Nutt et al., 
2003). The experiment was designed to investigate 
whether high-throughput gene expression profiling 
could classify high grade gliomas better than 
histological classification. The data set consists of 
50 samples and 12,625 probe-sets using Affymetrix 
Human Genome U95Av2 Array. Out of 50 high 
grade gliomas, there are 28 glioblastomas (GBM) 
and 22 anaplastic oligodendrogliomas (AO). Upon 
this gene expression matrix, features were 

discretized to three bins as suggested by (Ding and 
Peng, 2005) and each bin was then designated by a 
discrete value such as 1, 3 and 5 for the better 
calculation of information theoretic measures. We 
evaluated the proposed framework with three model-
free feature selection filters (mRMR, cmim and fcbf) 
to know the capacities of four gene selectors in 
terms of classification performance and enrichment 
analysis. While classification performance reveals 
how good a selected model could predict, 
enrichment analysis could display whether a gene 
signature actively involves gene synergy. 

Because of the curse of dimensionality, the 
conventional training-test data partition given a ratio 
(say 60-40%) is not very appropriate for the 
assessment of gene selection approaches in the 
domain of high-throughput gene expression data. 
Thus, the procedure of leave-one-out cross-
validation (LOOCV) was used in our experiments. 
Three performance measures were chosen to assess 
the predictive power of selectors. They are the 
number of misclassification (ERR), the area under a 
receiver operating characteristic curve (AUC) and 
the Matthews correlation coefficient (MCC). 
Besides, a reference classifier is required to induct 
filter-based feature selectors into a learning process. 
This is due to their independence of learning 
methods. We utilized the k-nearest-neighbour (k-NN) 
classifier (k=3) to establish classification models 
after gene selectors had been performed. 

There were three feasible subsets generated by 
iRDA for the binary classification of the brain 
dataset and 8 unique features in total were involved 
in these subsets. Hence, three sets of features were 
established by mRMR, cmim and fcbf and each set 
had eight features to be compared with iRDA. From 
the viewpoint of parsimony, a minimal feature 
subset is selected to evaluate how well the chosen 
features could dedicate themselves to a class versus 
those features of the other three selectors, results 
shown in Table 1. The optimal subset was the one 
led by the first seed feature and its cardinality was 
just three. The misclassification rate was 0.4 that 
was also the lowest one and only fcbf could reach 
the same level using four genes. In addition, the 
four-gene   set   of   fcbf   had   the   highest of MCC 
performance,  92.26%,  very  slightly  better than the 

Table 1: Prediction performance in terms of parsimony. 

 iRDA  mRMR  cmim  fcbf  
 % #Gene  % #Gene  % #Gene  % #Gene  
ERR 4.00 3  6.00 4  6.00 6  4.00 4  
AUC 99.68 3  98.54 8  100 7  94.72 5  
MCC 92.11 3  87.96 4  88.32 6  92.26 4  
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three-gene set of iRDA by 0.15%. The best AUC 
performance went to the cmim gene signature at the 
level of 100% whereas the minimal gene set of 
iRDA had nearly approached the same level by 
0.32%; however, cmim had employed seven genes 
more than twice the features produced by iRDA. In 
sum, a parsimony model of the three-gene set built 
by iRDA had very good predictive power from all 
aspect of performance measures. 

 

Figure 2: Classification performance in four sets of gene 
signatures. 

Other than the selection of a parsimonious subset, 
it is also an essential matter to select one of the best 
gene signatures with a reasonable gene size that 
could have the strongest classification performance 
and a strong possibility for biological findings 
regarding a certain disease or cancer such as 
biomarkers or regulatory modules. To do so, three 
feature subsets of iRDA were aggregated in order of 
the seed feature relevance to C and eventually an 
eight-gene signature could be established. We then 
compared our gene sets with those of mRMR, cmim 
and fcbf to know the performance among them and 
to see what the best gene signature would be. Figure 
2 shows that when iRDA aggregated the other 
features led by the other seeds into a parsimony 
model, classification performance was stronger and 
stronger, finally leading to no misclassification. 
Meanwhile, both AUC & MCC performance could 
also approach the highest level of 100% even though 
the parsimony model initially could not greatly 
outperform all of the other methods as discussed in 
Table 1. Furthermore, it is observed that except the 
proposed method no the other selectors here were 
able to dominate all of the three performance 
measures. For instance, when we only compared 
mRMR, cmim and fcbf, fcbf could have the best 
level of error and the MCC performance but its AUC 
level was undoubtedly the lowest. Similarly, cmim 
was able to reach the AUC value at 100% but was 
decidedly inferior to fcbf in either error or MCC. In 
a word, iRDA was far superior to the compared gene 

filters in terms of classification error and 
performance and an eight-gene signature (the full 
feature set of iRDA) was recognised as the best one. 

Table 2: Gene Set Enrichment Analysis. 

 iRDA mRMR cmim fcbf 
Native Features 8 8 8 8 
Collapsed Features 7 8 7 8 
Enrichment in GBM     

FDR<25% 3 0 0 0 
p-value<5% 6 0 0 1 

Enrichment in AO     
FDR<25% 3 1 1 0 
p-value<5% 4 1 2 0 

Enrichment in total     
FDR<25% 6 1 1 0 
p-value<5% 10 1 2 1 

Since the proposed method has paid attention to 
feature interdependence, it is an essential issue to 
know if there is any molecular information extracted 
from a gene signature that is generated by gene 
selectors. This relates to enrichment analysis that 
might provide an insight as to how genes inter-
actively work together about biological process. A 
tool of gene set enrichment analysis, GSEA 
(Subramanian et al., 2005), was employed in this 
paper to see how many gene sets are statistically 
significantly enriched based on a collection of a 
priori annotated gene sets, here MSigDB database 
was considered. We generated four sets of eight-
gene signatures from four gene selectors, the same 
as we mentioned in Figure 2, to be studied on GSEA 
with MSigDB. After the process of collapsing 
original features into gene symbols, there were 7 
genes in iRDA and cmim signatures and 8 genes in 
mRMR and fcbf signatures. Based on these 
collapsed features, Table 2 shows that given an 
iRDA gene signature, there were 6 and 4 gene sets 
recognised as statistically significant enrichment in 
two phenotypes of GBM and AO respectively (p-
value<0.05) while the other three gene signatures 
had far fewer enriched gene sets. Moreover, out of 
up-regulated gene sets in two phenotypes, 6 gene 
sets were statistically significantly enriched in total 
(FDR<0.25) for the iRDA gene signature – by far 
the most number of enrichment in this study. 

In addition to GSEA, we have also adopted 
WebGestalt (Wang et al., 2013) to carry out a 
functional genomic enrichment analysis that 
biological themes of gene lists could be open to 
interpretation. The same sets of four gene signatures 
as used in GSEA were once again submitted to 
WebGestalt. After transferring probe-set id into gene 
symbol,   the  number  of  gene   remained   in   their  
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Table 3: Functional Genomic Enrichment Analysis. 

 iRDA  mRMR  cmim  fcbf  
Selected Probe-Sets 8  8  8  8  
Mapped Genes 7  7  6  8  
 #Gene #Factor  #Gene #Factor  #Gene #Factor  #Gene #Factor  
Transcription Factor 5 5  0   2 2  0   
MicroRNA 5 8  2 1  2 1  2 1  
Disease 2 1  0   0   0   

p-value<0.05 

 

original gene sets was 7, 7, 6 and 8 for the signatures 
of iRDA, mRMR, cmim and fcbf, respectively. 
These remained genes would be the basis to see how 
many functional factors could be found and how 
many genes have been involved in those identified 
biological factors at the statistical significance level 
of 0.05. Gene synergy is initially one of our main 
ideas to develop a new gene selector; therefore it is 
important to understand if there are any relationships 
between gene regulatory modules and a gene set. We 
have found that 5 genes in iRDA seven-gene 
signature were connected to five transcription 
factors and eight microRNA targets, respectively; 
and there were only two interactions found between 
two transcription factors and two genes within the 
cmim six-gene signature while no interactive 
relationships with transcription factor were found in 
the gene signatures of mRMR and fcbf (see Table 3). 
Although one microRNA-mRNA interaction was 
found with two genes in the gene lists of mRMR, 
cmim and fcbf, the discovered interaction was 
actually the same one and included in iRDA 
microRNA-mRNA findings. To reveal cancer-
related genes, disease association analysis was 
performed. Out of the iRDA selected genes, a report 
has statistically significantly related two genes to the 
disease of inflammation – one of key factors in 
tumour development (Coussens et al., 2013). 

5 CONCLUSIONS 

A framework for high throughput gene signatures, 
named iRDA, is presented in this paper. Whereas 
individual features are searched in conventional 
gene selection in a either univariate or multivariate 
manner, the proposed filter is mainly focused on 
feature fusion. Single feature relevance to a class 
variable is just used as an indicator throughout the 
framework. By using a number of information 
theoretic measures and through a series of analysis 
of feature characteristics including relevance, 
interdependence, redundancy and dependence, the 
iRDA gene selector is devised around gene synergy 

based on feature pairs and seed features that lead to 
various possible parsimonious set of feature. With a 
simple aggregation scheme, a gene signature is 
eventually able to be defined for finding biological 
information related to a certain disease in different 
phenotypes. 

To demonstrate the effectiveness of this newly 
developed gene selector in the domain of high-
throughput gene signatures, a brain cancer gene 
expression profiling data was examined. This 
expression matrix was derived from Affymetrix 
Human Genome U95Av2 Array, and having 50 
labelled samples and 12,625 interrogated genes. The 
curse of dimensionality implicates that the task of 
gene selection is an enormous computing challenge. 
Based on the brain cancer data set, we have 
compared iRDA with three filters (mRMR, cmim 
and fcbf) that are widely discussed in the research 
community. Also, these methods all use information 
theoretic measures. The experimental results show 
that an 8-gene signature was defined by iRDA and it 
outperformed the other three methods in terms of 
classification performance with three performance 
measures. Meanwhile, we performed two sets of 
enrichment analysis to see how effectively feature 
interdependence has been tackled in the framework. 
The results also show that more statistically 
significant gene sets and genetic regulatory 
interactions could be found in our gene signature. 
Furthermore, within the iRDA 8-gene signature, 
there were two genes associated with a disease of 
inflammation at the statistical significance level. 
And no the other filters could find disease-related 
genes. The rationale behind these significant 
findings is that our method is able to find an 
important feature which is individually weakly 
relevant to a class but might have strong 
interdependence between features. This type of 
genes accompanied by other genes in a selected gene 
list would more contribute to the phenotype than 
they appear solely at the expression level. Except for 
iRDA, however, most recent filter-based feature 
selectors could not search for these features that may 
attract the interest of the domain user. 

   A�Framework�for�High-Throughput�Gene�Signatures�with�Microarray-based�Brain�Cancer�Gene�Expression�Profiling
Data

219



We think that our iRDA framework can have the 
capacity of finding small size gene signatures with a 
potentially high predictive power that, in turn, could 
disclose biological information regarding gene 
synergy. 
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