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Abstract: Problems of domain-independent multiagent planning for cooperative agents in deterministic environments
can be tackled by a well-known initiator—participants scheme from classical multiagent negotiation protocols.
In this work, we use the approach to describe a multiagent extension of the Generate-And-Test principle dis-
tributively searching for a coordinated multiagent plan. The generate part uses a novel plan quality estimation
technique based on metrics borrowed from the field of diverse planning. The test part builds upon planning
with landmarks by compilation to classical planning. Finally, the proposed multiagent planning approach was
experimentally analyzed on one newly designed domain and one classical benchmark domain. The results
show what combination of plan quality estimation and diversity metrics provide the best planning efficiency.

1 INTRODUCTION proach to multiagent planning for problems described
in MA-STRIPS based on the principle of classical
Multiagent planning is a specific form of distributed multiagent negotiation protocols as Contract Net with
planning and problem solving, which was summa- One agent acting as an initiator and the rest acting as
rized by (Durfee, 1999). Multiagent planning re- participants. The approach can be seen as a proto-

search and literature focused mostly on ¢oerdina- col describing distribution of th&enerate-And-Test
tion part of the problem while theynthesipart deal- ~ Searchwhich was a base principle also in multia-
ing with a particular ordering of actions was studied gent planners described by (Nissim et al., 2010) (us-
in the area of classical planning. ing DCSP for the coordination part and classical plan-

The coordination was, for instance, studied ner forthe generation part) and by (Pellier, 2010) (us-
in well-known General Partial Global Planning ing backtracking search for the coordination part and
by (Decker and Lesser, 1992) or with additional planning graphs for the generation part).
domain-specific information as TALPlanner by (Do- The contribution of our work is in the way how
herty and Kvarnstrom, 2001). The first fusion of plan candidates are generated and tested. Our gener-
the coordination and synthesis parts for domain- ative process uses estimation of quality of generated
independent multiagent planning with deterministic plans based on metrics of diverse planning (particu-
actions was proposed by (Brafman and Domshlak, larly from (Bhattacharya et al., 2010) and (Srivastava
2008). The approach was based on the classical plan<et al., 2007)). In other words, the idea is to generate
ning formalism $RiPs(Fikes and Nilsson, 1971) ex- good-quality plans and avoid low-quality ones. The
tended to multiagent settings denoted as MAR®S. quality measure is based on the history of answers
(Brafman and Domshlak, 2008) also proposed a solu- of the participants who were trying to extend the ini-
tion for the coordination part of the problem by trans- tial plan. Therefore it can be understood as a learn-
lation to a Distributed Constraint Satisfaction Prob- ing of the initiator agent to generate plan candidates
lem (DCSP). Since the paper was focused primar- which can be more likely extended by more partici-
ily on theoretical analysis of computational complex- pant agents to a final solution.

ity of MA-STRIPS problems, several algorithmic ap- The testing part utilizes planning with landmarks
proaches appeared later in other papers, e.g., in (Nis-(similarly as used by (Nissim et al., 2010)). The dif-
sim et al., 2010) or (Torrefio et al., 2012). ference is that we translate a planning problem with

In this paper, we propose a novel algorithmic ap- landmarks into an ordinary planning problem, which
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can be then solved by a classical planner. Usually,

The set of facts P contains (1) facts to describe po-

landmarks are incorporated into planners as specialsitions ofPlane and Truck like Plane-at-Prague and
heuristics as in (Richter and Westphal, 2010). How- Truck-at-Ostrava, and (2) facts to describe position
ever, our translation enables a straightforward incor- of theCrown like Crown-in-Brno and Crown-in-Truck.
poration of externally defined landmarks, which is re- The initial state and the goal are given as follows.

quired by the proposed planning protocol.

Finally, we provide experimental evaluation of the
planner on a newly designed planning domtnols
androversplanning domain from International Plan-
ning Competition extended for multiagent planning.

2 PLANNING MODEL

We consider a number @boperativeandcoordi-
natedagents featuring distinct sets of capabilities (ac-
tions) which concurrently plan and execute their local
plans in order to achieve a joint goal. The environ-
ment wherein the agents actdtassicalwith deter-
ministic actions. The following formal preliminaries
compactly restate the MAARIPSproblem (Brafman
and Domshlak, 2008) required for the following sec-
tions.

2.1 Planning Problem

An MA-STRIPS planning problent? is defined as a
quadruple? = (P, 4,1,G), whereP is a set of propo-
sitions or facts/4 is a set ofagents| is an initial state
andG is a set of goals. We ugeandf3 to range over
agents ing.

An action an agent can perform is a tripke=
(Bpre, 8add, 8qel) Of subsets oP, whereay,. is the set
of preconditionsa,qq is the set of add effects, and
aqgel IS the set of delete effects. We define functions
pre(a), add(a), anddel(a) such that for any action
a it holdsa = (pre(a),add(a),del(a)). Moreover let
eff(a) = add(a) Udel(a).

The setA4 contains agents. We identify an
agent with its capabilities, that is, an agent =
{a1,...,an} is characterized by a finite repertoire of
actions it can preform in the environment. state
s={p1,...,Ppm} C Pis afinite set of facts and we say
that p; holds ins. When no confusion can arise, we
useA also to denote the set of all actions®fthat is,
when we writea € 4 then 4 is to be considered as a
shortcut forJ 4.

Example 1. We shall demonstrate definitions of this
section on a simple logistic problem involving three
locationsPrague, Brno, Ostrava, and aCrown to be
delivered fromPrague to Ostrava. A Plane can travel
from Prague to Brno and back. Similarly, &ruck pro-
vides connection betwe@®nno andOstrava.

| = {Plane-at-Prague, Truck-at-Brno, Crown-in-Prague }
G = {Crown-in-Ostrava}

Agents can execute actions to:

1. load and unload the Plane or the Truck like
loadpjane@prague and unloadyyck@ostrava-  The action
loadpjane@prague  has preconditionsPlane-at-Prague
and Crown-in-Prague, one add effecCrown-in-Plane
and it delete<Crown-in-Prague. Other actions are de-
fined similarly.

2. fly the Plane and drive the Truck between allowed
destinations likeflyginosprague @nd drivegimo—ostrava-
For example, drivegmo—ostrava has precondition
Truck-at-Brno and it adds Truck-at-Ostrava while
removingTruck-at-Brno.

AgentPlane is defined as being capable of executing
following actions.

Plane = { fIYPragueﬂBrno:fIYBrnoﬂPraguev

loadpiane@prague ; |102dpiane@Brno;
UnloadPIane@Prague ,unloadpiane@Bmo }

AgentTruck is defined similarly. Agent sée is then
simply{Plane, Truck}.

2.2 Problem Projections

MA-STRIPS problems distinguish betweepublic
and internal facts and actions. Lefacts(a)
pre(a) U add(a) U del(a) and similarly facts(a)
Uacq facts(a). An a-internal and public subset of all
factsP, denotedP® " andPPUP respectively, are sub-
sets ofP such that the following hold.

PP D g sp(facts(a) Mfacts(B))
po-int factS(G) \ ppub
pa pa-int| | ppub

The setPPUP contains all the facts that are used in
actions of at least two different agents. The set can
possibly contain also other facts, that is, some facts
mentioned in actions of one agent only. This defini-
tion of public facts differs from other definitions in
literature (Brafman and Domshlak, 2008) whersP

is defined using equality instead of superse},(.e.,

our definition gives partial freedom what is treated as
public. Our definition allows us to experiment with
extensions of the set of public facts. For the purpose
of this paper, however, the definition with equality can
be considered without any effect on our results. We
suppose thalPP'P is an arbitrary but fixed set which
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satisfies the above condition. SNt of g-internal

In a MA-STRIPS problem?, all the agents op-

facts contains facts mentioned only in the actions of erate on a shared global state. The projectSnof

agento, but possibly not all of them. The sef con-
tains factgelevantto agent.

Example 2. In our running example the set
facts(Plane) contains Plane-at-Prague, Plane-at-
Brno, Crown-in-Prague, Crown-in-Plane, and Crown-
in-Brno. The only fact shared by the two agents is
Crown-in-Brno but later on we will require also &
PPub 5o we have the following.

PP“b = {Crown-in-Brno, Crown-in-Ostrava}
pPlane-int — (p|ane-at-Prague, Plane-at-Brno

Crown-in-Prague, Crown-in-Plane}
pPlane _ ppub,  pPlane-int

The set P is defined appropriately.

Theprojection & of actiona to agento is an ac-
tion defined as follows.

a% = (pre(a) NP% add(a) N P% del(a) N P%)

Example 3. In our example we can compute the
below action projections. To save space we write

Plane Plane
(ﬂyPrague%Brno) aSﬂyPrague%Bmo and so on.

Plane
fIyF’ragueaBrno

Truck _
flyF’ragueaBrno -

= ﬂYPragueaBrno

(0,0,0)

Ioad$r'32f@8rno = ({Crown-in-Brno}, 0, {Crown-in-Brno})
unload.'?rlﬁgf@owava = (0,{Crown-in-Ostrava}, 0)

The setiP“? of public actionof agentx is defined
asoP = {a | a € a,eff(a) N PPUP £ 0}, and the set
a" of internal actionsof agenta asa™ = a \ aPP.
The set4P! of all public actionsof problem? is de-
fined asqP'® = | J,. ; aP'?, and the sefl® of all ac-
tionsrelevantto agentx is 2% = a™u{a%|a € 4PU°}.
Note tha® = afor anya € a. Hence in the definition
of 2% we do not need to project internal actions, and
the only actions which are effected loyprojection
are public actions of agents other than

Example 4. In our example we have the following
public and relevant actions.

ub __
P|ane|p = { loadpjane@Brmo, UNloadpiane@srno }
Plane _
a - { ﬂyPragueaBrnovﬂyBrnoaPraguev

loadpjane@Prague , UNl0adpjane@pPrague »

Plane Plane
IoadPIe\ne@Brno ’ urlloadPlane@Brno ’

Plane Plane
IoadTruck@Brno7 lmloadTruck@Brno7

Plane Plane
IoadTruck@Ostrava7 ur‘IoadTruck@Ostrava }

Note thatZ"'a"¢ has ten actions whilegl ™ has only
eight l_)ecaus&)adphne@prague andunloadpiane@prague
are private forPlane.
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a problem? to agenta is a classical $RIPS prob-
lem where an agent has an internal copy of the global
state. Previously defined relevant actio#fs contain

(1) internal actions of agent, (2) public actions ofx,

and (3) projections of public actions of other agents
which emulate effects of external actions on the inter-
nal state. Projectio®® of ? is defined as follows.

P = (PY 2% 1 NP%,G)
Example 5. In our example we have

I'nPPane — (plane-at-Prague, Crown-in-Prague }
?Plane - <PPIane7ﬂPlane7| ) PPIane7G>

Projection®?™ is defined similarly.

In the rest of this paper we consider only problems
where all the facts of the goal staBeare public, that
is, G C PPUb which is common in literature (Nissim
and Brafman, 2012). This assures that any agent is
able to find its local solution fulfilling the goal if it is
satisfiable. Then it is up to the agent negotiation to
extend this local solution to a valid plan. Moreover
we suppose that two different agents do not execute
the same action, that is, we suppose that the sets
are pairwise disjoint (Brafman and Domshlak, 2008).

2.3 Plans and Solutions

A planTtis a sequence of actionia, ..., ax). A plan

1t defines an order in which the actions are executed
by their unique owner agents. Itis supposed that inde-
pendent actions can be executed in parallel. A ptan
is called asolutionof 7 when it contains actions from

A4 and a sequential execution of the actions froiyy
their respective owners transforms the initial stati@

a state which is a subset & Letsol(?) denote the
set of all solutions of MA-$RIPS problem?. Simi-
larly, letsol(?®) denote the set of all solutions of the
classical $RIPSproblem®?®.

Example 6. Let us consider the following plans.

T = (loadpiane@Prague s flyprague—Brno- Unloadpiane@smo,
loadTruck@Brno , drivVegmo—ostravas UnloadTruck@Ostrava>

_ Plane
m= <un|0adTruck@Ostrava>

Truck
IoadTruck@Brno7

Truck >
Truck@Ostrava

It is easy to check thaty is a solution of our example
MA-STRIPSproblem?. Planty is a solution of pro-
jection PPa"e hecause projectiomnloadfane. o .

of Truck’s public action simply produces the goal state

out of the blue. Finally, clearlyr, € sol(P™).

_ Truck
= <l'm|0adPIane@Brno7

drivegmo— ostrava, Unload



Multiagent Planning Supported by Plan Diversity Metrics and Landmark Actions

A public planof problem? is a plan that contains
only actions from4P'b, that is, contains only public
actions of?. A public plan can be seen as a solution
outline that captures execution order of public actions
while ignoring agents internal actions. For a solu-
tion Ttof 2 we construct theublic projectionrU by
removing internal actions, that is, by restrictingo
4PUb HencerUPis a public plan of?. For a solution
rtof 2% thepublic projectionr®? is constructed sim-
ilarly by removing internal actions and additionally
by translating projection images back to their projec-
tion origins. That is to say, that"? is composed of
public actions from4P!® rather than from their pro-
jections which are present im ThustP'Pis again a
public plan ofP.

Example 7. In our example we know that € sol(?P)
and 1y € sol(PP3") and 1, € sol(P™UK). Thus we
can construct the following public plans.

ub
T18 = (unloadpiane@Bmo 10adTruck@Bmos
unloadyck@ostrava)

b
Tl‘iju = (unloadryck@ostrava)

ub
Tlg = <UnloadPIane@Brn07IoadTruck@Brnm

unloadyck@ostrava)

Note thatrd"® = 5",
2.4 Public Plan Extensibility

We want to construct a solution @ from solutions

of agent projectiong®. But not all projection solu-
tions can be easily composed to a solutiorPofThe
concept ofpublic plan extensibilityhelps us to select
projection solutions which are conductive to our pur-
pose. In this section we useto range over public
plans to improve readability.

Definition 1. Leto be a public plan ofP. We say that
o is internally extensibléf there isTt € sol(P) such
that°U? = o. Similarly, we say that is internallya-
extensiblef there isTte sol(P%) such thatP? = g.

Example 8. In our example it is clear thatlgub is
internally extensible because it was constructed from
the solution of?P. From the same reason we see that
" is internally Plane-extensible and®" is inter-
nally Truck-extensible. It is easy to see tha"” is

also internallyPlane-extensible. However "’ is not
internally Truck-extensible becauseuck needs to ex-
ecute other public actions prior tnloaduck@ostrava-

The following lemma states that a solution of

problem? can be constructed from a public plan
which is internallya-extensible for all the involved

Lemma 1. Let public planc of P be given. Public
plana is internally extensible if and only & is inter-
nally a-extensible for every agent that owns some
action fromo.

Proof. Case &) is trivial. Wheno is internally ex-
tensible then there ig € sol() such that?'? = o.
We can construct projectiam, of Ttto agentx by re-
moving internal actions of agents other ttegrand by
applying projectiora® to the remaining actiona. It
holds thatrty € sol(?*) and alsarf}™® = 6. Thuso is
internally a-extensible.

To prove case<) let us suppose thats,... 0n
are all the agents that owns some actioroin For
everyi, o is internally aj-extensible and thus there
is T4 such thatrg € sol(£%) and Tlf”b = 0. Now we
construct a solutiom of 2 from projection solutions
15’s as follows. We split eacit, by the public actions
from o and we join the corresponding internal parts
of different plans together. Then we constradtom
o by adding the joined parts between corresponding
public actions ino. Note that we do not need to do
a reverse projection because for actminternal to
agenta it holds thata® = a. Clearly *"? = ¢ and
it is not hard to prove thaitr € sol(). Henceo is
internally extensible. O

The consequence of the lemma is that to ensure
that? has a solution it is enough to find a solutme
sol (%) for some agentt such that®'® is internally
extensible.

Example 9. We have seen previously thafz’("b is in-
ternally Truck-extensible and also internallilane-
extensible. Hence we know that there is some solution
of ¢ even without knowingyp. On the other hand, we
know thatr€"® is not internally Truck-extensible and

thusTt"”is not internally extensible.

Some public plans aP can be extended to a valid
solution of? but it might require inserting also public
actions intoo. The following definition captures this
notion which will be used in the following sections.

Definition 2. Let public plano of ¢ be given. We say
that o is publicly extensibléf there is public plano’
of  which is internally extensible andl is a subse-
quence ob’.

Example 10. We have seen that"®is not internally
extensible, howeuver, it is still publicly extensible be-

causeitisa subsequence@”b.

Similarly we define that is publicly a-extensible
Projection solutiont e sol(?%) is called internally ex-

agents. The constructive proof suggests an algorithmtensible (or publicly extensible) when the correspond-

to construct a solution.

ing public plant®“?is so.

181



ICAART 2014 - International Conference on Agents and Artificial Intelligence

3 CONFIRMATION SCHEME

In this section we present a multiagent planning al-
gorithm which effectively iterates over all solutions
of one selected agenn(tiator) in order to find such

a solution which is internally extensible by all the
other agentsparticipanty. The confirmation algo-
rithm provides a sound and complete multiagent plan-
ning algorithm (see Theorem 2).

Algorithm 1: Multiagent planning algorithm with it-
erative deepening.

input : multiagent planning probler®
output : a solutionrt of 2 when solution exists
Function MultiPlanIterative(?P) is
Imax — 1
loop

T+ MultiPlan(P,|may)

if T1#£ 0then

| retun

end

Imax — Imax + 1
end

end

We suppose that we have a separate agent capa-

ble of running planning algorithms for each agent
mentioned in a given problent?. Procedure
MultiplanIterative from Algorithm 1 is the main
entry point of our algorithms, both in this and the fol-
lowing sections. This procedure is initially executed
by one of the agents calladitiator. It takes a prob-
lem P as the only argument and it iteratively calls
proceduréMultiPlan(?,lm.x) to find a solution of

P of lengthl,,.x, increasind .« by one on a failure.

In this way we ensure completeness of our algorithm

Algorithm 2: MultiPlan(?,lmax) in the confirma-
tion scheme. FunctioBinglePlan(?, ¥ ,Imax) re-
turns a plan of lengthy,,x solving problem? omit-
ting forbidden plans from or 0 if there is no such
plan. MethodAskA11Agents(TPU) ask all agentst
mentioned in the plan whether they consider the pub-
lic plan TPUP to be internallyn-extensible and returns
0K if all agents replyES.

input : problem®? and a maximum plan length,.
output : a solutionttof ¢ when solution exists

Function MultiPlan(?,ly.y) iS
F+«0
loop
T+ SinglePlan(P, F,lmax)
if T=0then
| retun-@
end
reply < AskAllAgents (TPU0)
if reply = 0K then
| retun Tt
end
F + Fu{m

end
end

wise 1tis added to the set of forbidden plafisand
SinglePlanis called to compute a different solution.

The following states that the (public projection of
the) plan returned by the confirmation algorithm is in-
ternally extensible to a solution @f (soundnegsand
that the algorithm finds internally extensible solution
when there is onecompleteness It is easy to con-
struct a solution ofP given an internally extensible
plan.

Theorem 2. Let procedure SinglePlan in

because we enumerate the infinite set of all plans inMultiPlan (Alg. 2) be sound and complete.

a way that does not miss any solution. To simplify

Then algorithmMultiplanIterative (Alg. 1) with

the presentation, we restrict our research only to thoseconfirmation procedureMultiPlan is sound and

problems? which actually have a solution, that is,
sol(®P) # 0.

Algorithm 2 presents implementation of
MultiPlan in the confirmation algorithm. We
suppose thasinglePlan(?, ¥ ,lmax) implements a

complete.

Proof. To prove soundness, let us suppose tha
the result ofultiPlanIterative. Public plarmP'?
was confirmed by each ageatto be internallya-

sound and complete classical planner which returns extensible. Thus, by Lemma 1, itis internally extensi-

a solution of (an initiator projection ofp of length
Imax Which is not in . Moreover we suppose that
SinglePlan always terminates and that it returfs
when there is no solution.

Initially, we set F to 0. Then we invoke
SinglePlan to obtain a solution of? denoted as
1. Afterwards, we ask the participant agents whether
or not the public plamP'? is internallya-extensible.
How participant agents fulfill this task is described in

ble and following the lemma proof we can reconstruct
the whole solution ofP.

Let us prove completeness. During each loop
iteration in MultiPlan one plan is added tof.
There are only finitely many plans of length.x
and thus algorithmiultiPlan always terminates be-
causeSinglePlan is sound and complete. Wheh
is solvable, then some internally extensible solution
1 has to be eventually returned I$inglePlan at

Section 5.1 When answers from all of the agents are some point becausginglePlan is complete. This

affirmative thenmtis returned as a result. Other-
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MultiPlanIterative) because, as a solution &f
it has to be confirmed by all the participants. O

4 GENERATING PLANS USING
DIVERSE PLANNING

In the previous section we have supposed that func-
tion SinglePlan(?, T ,lmnax) Selects an arbitrary so-
lution of P of lengthl .« which is distinct from all
the previous solutions stored jA. In this section we
present an improved version 8finglePlan which
selects a solution based on evaluatiorgoélities of
previously found solutions.

Section 4.1 defines the notion of plan metrics
which are used to describe how much two plans dif-
fer. Based on these metrics we define in Section 4.2
a notion of therelative qualityof a plan based on
evaluation of previously considered solutions which
were, however, rejected by at least one of the partic-
ipant agents. Finally, Section 4.3 describes improved
version of functiorBinglePlan.

4.1 Plan Metrics

While planning looks for a single solution of a prob-
lem, the goal of diverse planning is to find seveti#l
ferentsolutions. There are two main approaches to
define how much two plans differ. Firstly, the differ-
ence of two plans can be defined by their member-

ship to the same homotopy class (Bhattacharya et al., i
2010). Another approach defines a distance between'Pants acceptin

plans. The distance can be defined eitheriprac-
tions and their relations, or qfii) states that the exe-
cution of a plan goes through, or @ii) causal links

between actions and goals (Srivastava et al., 2007). In

this paper, we use two metrics of the first type, that is,
distance metrics defined on actions and their mutual
positions in the plan.

4.1.1 Different Actions Metric

The Different Actions Metriccounts the ratio of ac-
tions which are contained only in one of the plans. It
is defined as follows. Letp \ ™ denote the plamg
with all the actions frony removed.

_ I\ T+ [T\ Th|
T + T8
This metric considers neither the ordering of ac-
tions nor the fact that some of the actions can be in
a plan multiple times. Nevertheless, it is very simple
for evaluation.

5 (T, Tig)

4.1.2 Levenshtein Distance Metric

ThelLevenshtein Distance Metr{tevenshtein, 1966)

is a general distance metric defined on two sequences.
Lettrim () be the plarmwith the last action removed.
Moreover lediff (Tta, Tis) be 1 if the last actions afa
andti differ and O otherwise. Then the Levenshtein
metric 3" (T, Tg) is defined as follows.

55(m0) = |n
(0,1 I
OF (trim(Ta), T8) + 1
" .
5L(T[A,TIB) — min O* (Ta, trim(1R)) + 1

&% (trim (1), trim (Tig) )+
+diff (Ta, Ti8)

This metric describes how many changes usiRg
ementary operationBave to be performed to convert
one plan into another. The elementary operations are
addan action into the plamgemovean action from the
plan, andreplaceone action in the plan by another
action.

4.2 Plan Quality Estimation

In Algorithm 2, the initiator agent generates its lo-
cal solutiontt and asks participant agents to check
whethermP'® can be extended to a solution of their
local problems. Each participant either accepts or re-
jectsTPU2. Based on their replies, we can define the
quality Q () of Ttas the ratio of the number of partic-

i gU? and the total number of partici-
pants.

Qm) = # of participants accepting®’°
N # of all participants

Hence the plamwith Q(m) = 1 is accepted by all of
the participants and the algorithm successfully termi-
nates.

Once we have a plam’ whose quality has al-
ready been established, we can defimelative qual-
ity A(Tt, 77) of an arbitraryrtwith respect tat using a
selected metri® on plans as follows.

A t) = | Q1Y) = 3(r 1)

The relative quality\(1t, 1) is high when eitheq (1)

is high andris close tort, or whenQ (1) is low and
Ttis distanced fronm'. In other cases the value is close
to zero.

Suppose we have a set of pldhsvhose qualities
have already been established. Then we can compute
the relative qualityA(tt, M) of an arbitrary plarmmwith
respect td'l in several ways. In our work we work
with the following twoquality estimators
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4.2.1 Average Quality Estimator

Theaverage estimatoA” (11, M) is defined as the av-
erage of the relative qualities afwith respects to the
plans fromr.

A“(n,n)_%r[’n/)

4.2.2 Minimal Quality Estimator

The minimal estimatorA™" (1, M1) is defined as the
minimal relative quality.

A™(TL1) = mingenA(TL )
4.3 Generating Diverse Plans

During the execution of Algorithm 2, the initiator
agent remembers the qualiti@sof generated but re-
jected plans, that is, it remembers the qualities of all
the plans fromF. We suppose tha is updated with
every call toAskAllAgents. Additionally, the initia-

tor computes the following statistics about actions.

Q(a) = average quality of plans containiag

Q(a,&) = average quality of plans containiage-
fored

The functionrSinglePlan executed repeatedly by
the initiator is described in Algorithm 3. It calls
DiversePlan to generate a fixed numbaen)(of local
solutions. FunctiodiversePlan works as follows.
Firstly it generates a solution candidate using roulette
wheel selection (Back, 1996) based on average action
qualitiesQ(a). These actions are then presorted us-
ing statistics about action orderi@(a,a’). Note that
two actions are swapped only if the difference of the
statistics is larger then some threshafd (0.1 in our
experiments). This ordering step allows algorithm to
find the correct solution faster, but the price for that is
lost of completeness &finglePlan procedure.

Once a solution candidate is generated, the initia-
tor a tests whether this sequence of actions is publicly
o-extensible, that is, whether it is its local solution.
If so, the solution is added to a set of diverse plans.
This process is repeated until the required number of
local solutions is found. In our implementation, this
process is further extended and occasionally, instead

Algorithm 3: SinglePlan(?, ¥) uses
DiversePlan(?,n,Imax) to generate n differ-
ent solutions to the problen? and then selects
the best one using metris(tt, 7). The generation
of different plans is based on the roulette wheel
selection by the quality evaluation received by other
agents.

input : classical SrRIPsproblem®, the set¥ of
forbidden plans, and a maximum plan length
Imax
output : a solutionttof 2 when solution exists
Function SinglePlan(?, F,lnax) IS
/* nis a constant */
N9 < DiversePlan(?, F,n,lmax)
T4 argmaxepav (A(TL F))
return T
end

input : problem®? andn number of solutions
output : a set of diverse solutions
Function DiversePlan(?, F,n,lnax) IS
MN+o
while || < ndo

A+ GetRandomActions(P)

TU + OrderActions(A)

T+ CreatePublicExtension(P,TU)

if TA0& ¢ F & | < lmax then

| Menu{m

end
end
return M

end

Function GetRandomActions (P, lmax) IS
N < RandomInt(1...min(lmax,|4|))
A0
while |A| < ndo
| A< Au{a:roulette selection by (a)}
end
return A
end

Function OrderActions(A) is
T+ A
for i =2..|m do
if Q75,15 1) — Q(T5-1,T5) > A% then
| SwapActions(T§_1,T)
end
end
return T
end

of a roulette selection, those action which have not
been used often are chosen. In this way the algorithm
gathers further information about unused actions. Fi-
nally, functionSinglePlan selects the diverse plan
with the maximum relative quality.

5 FROM THEORY TO PRACTICE

We have implemented the algorithms described in the
previous sections taking advantage of several existing
techniques and systems. An overall scheme of the ar-
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Figure 1: Architecture of the planner.

chitecture of our planner is sketched at Figure 1. An
input problem? described in PDDL is translated into
SAS usingTranslator script which is a part of Fast
Downward system. OuMulti-SASscript then splits
SAS representation of the problefinto agents’ pro-
jections P using user provided selection of public
facts PPUb, |nitiator then computes public extension
of actions to create a solution to its own projection of

the problem. Participants are then requested to chec

whether they consider it to be internattyextensible.
Next part of this section demonstrates how the

public and internal extension can be easily verified us-

ing any standard 8RiPsplanner.

5.1 Computing Plan Extensions

In our algorithms, agents are asked whether a pro-
vided sequence of actions can be extended into a solu-
tion by adding other actions into the sequence. Tech-

nically, this is similar to the planning problem with

landmarks (Brafman and Domshlak, 2008). In this
section we describe our algorithm to solve this prob-
lem. Based on this solution we describe how an ini-
tiator agent computes public extensions of a given se-

Definition 3. A planning problem with landmarks
a pair (?,0) where ? = (P,A/l,G) is a classical
STRIPS problem ando = (ay,...,a,) is a sequence
of actions build from the facts .

A solutionttof (2, 0) is a solution of the classical
StrIPSproblem(P, AU{ay,...,an},|,G) such thaio
is a subsequence of

We solve a planning problem with landmarks by
translating(?, o) into a classical $rIPsproblem®°
such that the solutions @° are in a direct correspon-
dence to the solutions of the original problem with
landmarks. Firstly we take a sBtqks Of N+ 1 facts
distinct fromP denoted as follows.

Prarks = {marl@, cee markq}

The meaning of faahark is that the landmark actions

1,...,8 has already been used in the correct order
and that the actiomy 1 can be used now. We will
ensure that only one fact froRy,ks can hold in any
reachable state. We will addarky to an initial state
and we will requiremark;, to be in the goal.

Definition 4. Let? =(P,A/l,G)ando = (ay,...,an)
and Ruas = {marly,...,mark,} such that P and
Pma,ks are distinct be g|ven For every action ket

ks define actionjkas follows.

bi = ( pre(ay) U{mark_1},
add(a) U {mark},

del(a) U{mark_1} )

The translation of the planning problem with land-
marks(?, o) into a classicalSTRIPS problem??° is
defined as follows.

= (PUPmarks, AU{by,...,bn},
| U{mark}, GU{mark,})

Basically we take actiog; and we addanark_1 to
its preconditions and remoweark 1 whena; is used.
Moreover a use of; enables us to use the next action
aj11 from the listo by addingmark to the effects. It
is easy to show the following property.

Lemma 3. Let (?,0) be a planning problem with

quence and how participant agents check whether a;nqmarks. Whenr is a solution of?° then Tt with

sequence of public actions is internally extensible.

Suppose we are given a classicaR8 splanning
problem ? = (P,A/I,G) together with a sequence
o= (ay,...,an) of actions build from the fact8. The
planning problem with landmarks is the task to find
a solutiontt of the problem(P,AU{ay,...,an},1,G)
such thato is a subsequence of that is, that all the
actions fromo are used it in the proposed order.
Note that an actioa; might or might be not irA.

http://www.fast-downward.org/

bi’s changed back to;& is a solution of 2, g). More-
over when there is a solution ¢, 0) then there is a
solution ofP°.

Recall that every agemnt is equipped with its lo-
cal projection?® of problem®, that is, a classical
StrIPSproblem defined as follows.

P4 =(P% 2% 1 NP*,G)

The setq® of local actions consists af-internal ac-
tionsa™ and projections of public actions.

aa 2% =a"u{a’|ac gPUP}
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Initiator's actions

handTool(tooll)
handTool(toolN)

Private actions of helpers

useTool(agentl, tooll)
useTool(agentN, toolN)

Public actions of helpers Goal

doGoal(agentl)
doGoal(agentN)

Figure 2: A scheme of the Tool problem.

In Algorithm 3, the initiator agent is asked using
function CreatePublicExtension(?,T) to find a
solution of its local projectiorP® that has a given ac-
tion sequencer as a subsequence, that is, its public
extension. The initiator can simply solve the planning
problem with landmarké?®  1¢) as shown in the fol-
lowing Theorem 4. Note that in this case the land-
marks fromr’ are also in the sef® of actions ofP?.

Theorem 4. Plan mtis publicly a-extensible to a so-
lution of 2% if and only if the planning problem with
landmarks(?®,m) is solvable. And moreover, the so-
lution of planning problem with landmarks serves as
a proof of the extensibility, and vice versa.

Proof. It is quite straightforward to translate each
plantt proving public extensibility of plamto a solu-
tion of the planning problem with landmark®®, ),
and vice versa. O

In Algorithm 2, the participant agents are asked
from the call to AskAllAgents(TPU) to establish
whethemPU?is internallya-extensible to a solution of
P%. The participant can simply check the solvability
of the planning problem with landmarkaS, ..., a5)
as shown in the following Theorem 5. Note that in
this case the landmarks are nouifit.

Theorem 5. Plan t= (ay,...,an) is internally a-
extensible to a solution of® if and only if the
planning problem{P% a'™ | "PY G) with landmarks
(a1,...,an) is solvable. And moreover, the solution of
planning problem with landmarks serves as a proof of
the extensibility, and vice versa.

6 EXPERIMENTS

For our experiments, we have designedTbel Prob-
lem that allows us to observe a smooth transition in
the complexity of the problem.

We focused our experiments on the following cri-
teria: (1) comparison of different estimators and (2)
an average number of iterations required to find a so-
lution.
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6.1 Tool Problem

In theTool Problem the goal is that each & agents
performs its publicdoGoal action as it is shown in
Figure 2. However, this action must be preceded by its
internaluseTool action first. Only the initiator agent
can provide tools with. thBandTool action. Formally,
there areN toolstooll, ..., tooIN, andN + 1 agents
(the initiator andN participants). In the initial state,
none of the participants has its tool and the initiator
has all of them. However, the initiator does not know
that the participants need them. One of possible solu-
tions is as follows.

1. handTool(initiator, tool1)

N. handTool(initiator, toolN)
N+1. useTool(participantl, tooll)

2N. useTool(participantN, toolN)
2N+1. doGoal(participantl, tooll)

3N. doGoal(participantN, toolN)

Other permutations of the plan also form a valid
solution.

6.2 Results

Let us present our results for teol Problenwith 2,
4,6, 8,10, and 12 tools. Graphs in figures 3, 4, and 5
show the results of running our experiments 50 times.

Estimator Average Errors. Firstly, we compare
both estimators presented in this paper: Average Esti-
mator (titledAVG in the graphs) and Minimal Estima-
tor (MIN). Each estimator is tested with two different
distance metrics: Different Action Metri®(FF) and
Levenshtein Distance MetritEV). Figure 3 demon-
strates the progress of the estimators errors for the
Tool Problem with 10 tools. Errors are computed
from the average of 50 runs. As shown in the graph,
Average Estimator with Different Action Metric con-
verts quickly to very low error and thus it seems to be
the best choice for this problem.
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Figure 3: Progress of an average error of plan qualities com-
puted by different estimators for tH@ol Problemwith 10
tools.
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Figure 4: Average errors of plan qualities computed from
the first 80 iterations for th&ool Problemwith a variable
number of tools.

Figure 4 shows an average error for each estima-
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Figure 5: The number of Generate-And-Test iterations
needed to solve different sizes of the Tool Problem using
random generation of planRKID) and generation driven by
the Average Estimator with the Levenshtein Distance Met-
ric (AVG+LEV). Graph shows median (line in the rectangle)
and 25 % and 75 % quantile (lower and upper bound of the
rectangle) of the results.

AVG+LEV again shows the best performance. Fig-
ure 5 shows more detailed distribution for its results in
comparison to the baseline random generation. This
graph shows a significant improvement over the base-
line solution and that more complex cases of Tool
Problem can be solved using this technique.

Results for Rover Problem. Classical planners are
compared at the International Planning Competition
with a well defined set of problems call&C prob-
lems Unfortunately, most of these problems are by
their nature a single-agent problems and there is no
standard way to convert them into a multiagent set-
ting. Nevertheless, some of the problems are by their

tor during first 80 iterations for different sizes of the Nature multiagent and fulfills all the requirements we
Tool Problem. We can see that the Average Estimator Nave specified above in this article. One of the prob-
with Different Action Metric again shows the lowest €MS is calledoversand its goal is to plan actions for
errors for all the cases, and furthermore, that its error Multiple robotic rovers on Mars that need to collect
decreases with increasing problem complexity. samples and transmit their data back to Earth via a
shared base.

Table 2 shows that we were able to solve some
Results for Tool Problem. Table 1 shows how  ropiem instances very quickly when the first plan
many Tool Problems of c_ilfferent sizes has be_en solved generated by the initiatordver0) was internallya-
during 50 runs using different plan generation tech- gyiensible by all the other agents and thus formed a
niques. We can see that most of the approachesgqytion of the problem. When the first generated plan
perform better than a random generation of pfans \yas not a solution of the problem then the search for a
solution usually timeouted because it requires a plan-
ner to find out that a problem has no solution. This
constitutes a challenge for the state-of-the-art plan-
ners which usually performs best on problems which
actually have a solution. When there is no solution

2We have implemented a simple implementation of
SinglePlan by translating a planning problem into a SAT
problem instance and by calling an external SAT solver to
solve it. It is easy to instruct a SAT solver to compute a
solution different from previously found solutions.
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Table 1: Percentage of successfully solved instances ofdbks Problem for different number of tools. Comparison of a
reference random plans generateNp) and different combinations of estimators and plan digtanetrics.
2 3 4 5 6 7 8 9 10 11 12
RND 100% 100% 100% 100% 98% 80% 54% 40% 16% 6% 10%
MIN+DIF  100% 100% 100% 98% 60% 36% 22% 6% 16% 2% 0%
MIN+LEV ~ 100% 100% 100% 94% 96% 100% 90% 96% 68% 100% 76%
AVG+DIF  100% 100% 100% 100% 94% 88% 84% 72% 68% 70% 78%
AVG+LEV 100% 100% 100% 100% 100% 100% 100% 100% 96% 98% 82%

Table 2: Number of iterations needed to successfully solveeRs problems from the IPC collection of planning problems
Problems marked by were not solved because the problem was too large for thetesiblic extensibility and FD did
not finish in a reasonable time. Two experiments did not fibistause of an error in FD planner during the test of internal
extensibility (marked as E-P). The value 0 means that aisalwias found immediately and successfully confirmed byhail t
participants without any need for negotiation.

#rovers 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
iteraton 2 0 O O O o ®© 0O ©© o o o EP o o 0 0 E-P
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