
Smart Areas
A Modular Approach to Simulation of Daily Life in an Open World Video Game

Martin Cerny1, Tomas Plch1, Matej Marko2, Petr Ondracek2 and Cyril Brom1

1Faculty of Mathematics and Physics, Charles University in Prague, Malostranské náměstı́ 25, Prague 1, Czech Republic
2Prague Game Studios, Pernerova 55, Prague, Czech Republic

Keywords: Smart Areas, Industrial Applications of AI, Computer Games, Open Worlds, Non-player Characters.

Abstract: Constructing believable behavior of non-player characters (NPCs) for large open worlds in computer games is
a challenging application of AI. One of the greatest obstacles for practical game applications lies in managing
the complexity of individual behaviors and in managing their development cycle. We propose the use of
“Smart areas” to overcome these obstacles and allow for realistic simulation of NPCs day-to-day life and
describe a particular implementation for an upcoming AAA game. For practical applications it is also vital to
resolve usability issues and assess the productivity of the technology. We have conducted a qualitative study
with 8 subjects that compares the performance of working with Smart Areas to using default AI tools. The
study indicates that Smart Areas are not difficult to understand, allow for substantial code reuse, resulting in
speedup in modification of existing behaviors, and force good structuring of behavior code.

1 INTRODUCTION

There is a growing number of first-person computer
games that describe themselves as featuring “large
open worlds”. There are no universal criteria a vir-
tual world has to meet to be considered “large” and
“open” but one of the most important properties of
open worlds is freedom: the constraints the environ-
ments enforces on an user’s actions should be mini-
mal. In an ideal case, the constraints are similar to the
real world. Contemporary game worlds that are con-
sidered large feature a landscape of tens to hundreds
of square kilometers. Such worlds are then populated
with hundreds of non-player characters (NPCs).

The action-selection mechanism for NPCs in such
games provides both theoretical and practical chal-
lenges for applied AI. Since the user has a large de-
gree of freedom, the behaviors must not only look rea-
sonable to a spectator, but must also maintaininterac-
tive believability, i.e., NPCs should react in a believ-
able way to user actions. While combat behavior in
contemporary games is usually well designed and in-
teractively believable to a large degree, even recent
and successful open-world games such as Red Dead
Redemption (Rockstar Games, 2010) have resorted to
severely limited non-combat NPC behaviors.

Furthermore, there are three difficult challenges
for game AI in general. The first one is the severely

limited CPU time, the second one is the need for tight
control over NPC behaviors to assure that NPCs do
not break the main story line or other mechanics and
the third one is the need to create behaviors effectively
and with relatively low-skilled staff.

All those constraints have forced the game in-
dustry to use simple reactive approaches for action
selection — most notably FSMs (Fu and Houlette-
Stottler, 2004) and behavior trees (Champandard,
2007). While some games have incorporated plan-
ning technology (Champandard, 2013), the severely
limited resources prevent planning from being appli-
cable for more than a handful of NPCs at one time
and reactive approaches are still state of the art for
non-combat behaviors in large open world scenarios.

Our task was to devise a technology that would
allow designers and scripters to create a world where
the NPCs actually “live” — they carry on their daily
routine (work, relaxing, etc.), while maintaining inter-
active believability to a reasonable degree. We have
approached this as a software engineering problem.
With a naive approach it would be very difficult to
create so many individual NPC behaviors and it would
be close to impossible to maintain, test and debug the
resulting codebase.

In this paper we present a case study of applying
the concept ofsmart areas(SAs) taken from crowd
simulation research to remedy these issues (Tecchia

703Cerny M., Plch T., Marko M., Ondracek P. and Brom C..
Smart Areas - A Modular Approach to Simulation of Daily Life in an Open World Video Game.
DOI: 10.5220/0004921107030708
In Proceedings of the 6th International Conference on Agents and Artificial Intelligence (ICAART-2014), pages 703-708
ISBN: 978-989-758-015-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

et al., 2001). A SA is a specific place within the game
world (e.g., a pub) that contains all the information
the NPCs need to behave appropriately in this place
(e.g., scripts for the innkeeper and for the guests). If
necessary, a disembodied agent attached to the SA co-
ordinates various NPCs within (e.g., assigns free seats
to the guests, chooses NPCs to engage in a brawl,
. . .). As such, SA is a standalone object that may be
plugged in without modification to existing NPCs.

Although the concept of SAs is simple in princi-
ple, actual implementation with real-world applicabil-
ity is not straightforward. To test our implementation,
we have performed a small-scale study. Its goal was
to determine, if the concept is suitable for our sce-
nario and if users are able to understand it correctly,
to estimate the productivity gain from using SAs on
top of our AI system and to uncover usability issues
with the accompanying toolchain.

The paper proceeds as follows: first we introduce
related work (Section 2) and discuss our implementa-
tion (Section 3). Then we present the evaluation we
have performed and its results (Sections 4 and 5). The
paper is concluded with discussion and aims for fu-
ture work (Section 6).

2 KEY RELATED WORK

The concept ofsmart objects(Kallmann, 2001) is
well-established in the game industry. A smart object
is typically a graphical entity in the game world that is
accompanied by a character animation (or several ani-
mations) that should be used when a character desires
to use the object. A typical example of a smart object
is a lever on a wall. An NPC that wants to change the
state of the lever simply fires a “use smart object” ac-
tion and the smart object takes care of the necessary
details. This way, many different levers and switches
may be present in the environment, but the AI only
needs one action to use them all properly.

The concept of smart objects has been extended
by crowd simulation research to whole areas. In (Tec-
chia et al., 2001) the environment is overlaid with
a grid, where each cell may dictate a behavior for
the agents in it. In case of the paper it was move-
ment style. In (Sung et al., 2004) so-called “situation
based behavior selection” is presented. The system
detects situations in the environment and instructs the
agents participating in the situation what should they
do. While situation based behavior selection is more
general than smart areas, the situations tested in the
paper are mostly triggered by entering a location.

However, the crowd simulation approach cannot
be directly translated to computer games because

crowd simulations generally have low fidelity of in-
dividual behaviors.

(Brom et al., 2006) take the idea one step fur-
ther with so-called “smart materializations”. In their
work the world is inhabited by agents using the belief-
desire-intention architecture and smart materializa-
tions are behavior fragments embedded in the envi-
ronment that provide ways to achieve intentions. For
example the character may adopt a “have fun” inten-
tion. A pub in the environment would provide a ma-
terialization that realizes the “have fun intention” by
instructing the agent to go to the pub and adopt subin-
tentions “buy a beer” and “drink a beer”.

3 OUR IMPLEMENTATION

Here we describe our implementation of the SA con-
cept for an upcoming AAA RPG game. First we in-
troduce the AI system which formed a base for our
code and the design objectives we followed and then
we discuss key aspects of our implementation.

3.1 Background

Our implementation is built on top of an existing cus-
tom AI system. The basic character decision mak-
ing is performed by a variant of behavior trees (BTs)
(Champandard, 2007). The BT formalism is extended
with variables and a custom type system which al-
lows for complex structured types and type inheri-
tance. The AI also makes heavy use of a mature NPC-
to-NPC messaging system. An NPC may have multi-
ple inboxes, each having its own message type. The
message system is tightly integrated with the BTs.

There were several design objectives we have fol-
lowed when extending the AI system by SAs:

• Gameplay-critical behaviors (quests, combat, . . .)
may never be disrupted by SAs.

• Primary use-case of SAs is the simulation of rou-
tine day-to-day activities (work, sleep, eating, re-
laxing,. . .) of NPCs.

• Adding new places where NPCs could perform
some of the activities (e.g., a new pub) should be
possible without changing any of the NPC code.

• All NPCs should not behave identically within a
SA: e.g., in a pub, rich people behave (and are
treated) differently than poor people.

• Dynamic situations that are spawned by a cer-
tain player action (e.g., murdering someone on the
street) and that provide all NPCs nearby with an
appropriate behavior for such a situation must be

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

704

supported. Adding a new situation should not re-
quire a modification to code of any NPC.

• Synchronization of joint behaviors among agents
(a pub brawl, a game of cards, . . .) must be sup-
ported.

• The NPCs retain their own AI which coexists with
the SAs. Smooth transition of control between
NPC AI and SA must be ensured.

3.2 Behavior Adoption and Drop

To ensure that gameplay-critical behavior remains un-
interrupted, we have decided that active NPC cooper-
ation is required to receive a behavior from a SA. We
have thus added a new BT node that requests a behav-
ior from SA, if possible (further referred to asrequest
node). This leaves the NPC AI in full control over
transition to SA-controlled behavior and the SA be-
havior may be forcefully terminated by activating a
different BT branch.

When the request node is updated and it does not
hold a behavior already, it asks for one. Both the node
and the SA take part in deciding, which behavior is
applicable. Consider an example: an NPC asks for a
behavior in a pub. Out of all of its behavior templates,
the SA filters those with satisfied constraints on the
requesting NPC (e.g., a template that involves invit-
ing everybody for drink is available only to NPCs that
are marked as rich). The request node then chooses
among those templates based on its parameters (e.g.,
it may prefer “get-drunk” template to “eat” or forbid
“play-cards” template). The same behavior may be
implemented in several SAs — the NPC may require
a “relax” behavior, which would have different imple-
mentations on a beach or in a pub.

If an applicable template is found, it is instantiated
in a data structure calledbehavior tagwhich is passed
to the request node. The behavior tag contains meta-
data about the behavior and an instance of a BT that
achieves the behavior. The BT is pasted as the only
child of the request node and the tree continues exe-
cution by evaluating the behavior subtree. If needed,
new message inboxes are added to the NPC. If no ap-
plicable behavior is found, the request node fails.

When the NPC leaves the SA that has provided
the tag, or the associated BT succeeds/fails there are
three possibilities: the behavior may be kept by the
request node as if nothing happened, it may be kept
but marked asoverridableor it may be dropped. The
actual outcome is determined by the tag, by default
the behavior is marked as overridable when it suc-
ceeds and dropped upon leave/failure. If the behavior
is marked as overridable, the request node asks for a
behavior upon its update but if no applicable behavior

is found it continues executing the current one instead
of failing. This allows some behaviors to persist their
state between succesive executions or upon leaving
the SA.

3.3 Smart Area’s Brain

The basic decision making of the SA is passive: for
each behavior template, the SA maintains informa-
tion whether new instances of the template may be
requested and the maximum number of instances that
may be adopted at the same time. This information is
used upon request processing.

Some SAs have an activebrain — a behavior tree
that gets updated regularly and may either modify
the passive decision making based on external con-
ditions (e.g., disable “drinking” behavior in a pub if
no innkeeper is present) or it may perform some coor-
dination among behavior tag holders inside the area
(e.g., instruct a pair of customers to play cards to-
gether). The coordination is done by message passing
between the SA and the tag holders. Since the NPCs
are now controlled by BTs provided by the SA, the SA
can make strong assumptions about NPCs responses
to its messages.

In many scenarios, the SA needs to perform some
action whenever an NPC adopts/drops a behavior
(e.g., assign a free seat to a customer in a pub) or
when an NPC enters/leaves the area (e.g., innkeeper
says goodbye to the leaving guest). To streamline the
development in such scenarios and to make the BTs
of the SA brain and the behaviors more readable for
developers, we have introduced event handlers to the
SA brain. An event handler is simply a BT that is ex-
ecuted until completion for each instance of an event.
So far, our system uses four events: OnAdopt — an
NPC adopts a behavior, OnDrop — an NPC drops a
behavior, OnEnter — an NPC enters the area, OnExit
— an NPC leaves the area. The latter two fire whether
the NPC has requested a behavior or not.

The event handler trees are queued and executed
one at a time and may not be interrupted by execu-
tion of the main tree. This reduces the parallelism
of the main tree and the event trees to a bare mini-
mum and thus facilitates easier debugging. It is up
to the scripters to make sure the handler trees execute
quickly.

3.4 Smart Area Hierarchy

One of our primary use cases of SAs was the day-
to-day behavior of NPCs. Now, once an NPC enters
a pub for example, everything works well. But how
does the NPC know, where a pub is? As mentioned in

Smart�Areas�-�A�Modular�Approach�to�Simulation�of�Daily�Life�in�an�Open�World�Video�Game

705

our design objectives, the pub locations should not be
hardcoded in the NPC’s behavior. Our solution was to
introduce parent-child relationship between SAs and
make the whole city a SA and make the pubs its chil-
dren. Now the city (the city designer) knows the lo-
cations of all pubs within. The NPC thus requests a
“have fun” behavior from the city, the city gives it a
BT that consists of a sequence of a move node that
moves the NPC to one of the pubs and a request node
that requests a “drinking” behavior in the chosen pub.

In a different situation, an NPC that is currently
in a pub (without a behavior) may decide it wants to
work, but the pub should not be required to know of
all work possibilities in the city. It is thus a good idea
to ask the city in such a case. For this reason, if the
current SA cannot provide any applicable behavior,
the request node asks the parent SA.

To implement dynamic situations the system is
prepared to support SAs created on the fly (e.g., after a
murder on the street an SA that instructs the witnesses
to run away is created). The presence of such an SA
will trigger a higher priority branch in the NPC’s be-
havior tree which will contain a request node asking
for situational behavior.

3.5 The Tools

As is always the case with practical applications,
toolchain support is vital. We have modified a BT
editor already present in the game to properly visual-
ize the adopted behavior subtrees of the request node
during runtime and to support breakpoints and other
debugging features properly inside behavior subtrees
and the event handler trees. A special SA editor was
added to edit behaviors available within a SA and the
associated conditions, variables and inboxes.

4 EVALUATION

Our main goal was to investigate what are the advan-
tages/disadvantages of work with SAs compared to
plain BTs. We were interested only in cases, where
using SAs is natural, i.e., individual behavior subtasks
are connected to specific places as in the daily cycle
problem. We had four hypotheses: 1) Learning to cre-
ate daily cycles with SAs is harder than with BTs, 2)
creating a behavior from scratch is done faster with
BTs, 3) modifying existing behavior is done faster
with SAs and 4) SA code is easier to read. Note that
the latter three hypotheses are related to a typical de-
velopment lifecycle.

To investigate these hypotheses we have con-
ducted a small-scale (8 subjects — 6 males, 2 fe-

males) pilot qualitative study. We followed the
methodology from our previous research (Gemrot
et al., 2014) as we are not aware of any other method-
ology for comparing behavior design tools. An im-
portant goal of the study was to find possible usabil-
ity issues with the workflow we envisioned for SAs
and the supporting toolset. While eight is a rather
small number of subjects, usability testing research
has shown that even small-scale studies do yield sig-
nificant informations (Turner et al., 2006).

4.1 Experiment Setup

We have used a within-subject design as a between-
subject approach would be impractical with so few
participants. As all of the experiments had to be per-
formed at one of the company’s computers (for the
sake of data protection policy) we had tight time con-
straints on the study.

We have conceived four simple tasks that would
fit in the timeframe we had and would emulate the
development of NPCs’ daily cycles:

1. Create a single NPC with a simple daily cycle (4
behaviors, repeated in a fixed sequence, each with
a predefined place to be performed).

2. Create two more NPCs with different daily cycles
(4 and 6 behaviors, 1 behavior was newly added,
others were the same as in Task 1).

3. Modify the individual behaviors that make up the
daily cycle (4 of the behaviors should have been
slightly modified).

4. Add a new place to perform one of the existing
behaviors and let the NPC choose one of the two
places with 50% probability, whenever it wants to
perform this particular behavior.

As we are not interested in the individual behav-
ior design per se, the BTs for the individual behav-
iors were prepared for the subjects and they could just
copy and paste them into their solutions.

The study consisted of two parts: in one part, sub-
jects performed the tasks using plain BTs and in the
other they performed them with SAs. Half of the sub-
jects used SAs for the first part, others started with
plain BTs. To test code readability we have intro-
duced a twist in the second part: the subjects were
given a complete solution of Task 1 (created by the
researcher) and solved only Tasks 2-4.

For the SA part a two-layered SA structure was re-
quired: a parent “city” area was responsible for guid-
ing the NPC to a location of a specific child SA, where
the actual behavior should have been performed, see
Section 3.4 for details. For those solving Task 1 with
SAs, the SAs were already present in the level, two of

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

706

them contained empty behaviors to hint the user at the
desired structure and the rest did not contain any be-
haviors at all. The tasks 2-4 were technically identical
for both parts, although they had different parameters.
The whole experiment took 90-180 minutes.

Two of the subjects had substantial programming
experience (> 90 man-months), while two had very
limited experience (< 5 man-months). Two of the
subjects were employees of the game studio and had
a lot of experience working with the game editor and
NPC design, the other six were university students
and except for two with a minor experience had never
seen the editor before and have not designed NPCs
before. One of the employees could be considered an
“SA expert”, the rest of subjects had no prior experi-
ence with SAs.

It was measured how long the subjects took to
complete the tasks. Qualitative feedback was given in
a questionnaire after each part and the researcher as-
sisting with the experiment took notes on the subject’s
usage of the tools as well as moments they seemed to
experience trouble during the experiment.

The solutions the subjects ended up with after
Task 4 were analyzed both qualitatively (reading the
code by an exprt) and quantitatively (the number of
nodes used in all of the BTs together).

5 RESULTS

A summary of the quantitative results is given in Ta-
ble 1. In Task 1, users using SAs took on average
much longer to finish than those using BTs. There are
two explanations for this: First, except for one sub-
ject, the users were not familiar with the concept of
SAs and thus spent more time figuring out what to do.
Second, structuring content — as in our two-layered
SA setup — is very likely to take more time than cre-
ating less structured content — as in plain BTs setup.
While neither of the explanations can be ruled out, the
data seems to support Hypothesis 1 (SAs are harder
to learn) and Hypothesis 2 (creating new behaviors is
faster with BTs) since subjects using BTs for Task 1
(none of them familiar with the editor) solved it very
quickly.

However, the measured time to learn to work
with an unknown technology is definitely acceptable
(< 1.5 hour for all subjects). When the users are pre-
sented with a working example, the learning time is
further reduced: all users took less than 0.5 hour to
replicate and modify the SA example in Task 2.

Considering the modification tasks (Tasks 2-4),
solving them with BTs was faster than with SAs ex-
cept for Task 3. This does not support our hypoth-

Table 1: Summarized results of the experiments. Times for
individual tasks are given in minutes with standard devia-
tion in brackets. Task 1 was performed only in Part 1 and
thus with only one technology per subject. For full experi-
ment results, e-mail the first author of this paper.

Behavior Trees Smart Areas

Task 1 10.00 (3.5) 47.25 (20.3)
Task 2 12.00 (1.5) 13.50 (6.0)
Task 3 12.88 (5.5) 4.88 (1.5)
Task 4 9.38 (3.7) 10.63 (6.8)

Sum 2-4 34.25 (9.4) 29.00 (12.5)

Nodes 85 (14) 56 (4)

Table 2: Subjective evaluation of the tasks averaged over all
subjects. The scale was 0 - 3, where 3 is most easy/tedious.

Assignment Recreating Modifying
easy? tedious? tedious?

BT 2.7 1.3 1.1
SA 2.6 0.1 0.3

esis that modifying behaviors with SA is faster, al-
though the difference in Task 3 is statistically signifi-
cant (p = 0.01, Wilcoxon paired test), while the other
differences are not. Moreover both Task 2 — SA and
Task 4 — SA involve time users spent learning the
new technology. In Task 2, half of the users were us-
ing SAs for the first time, averaging over the users al-
ready familiar with SAs results in lower average time
(9.75 mins) than for Task 2 — BT. In Task 4, the so-
lution required the users to create a new SA, which
is not difficult, but was not required in the previous
assignments. The total time users spent with Tasks 2
- 4 slightly favors SAs over BTs, and the difference
is on the verge of statistical significance (p≈ 0.05,
Wilcoxon paired test).

Users have marked the modification tasks more
tedious when working with BTs than when working
with SAs (see Table 2). Qualitative data supports this
view: users modifying plain BTs complained about
repetitiveness of the tasks and made more mistakes
and spent more time testing the behaviors.

Generally, the data provide some support that SAs
are better when modifications are frequent — which
is the case in real development — but the results are
not clear and further research is needed.

Except for one, subjects working with SAs pro-
duced almost identical code, while the solutions of
users working with BTs differed more. We consider
this positive: SAs enforce common structure and cod-
ing style which is a substantial advantage for large-
scale development. Also the number of nodes is
smaller for SAs and they were scattered in 14 simple

Smart�Areas�-�A�Modular�Approach�to�Simulation�of�Daily�Life�in�an�Open�World�Video�Game

707

trees as opposed to 3 large trees for BT approach.
All of the subjects reported on usability issues

with the SA editor, which have been addressed in fur-
ther development. The last two subjects tested did not
discover any previously unreported usability issues,
which we consider to be a strong indication that only
few were left undiscovered.

6 DISCUSSION AND FUTURE
WORK

We have presented a case study of implementing
smart areas (SAs) to suit the needs of game industry.
We have emphasized code readability and reusability
and support for development lifecycle as vital for in-
dustrial applications.

We have found SAs to be a suitable tool for de-
veloping daily-cycles of NPCs and other behaviors
that are strongly bound to a particular place and only
loosely bound to the NPC performing it. Our data
provides support (although admittedly weak) that SAs
are a better tool in modification-intensive applica-
tions, which is the case in practice. This advan-
tage should outweigh the difficulties involved in more
complex structure of the SA code and the necessary
learning curve.

We have found that when presented with a work-
ing example, even users that have just been introduced
to the SA concept can quickly replicate and modify
the code. Moreover, the code produced with SAs is
much more uniform than the code produced with BTs.

Our implementation of SAs has been approved
for real-world deployment within an upcoming AAA
RPG game. The SAs allowed our scripters not only
to structure the code well, but to create experiences
never before seen in a commercial game while retain-
ing maintainability and reusability of code.

On the other hand, we could not experimentally
support the hypothesis that SA code is easier to read
and only the most basic features of the SA system
were actually evaluated. In our setup a BT system
with a reasonable support for subtree reuse would
likely perform very similarly. The need for an NPC to
be physically present in an SA to receive a behavior
has also raised some complications, but it was kept as
it lets the designer make stronger assumptions about
NPC behavior.

Thorough usability testing and right tool support
have also been a vital part of the initial success of
the technology. We believe that these are lessons to
be learned by the broader academic AI community to
promote adoption of academic techniques in practice.

As a future work, more advanced usages of the
framework should also be tested. Moreover, it would
be interesting to evaluate the resulting behavioral fi-
delity of the world with the focus group method. We
also plan to make use of the SA infrastructure to test
some of the concepts coming from the interactive sto-
rytelling community in an AAA game setting.

ACKNOWLEDGEMENTS

Human data were collected with APA princi-
ples in mind. This research is supported by
the Czech Science Foundation under the contract
P103/10/1287 (GACR), by student grant GA UK No.
559813/2013/A-INF/MFF and partially supported by
SVV project number 267 314.

REFERENCES

Brom, C., Lukavský, J.,̌Serý, O., Poch, T., anďSafrata, P.
(2006). Affordances and level-of-detail AI for virtual
humans. InProceedings of Game Set and Match, vol-
ume 2, pages 134–145.

Champandard, A. (2007). Understanding behavior trees.
AIGameDev.com. http://aigamedev.com/open/article/
bt-overview/ Last checked 2014-01-05.

Champandard, A. (2013). Planning in games: An overview
and lessons learned. AIGameDev.com. http://
aigamedev.com/open/review/planning-in-games/ Last
checked 2014-01-05.

Fu, D. and Houlette-Stottler, R. (2004). The ultimate guide
to FSMs in games. InAI Game Programming Wisdom
II , pages 283–302. Charles River Media.

Gemrot, J., Černý, M., and Brom, C. (2014). Why
you should empirically evaluate your AI tool: From
SPOSH to yaPOSH. InProceedings of 6th Inter-
national Conference on Agents and Artificial Intelli-
gence. In press.

Kallmann, M. (2001). Object interaction in real-time vir-
tual environments. PhD thesis,́Ecole Polytechnique
Fédérale de Lausanne.

Rockstar Games (2010). Red Dead Redemption. http://
www.rockstargames.com/ reddeadredemption/. Last
checked: 2014-01-05.

Sung, M., Gleicher, M., and Chenney, S. (2004). Scalable
behaviors for crowd simulation. InComputer Graph-
ics Forum, volume 23, pages 519–528.

Tecchia, F., Loscos, C., Conroy-Dalton, R., and Chrysan-
thou, Y. (2001). Agent behaviour simulator (ABS):
A platform for urban behaviour development. InPro-
ceedings of Game Technology 2001. CD-ROM.

Turner, C. W., Lewis, J. R., and Nielsen, J. (2006). Deter-
mining usability test sample size.International ency-
clopedia of ergonomics and human factors, 3:3084–
3088.

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

708

