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Abstract: In this paper we use a mixture of numerical methods including finite difference and body fitted co-ordinates
to form a robust stable numerical scheme to solve the investment lag model presented in the paper by Bar-Ilan
and Strange (1996). This allows us to apply our methodology to models with different stochastic processes
that does not have analytic solutions.

1 INTRODUCTION

Most investment projects take a long time to become
operational so there are often periods where a firm
will incur losses before the project starts generating
income. Such a period might be referred to as the
“construction lag”, “time to build ” or “Investment
Lag” (Costeniuc et al., 2008). These investment lags
can be quite lengthy which can result in a serious cost
for the investor, an example of which is described by
(MacRae, 1989) where it could take up to 10 years
to see the positive income when investing in a power
generating plant – similar situations can be found in
investment projects on natural resources. For exam-
ple, when an oil company buys a license from a gov-
ernment, it takes time to search fields and estimate
the fields’ reserve quantity before the beginning of oil
production. Thus, when evaluating a project such as
this the “lag” should be taken into consideration. If
the sale price of a firm’s product is modelled by a
stochastic process, then the lag brings added risk to
the project since the price may rise or fall during this
lag, resulting in a negative cash flow. This situation
and its effect on an investment has been studied by
(Gauthier and Morellec, 2000) and they implied that
it a has significant consequences on investment deci-
sions.

The use of option theory to value and assess in-
vestment decisions has a long history going back to
(Myers, 1977), but it was (Brennan and Schwartz,
1985) that first allowed the project to be mothballed
rather than abandoned so that it could be reopened at a
later date. They showed that if there was a fixed cost
to move between the states, the decision to start the

project would happen at a price higher than the deci-
sion to mothball. Following on from this, (Bar-Ilan
and Strange, 1996) applied investment lags on irre-
versible investments and they found that a lag can re-
duce the effects of uncertainty in an investment, since
the investor has more time to act on an unexpected
fall in the price or changes in the investment. In order
to generate the results for their model, they present an
analytic technique,(see Brekke and Øksendal, 1994,
for more details. The method as described by (Bar-
Ilan and Strange, 1996) is flawed in that it relies on the
particular form of the process, so they can only solve
the problem with a simple geometric Brownian mo-
tion. The contribution of this paper is to apply a more
generic numerical approach which can be extended to
many classes of stochastic processes. We present a
robust numerical technique for solving generic prob-
lems of this type.

2 MODEL FRAMEWORK

We follow the general framework as laid down by
(Bar-Ilan and Strange, 1996) in valuing a firm that
can pay (on delivery)k ≥ 0 units to exercise an ir-
reversible option to produce and sell 1 unit of product
per unit time forever. The marginal cost of production
is ω per unit, and both the future revenues and costs
are discounted at the rate ofρ. The project can later be
abandoned at a cost ofl ≥ 0. The price of the product
Pt follows a standard geometric Brownian motion

dP
P

= µdt+σdz. (1)
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where

• µ is the rate of return of the productPt ,

• σ is the volatility of the product pricePt ,

• dz is the increment of the standard Wiener pro-
cess.

When the investment starts, in many cases, it takes
time from the decision to invest until the time the
project begins to generate revenue. For example, if
a firm wishes to build an oil refinery it will make that
decision depending on today’s oil price but it usually
takes around 6− 7 years to start producing oil (Sen-
ate, 2002). We shall denoteh≥ 0 to be the investment
lag in our model.

As a result the firm at any one time may be in three
different states. The states are characterised as

• V0(P) Inactive firm.
In this stage there is no money invested and

no revenue.

• V2(P, t) the firm in the process of construction
wheret is the clock that starts after the decision
is made (0≤ t ≤ h).

In this stage the firm has made the decision
to invest and is waiting until timeh when the firm
will pay k and start production.

• V1(P) Active firm and generating revenue.
In this state we have invested the amountk

and it is working and generating the amount ofP
for each unit produced.

Our goal is to find at what price of the product should
we invest and for what price should we leave the
project. We shall denotePH as the price at which it
is high enough to start construction at a cost ofke−ρh

(discounted value of the payment at timet = 0), and
PL as the price of product which is low enough to
abandon the project for cost ofl .

2.1 Calculating the Firm’s Value at
Different Situations

Suppose it is not optimal to invest at an infinitesimal
period ofdt, then

V0(Pt) = e−ρdtEt [V0(Pt+dt)] , (2)

wherePt is the price at timet. Using Ito’s Lemma we
can write

σ2

2
P2V ′′

0 (P)+µPV′
0(P)−ρV0(P) = 0. (3)

The boundary condition forP= 0 is simply

lim
P→0

V0(P) = 0, (4)

and given that we optimally decide to invest the fol-
lowing must hold

V0(PH) =V2(PH)− ke−ρh (5)

V ′
0(PH) =V ′

2(PH). (6)

General solutions to the ODE in (3) can be found
of the form

V0(P) = BPβ (7)

whereB is a constant andβ is the positive solution of
the characteristic equation of

σ2

2
ξ(ξ−1)+µξ−ρ= 0. (8)

ForV1(P), if we assume it is optimal to sell prod-
ucts over the next small period in time we have

V1(Pt) = e−ρdtEt [V1(Pt+dt)]

+Et

[∫ t+dt

t
(Pt −ω)e−ρ(τ−t)dτ

]

,

where the extra term here is the total amount of profit
from selling at the rate one product per unit time. We
calculate the value of the active firm in the same man-
ner as we did in the inactive case to arrive at

σ2

2
P2V ′′

1 (P)+µPV′
1(P)−ρV1(P) = ω−P. (9)

The boundary condition asP→ ∞ takes the form

lim
P→∞

V1(P) = lim
P→∞

P
ρ−µ

− ω
ρ
. (10)

Therefore, solutions of equation (9) can be written

V1(P) = APα +
P

ρ−µ
− w

ρ
, (11)

whereA is yet to be determined andα is the nega-
tive solution of equation (8). Since we can optimally
decide to shut down operations we also have

V1(PL) =V0(PL)− l (12)

V ′
1(PL) =V ′

0(PL). (13)

These form the solution of the investment and
disinvestment problem in Pindyck and Dixit (1996),
where the time to build is not considered. For the in-
vestment lag problem, we must now consider the extra
state of the firmV2(P, t) during the lag. Giving that we
are waiting for production to start we can write

V2(Pt , t) = e−ρdtEt [V2(Pt+dt, t +dt)] , (14)

and following standard procedure we obtain

∂V2

∂t
+

1
2

σ2P2 ∂2V2

∂P2 (15)

+µP
∂V2

∂P
−ρV2 = 0
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where the boundary conditions are

lim
P→0

V2(P, t) =−le−ρ(h−t), (16)

lim
P→∞

V2(P, t) = lim
P→∞

Pe(ρ−µ)(h−t)

ρ−µ
− ωe−ρ(h−t)

ρ
, (17)

and

lim
t→h

V2(P, t) =

{

APα + P
ρ−µ − ω

ρ if P≥ PL

BPβ − l if P< PL
.

These equations describe the three states of the firm,
which all need to be solved to determinePL andPH .

3 NUMERICAL APPROACH

Although this problem has been solved in (Bar-Ilan
and Strange, 1996) and later again by (Sødal, 2006),
in this paper we present a new methodology which
gives more flexibility to the practitioner. The idea is to
solve the problem using finite differences with body-
fitted co-ordinates to quickly solve forPH andPL. To
simplify the algebra in the method we first apply a log
transformation to the ODEs (3) and (9) and the PDE
(15).

3.1 Derivation

To solve the problem we define two grids ofx andy
each of which havem+1 points. We apply log trans-
forms to the equations involvingV1 andV2 by setting

P= PLey =⇒ y= ln

(

P
PL

)

, (18)

The grid itself is generated from

∆y=
ymin− ymax

m
. (19)

using the parameters

ymin = 0 andymax= 10σ
√

h. (20)

Likewise, for equation involvingV0 we apply a log
transform

P= PHex =⇒ x= ln

(

P
PH

)

. (21)

The grid becomes

∆x=
xmin− xmax

m
. (22)

such that

xmin =−10σ
√

h andxmax= 0. (23)

First we can apply the log transform (18) to the
equation of the active firm value (9) to get

σ2

2
∂2V1

∂y2 +(µ− σ2

2
)

∂V1

∂y
−ρV1 = ω−PLey. (24)

Using the notation

vi
1 =V1(P= PLei∆y) =V1(e

yi ) (25)

we apply standard finite differencing and a Newton
linearisation with

vi,k+1
1 ≃ vi,k

1 + δvi
1 andPk+1

L ≃ Pk
L + δPL (26)

wherek is the number of iterations. The resulting
scheme is given by
(

σ2

2(∆y)2 −
2µ−σ2

4∆y

)

δvi−1
1 +

(

− σ2

2(∆y)2 −ρ
)

δvi
1

(27)

+

(

σ2

2∆y
+

2µ−σ2

4∆y

)

δvi+1
1 +eyi δPL = F (P) (28)

where

F (P) =−1
2

σ2 vi−1
1 −2vi

1+ vi+1
1

2(∆y)2 (29)

− (µ− 1
2

σ2)
vi+1

1 − vi−1
1

2∆y
+ρvi

1−Pi
Leyi +ω.

Now for the smooth pasting boundary conditions we
use a one sided difference of the form

V ′
1(P= PL) =

−3(v0
1+δv0

1)+4(v1
1+δv1

1)− (v2
1+δv2

1)

2∆yPL
(30)

and to calculateV
′
0(PL)we use central differencing

V
′
0(PL) =

V0(PL(1+∆y))−V0(PL(1−∆y))
2∆yPL

(31)

where the values of V0(PL(1 + ∆y)) and
V0(PL(1−∆y)) must be interpolated. For the
contact boundary condition atP= PL we expand with
a Taylor series to get

δv0
1−V′

0(PL)δPL =V0(PL)− v0
1 (32)

Similarly, for the inactive or mothballed firm
V0(P) defined in equation(3), we apply a log transfor-
mation onPH with standard differencing and a New-
ton linearisation. The result is the same left hand side
as in (28) withδvi

1 andδPL replaced byδvi
0 andδPH ,

and the right hand side is now given by

F (P) =−1
2

σ2 vi−1
0 −2vi

0+ vi+1
0

2(∆x)2 − (33)

(µ− 1
2

σ2)
vi+1

0 − vi−1
0

2∆x
+ρvi

0.
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As before the boundary conditions become

δvm
0 −V′

2(PH)δPH =V2(PH)− ke−ρh− vm
0 (34)

and

3δvm
0 −4δvm−1

0 +δvm−2
0

2∆xPH
=V ′

2(PH)−
3vm

0 −4vm−1
0 +vm−2

0

2∆xPH
(35)

whereV2(PH) here isV2(PH , t = 0) which must be
calculated from (15).

We can use either quadrature integration (Andri-
copoulos et al., 2003) or finite difference to solve
for V2 in (15). For any pointx of the n points on
V2(x, t = 0) we have

V2(x, t = 0) = A(x)
∫ ∞

−∞
B(x,y)V2(y, t = h)dy, (36)

then we calculate the value ofV2 using

A(x) =
1√

2σ2πh
e−

1
2kx− 1

8σ2k2h−ρh, (37)

and
B(x,y) = e−(x−y)2/2σ2h+1/ky, (38)

and

k=
2(ρ−d)

σ2 −1 (39)

whered is the dividends (d = ρ−µ). The reason we
calculateV2(y, t = 0) usingV2(y, t = h) that is because
we solve the problem backwards in time where

V2(y, t = h) =

{

V1(y) if ey > 1(P> PL)
V0(y)− l if ey ≤ 1(P≤ PL)

.

(40)
Given the fact we have applied a different transforma-
tions onV0 andV1 we must interpolateV0 to get values
in they grid points using the relation

x= yi + log(
PH

PL
). (41)

We may use the asymptotic form of the solution to fill
in the gaps outside the grid, then we write

V2(x, t = 0) = A(x)(
∫ ymax

ymin

B(x,y)V2(y, t = h)dy+ I1+ I3)

(42)

where

I1 =−
∫ ymin

−∞
B(x,y)lehdy (43)

and

I3 =
∫ ∞

ymax

B(x,y)(
ey−(ρ−µ)h

ρ−µ
− we−ρh

ρ
)dy (44)

4 Cox-Ingersoll-Ross MODEL

In a novel extension to the problem, we set the pro-
cess followed by the sale price as a Cox-Ingersoll-
Ross (CIR) process. These sort of processes are often
appropriate when modelling commodity prices as the
price tends to a mean value over a long time scale. We
can write the new price process as

dP= κ(Φ−P)dt+σ
√

Pdz (45)

such that

• κ is the speed of reversion

• Φ : is the long term mean level

andσ andP are as defined previously. Now the equa-
tions ofV0(P), V1(P) andV2(P) will become

σ2

2
PV′′

0 (P)+κ(Φ−P)V′
0(P)−ρV0(P) = 0, (46)

σ2

2
PV′′

1 (P)+κ(Φ−P)V′
1(P)−ρV1(P) =w−P. (47)

and

∂V2

∂t
+

P
2

σ2 ∂2V2

∂P2 (48)

+κ(Φ−P)
∂V2

∂P
−ρV2 = 0.

At P= 0 we solve the degenerate ODE forV0

κΦV ′
0−ρV0 = 0 (49)

and the degenerate PDE forV2

∂V2

∂t
+κΦ

∂V2

∂P
−ρV2 = 0 (50)

For largeP we set

V1 ∼ P− ρ
κ +

P
ρ+κ

+
κΦ

ρ(ρ+κ)
− ω

ρ
, asP→ ∞, (51)

and assume a linear solution forV2 so solve

∂V2

∂t
+κΦ

∂V2

∂P
−ρV2 = 0. (52)

The terminal condition forV2 is as before given by

V2(P, t = h) =

{

V1(P) if P≥ PL
V0(P)− l if P< PL

The smooth pasting conditions are the same as
those defined in equations (5), (6) and (12), (13). We
now transform theP-grid with a linear stretch getx
andy grids

P= yPL for V1(P) =V1(yPL)

P= xPH for V0(P) =V0(xPH). (53)
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Figure 1: the Prices ofV0, V1 andV2 with σ2 = 0.1,ρ =
0.025,µ = 0,ω = 1., l = 0,k = 1,h = 6 years grid size of
1000.

and

x∈ [0,1]

y∈ [1,ymax]. (54)

Therefore, equation (47) will be transformed to

1
2

σ2yV′′
1 +κ(Φ− yPL)V

′
1−ρPLV1 = PL(ω− yPL)

(55)

and (46) will be transformed to
1
2

σ2xV′′
0 +κ(Φ− xPH)V

′
0−ρPHV0 = 0. (56)

We can follow the same method using a finite differ-
ence scheme with Newton linearisation. To calcu-
lateV2, we must now solve the PDE using a Crank-
Nicolson scheme since the kernel does not exist for
this price process.

5 RESULTS

In figure 1, the switch from closed to in-construction
(V0→V2−ke−ρh) happens whenPH = 1.14632 which
is the optimal price to start construction, while at
PL = 0.793442 the price is so low that it is not worth
continuing production (V1 → V0− l ). We can notice
in this figure thatPH is higher thanPL, which is to
be expected since we should only invest if the price
is higher than the abandon price. Now we compare
our results to those of (Sødal, 2006) in figure 3, and
we find that our method generates values ofPL andPH
that are very close to the previous method. To demon-
strate the integrity of our scheme, in figure 2 we plot
the value ofPL for an increasing number of nodes.
The convergence of the scheme can be shown empiri-
cally to be second order which matches with the finite
difference methods used.
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Figure 2: The convergence ofPL as we increase the
nodes to calculatePL using the numerical method with
ρ = 0.035,µ= 0.5,ω = 2., l = 3,k= 2,h= 4,σ2 = 0.02.
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Figure 3: The values ofPL of PH with µ= 0,ρ = .025, l =
0,k = 1,ω = 1,σ2 = 0.01 using Algebraic equations vs the
numerical method.

Next we show results for when we apply our
method to the CIR process. In figure 4, we plot the
values ofPL and PH for varying values ofh. We
have noticed that the change in the values ofPH and
PL are not high as we increaseh and that is because
of the behaviour of the CIR process, since no mat-
ter how long is the lag period, the price will always
return to the mean therefore the effect ofPL andPH
does not change significantly as we increaseh, where
bothPL andPH decreases slowly, since as we increase
h it is more likely to reach the mean. On the other
hand, the effect ofσ we can see in figure 5 on the
prices ofPH andPL is relatively higher thanh, since
as we increase the volatility, the price increases. Con-
sequently the valuesPL andPH decreases, where as
we increaseσ significently, bothPL andPH goes to
zero because of the CIR property (σ

√
Pdt). However,

we believe that to model mean reversion process like
some commodities, the price of the productP will re-
turn to the mean eventually. Therefore, the investor
must not start the investment once it reaches the price
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Figure 4: The values ofPL of PH on CIR process using for
different values ofh with κ = 0.01,Φ = 1.,ρ = .025, l =
0,k = 1,ω = 1,σ = 0.1.
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Figure 5: The values ofPL of PH on CIR process using for
different values ofσ2 with κ = 0.01,Φ = 1.,ρ = .025, l =
0,k = 1,ω = 1,h= 6.

of PH , before the price of the product stays around this
price for a longer period. In otherwords, the invest-
ment lag model with mean reversion process should
be modelled as Parisian option rather than European
option as we did in this paper. The application of the
Parisian option will be studied in future time.

6 CONCLUSIONS

In conclusion, we solved the problem for we have
showed a new methodology using a mixture of
Quadrature method and finite difference method with
a body-fitted co-ordinate algorithm to solve an invest-
ment lag problem presented in (Bar-Ilan and Strange,
1996) and with a very high convergence rate and
an acceptable speed of computing. Additionally, we
have shown the the results presented in this paper are
as accurate as the results presented in (Sødal, 2006)
for the GBM process. Moreover, we have applied this
model on other stochastic process such as CIR mean

reversion process and have shown the results.
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