
Combining Simulated Annealing and Monte Carlo Tree Search for
Expression Simplification

Ben Ruijl1;2, Jos Vermaseren2, Aske Plaat1 and Jaap van den Herik1

1Tilburg University, Tilburg center for Cognition and Communication, Warandelaan 2, 5037 AB Tilburg, The Netherlands
2Nikhef Theory Group, Science Park 105, 1098 XG Amsterdam, The Netherlands

Keywords: MCTS, Simulated Annealing, UCT, SA-UCT, Horner Schemes, Common Subexpression Elimination.

Abstract: In many applications of computer algebra large expressions must be simplified to make repeated numerical
evaluations tractable. Previous works presented heuristically guided improvements, e.g., for Horner schemes.
The remaining expression is then further reduced by common subexpression elimination. A recent approach
successfully applied a relatively new algorithm, Monte Carlo Tree Search (MCTS) with UCT as the selection
criterion, to find better variable orderings. Yet, this approach is fit for further improvements since it is sensi-
tive to the so-called “exploration-exploitation” constant Cp and the number of tree updates N. In this paper we
propose a new selection criterion called Simulated Annealing UCT (SA-UCT) that has a dynamic exploration-
exploitation parameter, which decreases with the iteration number i and thus reduces the importance of explo-
ration over time. First, we provide an intuitive explanation in terms of the exploration-exploitation behavior
of the algorithm. Then, we test our algorithm on three large expressions of different origins. We observe that
SA-UCT widens the interval of good initial values Cp where best results are achieved. The improvement is
large (more than a tenfold) and facilitates the selection of an appropriate Cp.

1 INTRODUCTION

In High Energy Physics (HEP) expressions with mil-
lions of terms arise from the calculation of processes
described by Feynman diagrams. Typically, these ex-
pressions have to be numerically integrated to predict
cross sections and particle decays in collision pro-
cesses. For example, in the Large Hadron Collider
in CERN such calculations were essential to confirm
the likely existence of the Higgs boson.

In order to predict the effects of currently undis-
covered particles and to improve the accuracy of cur-
rent HEP models, higher-order loop corrections are
needed, causing the size of the expressions to grow
exponentially. The intermediate forms of these ex-
pressions may often take terabytes of disk space.
Novel approaches are required to simplify these ex-
pressions to make evaluation feasible.

To simplify expressions Horner schemes and com-
mon subexpression elimination (CSEE) may be used.
Horner’s rule for simplifying expressions goes back
to 1819 (Horner, 1819). CSEE is commonly used in
compiler construction (Aho et al., 1988). In (Kuipers
et al., 2013a) the first application of MCTS for find-
ing a better variable ordering was presented, using
UCT (Kocsis and Szepesvári, 2006a) as the selection
criterion (see section 3). The MCTS performance is

sensitive to the choice of three parameters: Cp, N, and
R. Cp is the constant that governs the exploration-
exploitation choices of the algorithm, N is the num-
ber of tree updates, and R is the number of times the
MCTS is repeated. At the previous ICAART con-
ference the sensitivity to Cp and N was presented
(van den Herik et al., 2013b). At CCIS/BNAIC the
sensitivity to R was recognized (van den Herik et al.,
2013a; Kuipers et al., 2013b). We believe that the
practical applicability of the algorithm will improve
as the sensitivity to these parameters is harmonized.

This paper focuses on Cp. We modify the UCT
formula by introducing an exploration-exploitation
parameter T (i), which decreases with the current it-
eration number i, effectively making the constant Cp
a variable T (i). As a result, the first iterations will be
explorative and throughout the search, the child se-
lection will gradually become more exploitative, fa-
voring optimizing a local minimum over exploration.
The parameter T is similar to the role of the temper-
ature in simulated annealing (hence the name T). We
refer to the new formula as Simulated Annealing UCT
(SA-UCT).

We have tested our algorithms on three large ex-
pressions of different origins and we observed that
SA-UCT widens the interval of good initial temper-
atures T (0), where the number of operations is near

724 Ruijl B., Vermaseren J., Plaat A. and van den Herik J..
Combining Simulated Annealing and Monte Carlo Tree Search for Expression Simplification.
DOI: 10.5220/0004925707240731
In Proceedings of the 6th International Conference on Agents and Artificial Intelligence (ICAART-2014), pages 724-731
ISBN: 978-989-758-015-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

the global minimum, by more than a tenfold for all
three test expressions.

The paper is structured as follows. Section 2 pro-
vides a background and related work on expression
simplification and MCTS. Section 3 presents our new
selection criterion called SA-UCT. Section 4 shows
our measurement results. Section 5 presents the con-
clusion and section 6 gives an outlook on future work.

2 BACKGROUND

Numerous methods for simplifying expressions have
been proposed. Here we mention Horner schemes
(Knuth, 1997), common subexpression elimination
(Aho et al., 1988), Breuer’s growth algorithm for sys-
tems of expressions (Breuer, 1969), and partial syn-
tactic factorization (Leiserson et al., 2010). In this
paper we focus on two of these: Horner schemes and
common subexpression elimination.

2.1 Horner Schemes

One elementary method of reducing the number of
multiplications in an expression is based on Horner’s
rule (Horner, 1819; Knuth, 1997; Ceberio and
Kreinovich, 2004). Horner’s rule is straightforwardly
lifting a variable outside brackets. For multivari-
ate expressions Horner’s rule can be applied multi-
ple times, once for each variable. The order of the
extracted variables is called a Horner scheme. For ex-
ample:

x3y2 + x2y+ x3z) x2(y+ x(y2 + z)) (1)

By twice extracting the variable x (i.e., x2 and x), the
number of multiplications is reduced from 9 to 4. The
number of additions remains the same, which is a gen-
eral property of Horner schemes.

In multivariate expressions with n variables, there
are n! ways of extracting variables. For example, the
above expression could also be transformed to

x3z+ y(x2(1+ xy)) (2)

by first extracting y and then x. Using this scheme, we
have 7 multiplications left. Thus, this Horner scheme
is inferior to the first one.

The problem of selecting an optimal ordering is
NP-hard (Ceberio and Kreinovich, 2004). A heuristic
that works reasonably well is to select the variables
according to their frequency of occurrence (“occur-
rence order”), see e.g., (Kuipers et al., 2013a). How-
ever, this does not always yield good results, also not
when combined with common subexpression elimi-
nation (see below).

+

�

b +

a e

�

b c +

a e

Figure 1: A common subexpression (shaded) in a commu-
tative and associative tree.

2.2 Common Subexpression
Elimination

A way to reduce the number of operations even fur-
ther is to perform a common subexpression elimina-
tion (CSEE). This strategy is well known in the field
of compiler construction (Aho et al., 1988). CSEE
creates new symbols for each subexpression that ap-
pears twice or more. Consequently, the subexpression
has to be computed only once. Figure 1 shows an ex-
ample of a subexpression in a tree representation.

We note that there is an interplay between Horner
and CSEE in the following example:

sin(x)+ cos(x)+ sin(x)x+ cos(x)x =
sin(x)+ cos(x)+ x(sin(x)+ cos(x)) =
T + xT

Most practical methods of detecting common subex-
pressions will not find sin(x)+cos(x) as a subexpres-
sion in the first line, whereas in the second line it is
detected. Hence, we observe that Horner schemes can
expose common subexpressions.

2.3 Monte Carlo Tree Search

Because there is an interplay between Horner
schemes and CSEE, a trade-off exists between (1) se-
lecting the optimal Horner scheme that most reduces
the number of multiplications and (2) selecting the
Horner scheme that exposes the maximum number of
CSEs. The contrast is between (1) a Horner scheme
that reduces many multiplications, but has few CSEs,
and (2) an average Horner scheme that exposes many
CSEs. Category (2) would probably reduce the num-
ber of operations more than category (1). To find the
best option, an optimization method is needed.

Our goal is to minimize the total number of op-
erations after both the Horner scheme and the CSEE
have been applied to the expression. Motivated by the
successes in (Kuipers et al., 2013a), we apply Monte
Carlo Tree Search (MCTS) to our set of large expres-
sions. A rich literature exists on MCTS, which is suc-

Combining�Simulated�Annealing�and�Monte�Carlo�Tree�Search�for�Expression�Simplification

725

cessfully applied in the game of Go (Coulom, 2007).
For an overview, see, e.g., (Browne et al., 2012).

An outline of the MCTS algorithm is displayed
in figure 2. A tree is built in which each node is a
variable that will be extracted. The tree will be built
iteratively. At each iteration, a leaf (or a not fully ex-
panded node) is chosen according to a selection crite-
rion (see 2(a)) and section 3). This node is (further)
expanded by randomly picking one of the unvisited
children (see 2(b)). Starting from this new leaf, we
continue the path by randomly selecting children (i.e.,
variables) that have not been selected so far (see 2(c)).
The complete path is our Horner scheme1. For this
scheme, we compute a score D, which is the number
of operations after the Horner scheme and CSEE have
been applied (see 2(c) again). Finally, the result is
propagated backwards through the tree (see 2(d)). For
a more detailed explanation of MCTS, see (Browne
et al., 2012).

Thus, MCTS is able to capture the trade-off of the
Horner scheme and CSEE by using a score D which is
the number of operations of the final expression after
Horner and CSEE have been applied.

Since we are interested in the best Horner scheme,
we keep track of the best path that we come across
during the tree updates. This path may not be com-
pleted in the tree if the tree did not reach the bottom
or if there was another random playout that is better
than the (partial) path through the tree.

The essence of MCTS is to find a proper trade-
off between exploiting nodes that have been char-
acterized as good and exploring other (new) nodes
that may contain a promising path. The challenge
of a good algorithm is in balancing the exploration-
exploitation issue.

In the next section we modify the exploration part
of the UCT selection criterion to scale with the it-
eration number. In related work a different strat-
egy has been applied to make the importance of ex-
ploration versus exploitation iteration-number depen-
dent. For example, Discounted UCB (Kocsis and
Szepesvári, 2006b) and Accelerated UCT (Hashimoto
et al., 2012) both modify the average score of a
node (see below) to discount old wins over new ones.
In contrast, this work focuses on the exploration-
exploitation constant Cp.

3 OUR ALGORITHM: SA-UCT

In many MCTS implementations UCT (eq. (3)) is
chosen as the selection criterion (Browne et al., 2012;

1Note the difference with games such as Go, where only
the first move is needed.

Kocsis and Szepesvári, 2006a):

argmax
children c of s

x̄(c)+2Cp

s
2lnn(s)

n(c)
(3)

where c is a child node of node s, x̄(c) the average
score of node c, n(c) the number of times the node c
has been visited, and Cp the exploration-exploitation
constant. This constant determines the importance of
visiting a child that has not been visited often (explo-
ration), relative to visting a child with a high average
score (exploitation).2 If this constant is high, more
iterations will be spent on exploration and if this con-
stant is low, the iterations will be spent on exploita-
tion. Generally, a higher Cp results in broader trees,
whereas a smaller Cp yields deeper trees.

For our application, it matters that the tree is ex-
panded as deeply as possible, since we want to op-
timize the entire Horner scheme, instead of just se-
lecting the optimal first node, as is the case in games
such as Go (please note, this is an important differ-
ence). Therefore, it is more important that the last
iterations are used to deepen the tree and improve the
current local minimum than performing additional ex-
plorations. To achieve this, we introduce a dynamic
exploration-exploitation parameter T (for Tempera-
ture) that linearly decreases with the number of itera-
tions:

T (i) =Cp
N� i

N
(4)

where i is the current iteration number, N the pre-
set maximum number of iterations, and Cp the initial
exploration-exploitation constant at i = 0.

Our new best child criterion becomes:

argmax
children c of s

x̄(c)+2T

s
2lnn(s)

n(c)
(5)

where c is a child of node s, x̄(c) is the average score
of child c, n(c) the number of visits at node c, and
T the dynamic exploration-exploitation parameter of
eq. (4).

Thus, the first iterations are used for exploration
and gradually the focus shifts to exploitation and opti-
mization of the currently found local minimum. This
process can be thought of as a variant of simulated
annealing (Kirkpatrick et al., 1983), where a temper-
ature determines the probability of exploring energet-
ically unfavorable states. Starting at high tempera-
tures, there is a great deal of exploration and when

2In our application, the average score is the number
of operations without optimizations divided by the average
number of operations for visited paths through this node,
see (Kuipers et al., 2013a).

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

726

x

z

w

a.

x

z

w y

b.

x

z

w y

c.

Random scheme

D

D

D

D

D

d.

Figure 2: An overview of the four phases of MCTS: selection (a), expansion (b), simulation (c), and backpropagation (d).
The selection of a not fully expanded node is done using the best child criterion. D is the number of operations left in the final
expression, after the Horner scheme and CSEE have been applied. See also (Browne et al., 2012).

the temperature gradually decreases, the system con-
verges to a local minimum. In our case, the decreasing
exploration-exploitation parameter T takes the role of
the temperature. Because of the similarity between
these approaches, we call eq. (5) “Simulated Anneal-
ing UCT (SA-UCT)”.

4 RESULTS

In (Kuipers et al., 2013a), a sensitivity analysis of dif-
ferent parameters of MCTS is presented, which shows
that there is a small interval of Cp for which the num-
ber of operations is close to the global best. We call
this the region of interest. Below we investigate how
this region changes if we use SA-UCT as selection
criterion. Our experimental setup is as follows: we
compare the number of operations after the Horner
scheme and CSEE have been applied for fixed N and
different Cp for SA-UCT (eq. (5)) with those for the
original UCT (eq. (3)). In SA-UCT, Cp is the starting
value (initial temperature) T (0). We randomly sam-
ple 4000 dots for each graph (not to be confused with
the number of operations on the y-axis that also starts
with 4000).

We shall perform a sensitivity analysis of Cp on
the number of operations for three expressions from
mathematics and physics, namely HEP(s), res(7,5),
and F13, see (Kuipers et al., 2013a). HEP(s) and F13
arise from parts of different Feynman diagrams and
res(7,5) is a resultant (an object commonly used in
number theory).

In figure 3 we show the results for HEP(s) with 15
variables. The figures on the left are generated using
UCT. The figures on the right use SA-UCT (where Cp
is the initial temperature). Figure 3(a) and 3(b) are

measured with N = 300 tree updates, 3(c) and 3(d)
with N = 1000, and 3(e) and 3(f) with N = 3000 up-
dates. We see that for both algorithms there are dif-
ferent regions: one region in 3(a) and 3(b), two re-
gions in 3(f) and three regions in 3(c), 3(d), and 3(e).
The regions are separated by dashed lines. The re-
gions are called low, intermediate and high. In fig-
ure 3(e) these regions are most prominent. At low
Cp we observe that there are multiple local minima,
indicated by high-density band structures (three are
prominently visible). At intermediate values of Cp
we have the region of interest where only the near
global minimum is present. At high values there is a
diffuse region with no distinguishable local minima.
This happens when there is too much exploration.

Comparing the graphs on the left and on the right,
we see that the linearly decreasing Cp causes a hori-
zontal stretching, which makes the region of interest
larger. If we look at the middle graphs, 3(c) and 3(d),
where the number of updates N = 1000, the region of
interest is approximately [0:8;5:0] for a linearly de-
creasing Cp, whereas it is roughly [0:5;0:7] for a con-
stant Cp. Thus, SA-UCT makes the region of interest
about 20 times larger for HEP(s), relative to the unin-
teresting low Cp region with local minima which did
not grow significantly. For N = 3000, the difference
in size of the region of interest is even larger.

In figure 4 we have tested our method on
an expression from the field of mathematics,
namely a resultant res(7,5), where res(m;n) =
resx(å

m
i=0 aixi;ån

i=0 bixi), as described in (Leiserson
et al., 2010). While from a different field, we still ob-
serve the band structures at low Cp and the widening
of the region of interest occurs here as well. For figure
4(c) with N = 1000 tree updates using UCT the region
of interest is approximately [0:07;0:15] and for 4(c)

Combining�Simulated�Annealing�and�Monte�Carlo�Tree�Search�for�Expression�Simplification

727

HEP(s) with 15 variables
(a) N = 300

 4000

 4500

 5000

 5500

 6000

 0.01 0.1 1 10

N
u
m

b
e
r

o
f

o
p
e
ra

ti
o
n
s

Cp

(b) N = 300

 4000

 4500

 5000

 5500

 6000

 0.01 0.1 1 10

N
u
m

b
e
r

o
f

o
p
e
ra

ti
o
n
s

Cp

(c) N = 1000

4000

4500

5000

5500

6000

0.01 0.1 1 10

N
u
m

b
e
r

o
f

o
p
e
ra

ti
o
n
s

Cp

(d) N = 1000

4000

4500

5000

5500

6000

0.01 0.1 1 10

N
u
m

b
e
r

o
f

o
p
e
ra

ti
o
n
s

Cp

(e) N = 3000

4000

4500

5000

5500

6000

0.01 0.1 1 10

N
u
m

b
e
r

o
f

o
p
e
ra

ti
o
n
s

Cp

(f) N = 3000

4000

4500

5000

5500

6000

0.01 0.1 1 10

N
u
m

b
e
r

o
f

o
p
e
ra

ti
o
n
s

Cp

Figure 3: HEP(s) with 15 variables: the number of operations is on the y-axis and Cp on the x-axis. A lower number of
operations is better. On the left, we show UCT with constant Cp and on the right we show SA-UCT where Cp is the starting
value of T . Each graph contains 4000 runs (dots) of MCTS. Figure 3(a) and 3(b) are measured with N = 300 tree updates,
3(c) and 3(d) with N = 1000, and 3(e) and 3(f) with N = 3000 updates. As indicated by the dashed lines, an area with an
operation count close to the global minimum appears, as soon as there are sufficient tree updates N. This area is wider for
SA-UCT than for UCT.

using SA-UCT it is approximately [0:1;1:0]. This
means that the region of interest has become about
10 times wider. In section 6 we continue our findings
on this polynomial in a discussion.

In the full version of this work (Ruijl et al., 2013)
we show the results for our third expression, called
F13, which again stems from the field of high en-
ergy physics and has 22 variables. Since the depth
of a complete tree is equal to the number of vari-

ables, more tree updates are required to reach the fi-
nal node for F13, compared to the other two expres-
sions. From the graphs we see that structure emerges
around N = 1000. For UCT, there are two clouds:
one near the global minimum and one near a higher
local minimum. Contrary to the previous two expres-
sions, F13 does not have a band structure at low Cp,
but exhibits a diffuse cloud near the global minimum.
However, we see that this cloud is wider (roughly 50

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

728

res(7,5) with 14 variables
(a) N = 300

 13000

 14000

 15000

 16000

 17000

 18000

 19000

 20000

 21000

 22000

 0.01 0.1 1 10

N
u
m

b
e
r

o
f

o
p
e
ra

ti
o
n
s

Cp

(b) N = 300

 13000

 14000

 15000

 16000

 17000

 18000

 19000

 20000

 21000

 22000

 0.01 0.1 1 10

N
u
m

b
e
r

o
f

o
p
e
ra

ti
o
n
s

Cp

(c) N = 1000

13000

14000

15000

16000

17000

18000

19000

20000

21000

22000

0.01 0.1 1 10

N
u
m

b
e
r

o
f

o
p
e
ra

ti
o
n
s

Cp

(d) N = 1000

13000

14000

15000

16000

17000

18000

19000

20000

21000

22000

0.01 0.1 1 10

N
u
m

b
e
r

o
f

o
p
e
ra

ti
o
n
s

Cp

(e) N = 3000

13000

14000

15000

16000

17000

18000

19000

20000

21000

22000

0.01 0.1 1 10

N
u
m

b
e
r

o
f

o
p
e
ra

ti
o
n
s

Cp

(f) N = 3000

13000

14000

15000

16000

17000

18000

19000

20000

21000

22000

0.01 0.1 1 10

N
u
m

b
e
r

o
f

o
p
e
ra

ti
o
n
s

Cp

Figure 4: res(7,5) polynomial with 14 variables: the number of operations is on the y-axis and Cp on the x-axis. A lower
number of operations is better. On the left, we show UCT with constant Cp and on the right we show SA-UCT where Cp is
the starting value of T . Each graph contains 4000 runs (dots) of MCTS. Figure 4(a) and 4(b) are measured with N = 300 tree
updates, 4(c) and 4(d) with N = 1000, and 4(e) and 4(f) with N = 3000 updates. As indicated by the dashed lines, an area
with an operation count close to the global minimum appears, as soon as there are sufficient tree updates N. This area is wider
for SA-UCT than for UCT.

times at N = 1000) for SA-UCT than for UCT, as was
the case for HEP(s) and res(7,5). Since the band is
still broad, multiple samples are required to approach
the global minimum, regardless of Cp. This is gov-
erned by the R parameter (van den Herik et al., 2013a;
Kuipers et al., 2013b), and is consequently a topic for
future research.

5 CONCLUSIONS

In this work we proposed a new UCT formula,
called SA-UCT, that has a decreasing exploration-
exploitation parameter T , similar to the temperature
in simulated annealing. We have compared the perfor-
mance of SA-UCT to the performance of UCT using
three large expressions from physics and mathemat-
ics. From our experimental results we may provision-

Combining�Simulated�Annealing�and�Monte�Carlo�Tree�Search�for�Expression�Simplification

729

(a) Forward scheme

13000

14000

15000

16000

17000

18000

19000

20000

21000

22000

0.01 0.1 1 10

N
u
m

b
e
r

o
f

o
p

e
ra

ti
o
n
s

Cp

(b) Backward scheme

 13000

 14000

 15000

 16000

 17000

 18000

 19000

 20000

 21000

 22000

 0.01 0.1 1 10

N
u
m

b
e
r

o
f

o
p

e
ra

ti
o
n
s

Cp

Figure 5: res(7,5): differences between forward (top) and
backward (bottom) Horner schemes, at N = 1000 tree up-
dates with SA-UCT. Forward Horner schemes generate a
region of Cp where the number of operations is near the
global minimum, whereas backward schemes have multiple
high-density local minima and a diffuse region.

ally conclude that SA-UCT significantly increases the
range of initial temperatures Cp for which good re-
sults are obtained. This facilitates the selection of an
appropriate Cp.

During our research, we uncovered multiple areas
for future research.

6 DISCUSSION / FUTURE WORK

We start the discussion by distinguishing normal
Horner scheme constructions from reversed construc-
tions, also called forward and backward respectively.
In the backward scheme, we create the Horner scheme
from the inside out, reversing the extraction order. For
example, in eq. (2) the forward scheme is y;x and the
backward scheme is x;y. The distinction between the
two constructions is important for MCTS, because by
its nature the tree of MCTS is asymmetric: the chil-
dren of the root are all explored, but most nodes at
the bottom will not. Since we are interested in the en-
tire path, this means that the end of the path will be
underexplored compared to the beginning of the path.
If large improvements can be made by carefully se-

lecting variables at the end of the scheme, these opti-
mizations will likely not be found. Figure 5 illustrates
the effect that a forward and a backward scheme have
on the res(7,5) expression, where N = 1000 and SA-
UCT is used. A forward scheme yields the three re-
gions mentioned in section 4, whereas the backward
scheme yields multiple local minima and a diffuse
area for every Cp. The difference between forward
and backward schemes is present for both SA-UCT
and UCT, although it is more prominent in the lat-
ter. For UCT with Cp > 0:1, the tree often does not
reach the end if the number of variables is larger than
15. The path is then completed using the random de-
fault policy, which selects a single path and conse-
quently does no exploration. For SA-UCT, the tree
often does reach the end and some exploration occurs,
because a low and exploitative Cp effectively explores
deeper in the tree. However, this effect is not suffi-
cient to smooth out the differences between forward
and backward schemes, as can be seen in figure 5. We
found that choosing a backward scheme for HEP(s)
and F13 leads to significant improvements. Whether
we can predict beforehand (by looking at the expres-
sion) if forward or backward search has to be used is
a topic of current research. Additionally, other ways
than forward or backward construction of the Horner
schemes could be used. For example, one could put
more emphasis on the middle part of the scheme, by
making the first variables map to the middle of the
Horner scheme and working outwards from the cen-
ter. Here again additional work is needed to predict
which Horner scheme construction works best.

Also, more research is needed to find quickly a
value of Cp in the region of interest. If the number of
tree updates N is sufficiently high, the region of in-
terest becomes so large that even a binary search may
be sufficient to find a good Cp. In order to understand
what N is required to obtain such a large region of
interest, the relation between an adequate N and the
number of variables has to be further investigated.

Furthermore, the performance of SA-UCT has to
be measured for different applications. Examples are
the travelling salesman problem and Go. Many Go
implementations currently set Cp = 0, effectively dis-
abling UCT, but perhaps a small value for Cp is fruit-
ful if SA-UCT is applied (Lee et al., 2009).

Moreover, additional work is needed to examine
different schemes for decreasing Cp. For example,
the current depth in the tree may be a good candi-
date. One other possibility is detecting if the best
child selection gets stuck in a local minimum and
‘over-explores’ a branch. If this is the case, the T
could be increased to find further minima in unex-
plored branches. Different cooling functions could

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

730

also be tried, such as exponentially decreasing T .
Finally, we believe that the use of domain specific

knowledge can be fruitfully explored if the expression
has sufficient structure. To confirm this belief more
research is needed.

This work is supported in part by the ERC Ad-
vanced Grant no. 320651, “HEPGAME”.

REFERENCES

Aho, A. V., Sethi, R., and Ullman, J. D. (1988). Compilers:
Principles, Techniques and Tools. Addison-Wesley.

Breuer, M. A. (1969). Generation of Optimal Code
for Expressions via Factorization. Commun. ACM,
12(6):333–340.

Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowl-
ing, P., Rohlfshagen, P., Tavener, S., Perez, D.,
Samothrakis, S., and Colton, S. (2012). A Survey of
Monte Carlo Tree Search Methods. Comp. Int. and AI
in Games, IEEE Trans. on, 4(1):1–43.

Ceberio, M. and Kreinovich, V. (2004). Greedy Algo-
rithms for Optimizing Multivariate Horner Schemes.
SIGSAM Bull., 38(1):8–15.

Coulom, R. (2007). Efficient Selectivity and Backup Op-
erators in Monte-Carlo Tree Search. In Proceedings
of the 5th International Conference on Computers and
Games, CG’06, pages 72–83, Berlin. Springer-Verlag.

Hashimoto, J., Kishimoto, A., Yoshizoe, K., and Ikeda, K.
(2012). Accelerated UCT and Its Application to Two-
Player Games. Lecture Notes in C.S., 7168:1 – 12.

Horner, W. (1819). A New Method of Solving Numerical
Equations of All Orders by Continuous Approxima-
tion. W. Bulmer & Co. Dover reprint, 2 vols 1959.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Op-
timization by simulated annealing. Science, 220:671–
680.

Knuth, D. E. (1997). The Art of Computer Program-
ming, Volume 2 (3rd Ed.): Seminumerical Algorithms.
Addison-Wesley Longman Pub. Co., Inc., Boston.

Kocsis, L. and Szepesvári, C. (2006a). Bandit based Monte-
Carlo Planning. In In: ECML-06. LNCS 4212, pages
282–293. Springer.

Kocsis, L. and Szepesvári, C. (2006b). Discounted UCB.
Video Lecture. In the lectures of PASCAL Second
Challenges Workshop 2006.

Kuipers, J., Plaat, A., Vermaseren, J., and van den Herik, J.
(2013a). Improving multivariate Horner schemes with
Monte Carlo Tree Search. Computer Physics Commu-
nications.

Kuipers, J., Ueda, T., and Vermaseren, J. (2013b). Code Op-
timization in FORM. http://arxiv.org/abs/1310.7007.

Lee, C.-S., Wang, M.-H., Chaslot, G., Hoock, J.-B., Rim-
mel, A., Teytaud, O., Tsai, S.-R., Hsu, S.-C., and
Hong, T.-P. (2009). The Computational Intelligence
of MoGo Revealed in Taiwan’s Computer Go Tour-
naments. IEEE Trans. Comput. Intellig. and AI in
Games, 1(1):73–89.

Leiserson, C. E., Li, L., Maza, M. M., and Xie, Y. (2010).
Efficient Evaluation of Large Polynomials. In In Proc.
International Congress of Mathematical Software -
ICMS 2010. Springer.

Ruijl, B., Plaat, A., van den Herik, J., and Vermaseren,
J. (2013). Combining Simulated Annealing and
Monte Carlo Tree Search for Expression Simplifica-
tion. http://arxiv.org/abs/1312.0841.

van den Herik, J., Kuipers, J., Vermaseren, J., and Plaat, A.
(2013a). Investigations with Monte Carlo Tree Search
for finding better multivariate Horner schemes. Com-
mun. in Computer and Information Science 2013. In
press.

van den Herik, J., Plaat, A., Kuipers, J., and Vermaseren,
J. (2013b). Connecting Sciences. In ICAART 2013
- Proceedings of the 5th International Conference on
Agents and Artificial Intelligence, pages IS–7 – IS–16.

Combining�Simulated�Annealing�and�Monte�Carlo�Tree�Search�for�Expression�Simplification

731

