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Abstract: Most existing reinforcement learning algorithms require many trials until they obtain optimal policies. In this
study, we apply transfer learning to reinforcement learning to realize greater efficiency. We propose a new
algorithm called TR-MAX, based on the R-MAX algorithm. TR-MAX transfers the transition and reward
probabilities from a source task to a target task as prior knowledge. We theoretically analyze the sample
complexity of TR-MAX. Moreover, we show that TR-MAX performs much better in practice than R-MAX in
maze tasks.

1 INTRODUCTION

Reinforcement learning is one of the useful meth-
ods for providing control rules for machines, where
an agent learns its own policy for an unknown envi-
ronment autonomously. Programmers do not have to
provide explicit rules for machines if the learning is
powerful enough. In reinforcement learning, learners
consume many trials until they obtain optimal rules,
however it is difficult in real world learning. Recent
studies (Tan, 1993; Miyazaki et al., 1997; Kretchmar.,
2002) have attempted to reduce the number of trials
for efficient learning.

Some researchers have appliedtransfer learning
to reinforcement learning (Konidaris and Barto, 2006;
Taylor and Stone, 2009; Taylor et al., 2007). Trans-
fer learning applies the knowledge obtained in some
source tasks to a target task to solve it efficiently.
Some studies (Konidaris and Barto, 2006; Taylor
et al., 2007) experimentally showed that applying
transfer learning to reinforcement learning is effective
in reducing the number of trials.

However, the theoretical aspects of transfer learn-
ing for reinforcement learning are not yet fully
known. In (Mann and Choe, 2012), the authors de-
fined anα-weak admissible heuristicand showed the-
oretically that transferring some action values yields
efficient reinforcement learning.

In this position paper, we outline our approach to
transfer learning for reinforcement learning: we try to
transfer thetransition probabilityandreward proba-

bility as knowledge, because they should be useful for
efficient learning.

On the basis of the theoretical framework in
(Kakade, 2003; Strehl and Littman, 2005) we pro-
pose the efficient learning algorithm TR-MAX that
is an extension of R-MAX (Brafman and Tennen-
holtz, 2003). From a theoretical viewpoint, we show
the sample complexity of TR-MAX, which is smaller
than that of R-MAX, and it implies that TR-MAX is
PAC-MDP (Kakade, 2003). From a practical view-
point, we compare TR-MAX with R-MAX in maze
problems and verify that our TR-MAX algorithm is
indeed efficient.

2 PRELIMINARIES

The reinforcement learning framework assumes that
its task satisfies the Markov property. This task is
called a Markov decision process (MDP) (Sutton and
Barto, 1998).

Definition 1. A finite Markov Decision Processis a
five tuple〈S,A,T,R,γ〉. S is a finite set called thestate
space, and A is a finite set called theaction space.
T : S×A×S→ [0,1] is thetransition probability, and
R : S×A→R is thereward function. 0≤ γ < 1 is the
discount factor.

According to the related work (Strehl et al., 2009;
Mann and Choe, 2012), we assume that rewards take
a value in the interval[0,1], so that we obtainR : S×
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A→ [0,1]. M denotes a finite MDP in the sequel.

Definition 2. For any policy in M, let

Vπ
M(s) = Eπ

[

∞

∑
i=0

γirt+1+i

∣

∣

∣

∣

∣

st = s

]

denote thepolicy (or state) value functionfrom state
st = s at timestep t, and let

Qπ
M(s,a) = Eπ

[

∞

∑
i=0

γirt+1+i

∣

∣

∣

∣

∣

st = s,at = a

]

denote theaction value functionfrom state st = s
and action at = a. Note that st denotes the state at
timestep t, and at denotes the action at timestep t.

The policy (or state) value function indicates how
good it is to be in a particular state for the agent.
Moreover, the action value function indicates how
good it is to perform the action in that state for the
agent.

A policy π∗ is called optimal if it satisfies
Vπ∗

M (s)≥Vπ
M(s) for any policyπ and states∈ S.

Definition 3 ((Kakade, 2003)). Let (s1,a1, r1,
s2,a2, r2, . . .) be a random path generated by execut-
ing an algorithmA in an MDP M. For any fixed
ε > 0, thesample complexityof A is the number of
timesteps t such that the policyAt at time t satis-
fies VAt

M (st) <Vπ∗
M (st )− ε. The algorithmA is called

Probably Approximately Correct in Markov Decision
Processes (PAC-MDP)if the sample complexity ofA

is bounded by some polynomial in|S|, |A|, 1
ε , 1

δ , 1
(1−γ)

with probability at least1− δ, for any0< ε < 1 and
0< δ < 1.

If a reinforcement learning algorithm is PAC-
MDP, the algorithm can efficiently learn in any MDP.

Definition 4 ((Kakade, 2003)). Let (s1,a1, r1,
s2,a2, r2, . . .) be a random path generated by execut-
ing an algorithmA in an MDP M. For any fixed
ε > 0, thesample complexityof A is the number of
timesteps t such that the policyAt at time t satis-
fies VAt

M (st) <Vπ∗
M (st )− ε. The algorithmA is called

Probably Approximately Correct in Markov Decision
Processes (PAC-MDP)if the sample complexity ofA

is bounded by some polynomial in|S|, |A|, 1
ε , 1

δ , 1
(1−γ)

with probability at least1− δ, for any0< ε < 1 and
0< δ < 1.

If a reinforcement learning algorithm is PAC-
MDP, the algorithm can efficiently learn in any MDP.

Brafmanet al. (Brafman and Tennenholtz, 2003)
proposed an efficient model based algorithm called
R-MAX 1. Model-based algorithms maintain not

1The R-MAX algorithm is obtained from Algorithm 1
by omitting lines 7-16, because our TR-MAX algorithm is
an extension of the R-MAX algorithm.

only the rewards but also the number of selections
select(s,a) and the number of transitionstrans(s,a,s′)
for any states,s′ ∈ S and actiona ∈ A, and cal-
culate theempirical transition probability T(s′|s,a)
and theempirical expectation of the reward distri-
bution R̂(s,a). In R-MAX, the action value is up-
dated only for the state-action pairs(s,a) satisfying
select(s,a) ≥m. The sample complexity of R-MAX
is analyzed by (Strehl et al., 2009) as follows.

Theorem 1 ((Strehl et al., 2009)). Let 0< ε < 1
1−γ

and 0 < δ < 1 be any real numbers, and as-
sume that the two inputs m andε1 of R-MAX in

M satisfy m= O

((

|S|+ ln
|S| |A|

δ

)

X2
)

where X=

Vmax/(ε(1− γ)) and 1
ε1

= O
(

1
ε
)

. Let At denote the
policy of R-MAX at timestep t and st denote the state
at timestep t. Then, VAt

M (st) ≥ V∗M(st)− ε is true for
all but

O

(

|S||A|

(

|S|+ ln
|S||A|

δ

)

X3Y

)

,

where Y= ln
1
δ

ln
1

ε(1− γ)

timesteps t with probability at least1− δ.

Corollary 1. R-MAX is PAC-MDP.

By corollary 1, in theory, R-MAX performs effi-
ciently for any MDP. In practice, however, it is very
slow compared with other well-known algorithms
such as Sarsa(λ) (Rummery and Niranjan, 1994), be-
cause R-MAX requires many trials in order to guar-
antee the theoretical bound for all states and actions.
We note that R-MAX uses no prior knowledge for the
reinforcement learning problem.

3 TR-MAX

In this section, we propose the learning algorithmTR-
MAX, which uses prior knowledge in order to speed
up learning.

First, we define aheuristic transition function
Th : S×A×S→ [0,1] and aheuristic reward function
Rh : S×A→ [0,1]. They are regarded as prior knowl-
edge ofM. Next, we define the useful knowledge for
efficient reinforcement learning.

Definition 5. For a state-action pair(s,a) ∈ S×A,
we define the set Zs,a⊂S of zero-transitioned states
by

Zs,a :=
{

s′ ∈ S| T(s′|s,a) = Th(s
′|s,a) = 0

}

.

This means that the agent never transitions to any
s′ ∈ Zs,a from states by action a, and this fact is
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known to the agent viaTh. We simply denote|Zmin|=
min(s,a)∈S×A |Zs,a| in the sequel.

Definition 6. Let M be a finite MDP whose optimal
action value is upper bounded by Vmax, and Th (resp.
Rh) be a heuristic transition (resp. reward) function
for M. For any0< ε < 1

1−γ , we define the set Pε ⊂

S×A of useful state-action pairsby

Pε :=

{

(s,a) ∈ S×A
∣

∣

∣
|R(s,a)−Rh(s,a)| ≤

ε(1− γ)
Vmax

,

∑̄
s∈S

∣

∣T(s̄|s,a)−T ′(s̄|s,a)
∣

∣ ≤
ε(1− γ)

Vmax

}

.

This means that the heuristic values provided byTh
andRh are close enough to the true probabilities for
the state-action pairs(s,a) ∈ Pε.

Algorithm 1 describes our algorithm TR-MAX,
which is based on R-MAX: the input arguments
Th, Rh, Z and Pε, and lines 7-16 are added to R-
MAX, to utilize the prior knowledge forM; T̂(s′|s,a)
and R̂(s,a) are initialized by usingTh(s′|s,a) and
Rh(s,a) respectively if they are useful (lines 7-13);
and Q(s,a) is initialized to reflect them (lines 14-
16). Most model-based algorithms consume a con-
siderable number of timesteps to make the empiri-
cal probabilities close to the true probabilities forall
pairs(s,a)∈S×A, whereas TR-MAX does itonly for
(s,a) /∈ Pε, owing to the prior knowledge. We show
the sample complexity of TR-MAX as follows.

Theorem 2. Let 0< ε < 1
1−γ and 0 < δ < 1 be

any real numbers, and Th (reps. Rh) be a heuris-
tic transition (resp. reward ) function for M. Sup-
pose that two inputs m andε1 of TR-MAX in

M satisfy m= O

((

|S|− |Zmin|+ ln
|S||A|− |Pε|

δ

)

X2
)

,

where X= Vmax/(ε(1− γ)), and 1
ε1

= O
(

1
ε
)

. Then,

VAt
M (st )≥V∗M(st)− ε is true for all but

O

(

(|S||A|− |Pε|)

(

|S|− |Zmin|+ ln
|S||A|− |Pε|

δ

)

X3Y

)

,(1)

where Y= ln
1
δ

ln
1

ε(1− γ)

timesteps t with probability at least1− δ.
As a special case, if T(s′|s,a) = Th(s′|s,a) holds

for all (s,a,s′) ∈ S×A×S, then VAt
M (st)≥V∗M(st)− ε

is true for all but

O

(

(|S||A|− |Pε|) ln
|S||A|− |Pε|

δ
X3Y

)

(2)

timesteps t with probability at least1− δ.

By Theorem 2, the sample complexity of TR-
MAX is less than that of R-MAX if either|Zmin| or

Algorithm 1: TR-MAX.
Input : S,A,γ,m,ε1,Th,Rh,Z andPε

1 forall the (s,a) ∈ S×A do
2 Q(s,a)← 1

1−γ ; select(s,a)← 0;

3 forall s′ ∈ Sdo trans(s,a,s′)← 0;
4 reward(s,a)← 0;
5 forall s′ ∈ Zs,a do T̂(s′|s,a)← Th(s′|s,a);
6 if (s,a) ∈ Pε then
7 forall s′ ∈ Sdo T̂(s′|s,a)← Th(s′|s,a);
8 R̂(s,a)← Rh(s,a); select(s,a)←m;

9 for i = 1,2,3, . . .,
⌈

ln(1/ε1(1−γ))
1−γ

⌉

do

10 forall the (s,a) ∈ Pε do
11 Q(s,a)← R̂(s,a)+ γ∑

s′∈S

T̂(s′|s,a)max
a′∈A

Q(s′,a′);

12 for t = 1,2,3, . . . do
13 Let sdenote the state at timestept;
14 Choose actiona := argmax

a∈A
Q(s,a);

15 Executea and obtain the next states′ and the
rewardr;

16 if select(s,a) < m then
17 select(s,a)← select(s,a)+1;
18 trans(s,a,s′)← trans(s,a,s′)+1;
19 reward(s,a)← reward(s,a)+ r;
20 if select(s,a) = m then

21 for i = 1,2,3, . . . ,
⌈

ln(1/ε1(1−γ))
1−γ

⌉

do

22 forall the (s̄, ā) ∈ S×A do
23 if select(s̄, ā)≥m then
24 Q(s̄, ā)← R̂(s̄, ā)+

γ∑
s′∈S

T̂(s′|s̄, ā)max
a′∈A

Q(s′,a′);

a
|Pε| is non-zero. When they are bigger, a smaller sam-
ple complexity is realized.

We prove Theorem 2 after reviewing the existing
theorems and lemmas and providing new lemmas.

Definition 7. An algorithmA is greedy if the ac-
tion at of A is at = argmax

a∈A
Q(st ,a) at any timestep

t, where st is the i-th state reached by the agent.

Definition 8. Let M be a finite MDP, and let
0< ε < 1

1−γ and0< δ < 1 be any real numbers. Let
m = m(M,ε,δ) be an integer determined by M,ε,
and δ. During learning process, let Kt be the set of
state-action pairs(s,a) that have been experienced
by the agent at least m times until timestep t, and
we call Kt a known state-action pair. For Kt , we
define a set Snew of new states, where each element
ξs,a ∈ Snew corresponds to anunknownstate-action
pair (s,a) /∈Kt . We then define theknown state-action
MDP MKt = 〈S∪Snew,A,TKt ,RKt ,γ〉, where TKt and
RKt are defined as follows:

• For s∈ Snew,
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TKt (ξs,a | ξs,a, ā) = 1 for eachā∈ A,
RKt (ξs,a, ā) = Q(s,a)(1− γ) for eachā∈ A.

• For s∈ S and(s,a) ∈ Kt ,
TKt (s̄ | s,a) = T(s̄ | s,a) for eachs̄∈ S,
RKt (s,a) = R(s,a).

• For s∈ S and(s,a) /∈ Kt ,
TKt (ξs,a | s,a) = 1,
RKt (s,a) = Q(s,a)(1− γ).

Theorem 3((Strehl et al., 2009)). Let A(ε,δ) be any
greedy algorithm, Kt be the known state-action pairs
at timestep t, and MKt be the known state-action MDP.
Assume that Qt(s,a) ≤ Vmax for all timestep t and
(s,a) ∈ S×A. Suppose that for any inputsε and δ,
with probability at least1− δ, the following condi-
tions hold for all state s, action a and timestep t:

optimism: Vt(s) ≥Vπ∗
M (s)− ε

accuracy: Vt(s)−Vπt
MKt

(s)≤ ε
learning complexity: the total number of updates of

the action-value estimates plus the number of
times that the agent experiences some state-action
pair (s,a) /∈ Kt is bounded byζ(ε,δ).

Note that Vt(s) denotes the estimated value of the state
s at timestep t. Then, whenA(ε,δ) is executed on M,
the inequality VAt

M (st )≥V∗M(st)−4ε holds for all but

O

(

Vmaxζ(ε,δ)
ε(1− δ)

ln
1
δ

ln
1

ε(1− δ)

)

(3)

timesteps t with probability at least1−2δ.

Definition 9. We say thatthe ε1-close event occurs
if for every stationary policyπ, timestep t and state
s during the execution of TR-MAX on some MDP M,
where

∣

∣Vπ
MKt

(s)−Vπ
M̂Kt

(s)
∣

∣ ≤ ε1 holds.

Lemma 1. Let M be a finite MDP whose optimal ac-
tion value is upper bounded by Vmax. There exists a
constant C such that if TR-MAX is executed on M for
m satisfying

m≥
CV2

max

ε2
1(1− γ)2

(

|S|− |Zmin|+ ln
|S||A|− |Pε|

δ

)

, (4)

then theε1-close event will occur with probability at
least1− δ.

As a special case, suppose that T(s′|s,a) =
Th(s′|s,a) for any(s,a,s′) ∈ S×A×S. If m satisfies

m≥
CV2

max

ε2
1(1− γ)2

ln
|S||A|− |Pε|

δ
(5)

then theε1-close event will occur with probability at
least1− δ.

Proof. By Lemma 12 in (Strehl et al., 2009), if
we obtain Cε1(1−γ)

Vmax
-approximate transition and re-

ward probabilities, then for any policyπ and any

state-action pair(s,a) ∈ S×A we have
∣

∣Qπ
MKt

(s,a)−

Qπ
M̂Kt

(s,a)
∣

∣ ≤ ε1. That is, theε1-close event occurs.

Then, we choose large enoughm to obtainCε1(1−γ)
Vmax

-
approximate transition and reward probabilities. We
now fix a state-action pair(s,a) ∈ S×A arbitrarily.
By Lemma 13 and Lemma 14 in (Strehl et al., 2009),
we obtain the following inequalities for the transition
and reward probabilities:

√

1
2m

ln
2
δ′
≤

Cε1(1− γ)
Vmax

, (6)
√

2[ln(2|S|−2)− lnδ′]
m

≤
Cε1(1− γ)

Vmax
. (7)

Let us focus on the quantity|S| on the left-hand of
the inequality in (7), which represents the number of
states that can be transitioned from statesby actiona.
If there is no prior knowledge, the number of possible
states is|S| indeed. However, we have prior knowl-
edge forZs,a. By the definition ofZs,a, the agent never
transitions to the states′ ∈ Zs,a from (s,a). Therefore,
we can replace|S| with |S|− |Zs,a|, and obtain a better
inequality:

√

2[ln(2|S|−|Zs,a|−2)− lnδ′]
m

≤
Cε1(1− γ)

Vmax
.(8)

By the inequalities in (6) and (8), ifmsatisfies

m∝
V2

max

ε2
1(1− γ)2

(

|S|− |Zs,a|+ ln
1
δ′

)

we then obtainCε1(1−γ)
Vmax

-approximate transition and
reward probabilities with probability at least 1− δ′.
Then, in order to ensure a total failure probability of
δ, we setδ′. Without prior knowledge, we have to set
δ′ = δ

|S||A| . We have, however, the prior knowledge for

Pε. By the definition ofPε, we already haveCε1(1−γ)
Vmax

-
approximate transition and reward probabilities for all
(s,a) ∈ Pε. Thus, we can setδ′ = δ

|S||A|−|Pε|
, and if m

satisfies the condition in (4) then theε1-close event
occurs with probability at least 1− δ.

Next, we consider the case thatT(s′|s,a) =
Th(s′|s,a) for any (s,a,s′) ∈ S×A×S. In this case,
by Lemma 12 and Lemma 13 in (Strehl et al., 2009),
m only has to satisfy the condition in (6). Then, we
have

m∝
V2

max

ε2
1(1− γ)2

ln
1
δ′
.

Similar to the condition in (4), we have the condition
in (5) by settingδ′ = δ

|S||A|−|Pε|
.

We are now ready to prove Theorem 2.
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Proof. (Theorem 2) We show that TR-MAX satisfies
the three conditions in Theorem 3: optimism, accu-
racy, and learning complexity. We begin by show-
ing that optimism and accuracy are satisfied if theε1-
close event occurs, and then explain that the learning
complexity is sufficient to cause theε1-close event.

First, we verify optimism. Similar to the proof of
Theorem 11 in (Strehl et al., 2009) (we referred it as
Theorem 1 in this paper), we obtain the inequalities
as follows:

Vt(s) ≥ Vπ∗
M̂Kt

(s)− ε1 (9)

≥ Vπ∗
MKt

(s)−2ε1 (10)

≥ Vπ∗
M (s)−2ε1. (11)

By Proposition 4 in (Strehl et al., 2009), we have
the inequality in (9); it shows that the estimated state
valueVt(s) obtained by the value iteration isε1-close
to the true state value in the empirical known state-
action MDPM̂Kt . The inequality in (10) comes from
the assumption that theε1-close event occurs, and the
inequality in (11) comes from the definition of the
known state-pair MDPMKt . By settingε1 =

ε
2, op-

timism is ensured.
Next, we verify accuracy. By the definition of

MKt , the state value ofMKt is more valuable than
that of M for all state, such thatVt(s) ≤ Vπt

M̂Kt
(s).

Because we assumed that theε1-close event occurs,
Vπt

M̂Kt
(s)−Vπt

MKt
(s) ≤ ε1 holds. By ε1 =

ε
2, we have

that Vt(s)−Vπt
MKt
≤ Vπt

M̂Kt
(s)−Vπt

MKt
(s) ≤ ε1 < ε and

accuracy is also ensured.
Finally, we explain that the learning complexity is

sufficient to cause theε1-close event. If we set

m=
CV2

max

ε2
1(1− γ)2

(

|S|− |Zmin|+ ln
|S||A|− |Pε|

δ

)

,

then theε1-close event occurs with probability at least
1− δ by Lemma 1. Moreover, if we setζ(ε,δ) =
m(|S||A|− |Pε|), thenζ(ε,δ) satisfies the condition of
learning complexity, because the action value of the
state-action pair(s,a) ∈ Kt is never updated for any
timestept, andKt consists of the state-action pair such
thatselect(s,a) ≥m. In addition, by the definition of
Pε, the state-action pair(s,a) ∈ Pε is included inKt
for any timestept.

We showed that the three conditions in Theorem 3
are satisfied, and obtained the sample complexity in
(1) by applyingζ(ε,δ) to (3).

Similarly, for the special case thatT(s′|s,a) =
Th(s′|s,a) for any(s,a,s′) ∈ S×A×S, we obtain (2)
by applying (5) in Lemma 1.

4 EXPERIMENTS

We compare TR-MAX with R-MAX for the rein-
forcement learning task of mazes, as illustrated in
Figure 1. Maze tasks are popular in reinforcement
learning (see e.g., (Sutton and Barto, 1998; Schuitema
et al., 2010; Saito et al., 2012)). The agent observes its
own position as a state, and an initial state is the cell
marked “S” (the state space is of size|S|= 100). The
goal of the agent is to reach the cell marked “G”, by
selecting an action among UP, DOWN, RIGHT and
LEFT at each step (thus, the action space is of size
|A|= 4).

(a) Target task (b) Source task 1

(c) Source task 2 (d) Source task 3

Figure 1: Reinforcement learning tasks of a maze.

If the selected direction is blocked by a wall, the
agent remains at the same position. Moreover, we as-
sume that the environment isnoisy. With a proba-
bility of 0.2, the next state is randomly chosen from
its neighbors of the current state, regardless of the se-
lected action. The discount factor isγ = 0.7. The
agent receives a reward 1 only when the agent reaches
the goal; otherwise, the reward is 0. One trial con-
sists of either “from start to reaching the goal state”
or “from start to the timestept that exceeds a fixed
time limit.” The aim of the agent is to minimize the
number of timesteps per trial.

A target taskis a task to be solved, and asource
task is an accomplished task that may be similar to
the target task. We illustrate target and source tasks
in Figure 1. In the experiments, we provide the true
transition (resp. reward) probability of each source
task as the heuristic transition (resp. reward) proba-
bility for the target task. For(s,a) ∈ Pε, the empirical
transition (resp. reward) probability is initialized to
the heuristic transition (reps. reward) probability.m
is derived fromZs,a for each state-action pair.

In the experiments, we executed each algorithm
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Figure 2: Average number of steps above first 60,000 tri-
als in the target task for R-MAX and TR-MAX using each
source task’s knowledge.

10 times for target task. In each execution, the agent
experiences 240,000 trials. Then, we calculated the
average steps that the agent consumes by reaching
the goal for each trail. Figure 2 shows the results
of the initial 60,000 trials because almost no change
occurred after 60,000 trials. TR-MAX converged at
about 10,000 to 20,000 trials, whereas R-MAX did
not converge within 60,000 trials. Moreover, we ob-
serve that the similarity of the source task to the tar-
get task affects the convergence speed. For instance,
among these three source tasks, Source task 1 in Fig-
ure 1(b) is the most similar to the target task in Fig-
ure 1(a), and “TR-MAX (Source task 1)” in Figure 2
converged the fastest among others. On the other
hand, “TR-MAX (Source task 3)” converged very
slowly, because Source task 3 in Figure 1(d) is not
similar to the target. In this sense, we verified that TR-
MAX could effectively utilize the prior knowledge.

Table 1: Sample complexities of R-MAX and TR-MAX us-
ing each source task’s knowledge.|Zmin| is the minimum
size of the zero-transitioned state set, and|Pε| is the size of
the useful state-action pairs for the target task.

R-MAX
TR-MAX

Source
task 1

Source
task 2

Source
task 3

Sample
complexity
×107

4970 3.88 4.99 5.34

Ratio to
R-MAX 100% 0.078% 0.100% 0.107%

m 46742738 36550 46956 50243
|Zmin| – 96 95 95
|Pε| – 376 304 196

Next, we compare the sample complexities of R-
MAX and TR-MAX in Table 1. As expected, the
sample complexities of TR-MAX are by far smaller
than the complexity of R-MAX, and they reflect the
similarities. We also note that the size|Pε| of the use-

ful state-action pairsPε significantly depends on the
similarity, where the size|Zmin| of the minimum zero-
transitioned sets does not.

5 CONCLUDING REMARKS

We proposed the TR-MAX algorithm that improved
the R-MAX algorithm by using prior knowledge for a
target task obtained from a source task. We proved
that the sample complexity of TR-MAX is indeed
smaller than that of R-MAX, and that TR-MAX is
PAC-MDP. In computational experiments, we verified
that TR-MAX could learn much more efficiently than
R-MAX.

In our future work, we are interested in capturing
“knowledge transfer in reinforcement learning” in an-
other way. In this position paper, we captured this as
a zero-transitioned state setand auseful state-action
pair setdefined by the heuristic transition and heuris-
tic reward functions. In reality, however, these func-
tions cannot be obtained without knowing the true
transition and reward probabilities. In a real envi-
ronment, we never know the true probabilities, which
should be treated in future work.
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