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Abstract: Most existing reinforcement learning algorithms require many trials until they obtain optimal policies. In this
study, we apply transfer learning to reinforcement learning to realize greater efficiency. We propose a new
algorithm called TR-MAX, based on the R-MAX algorithm. TR-MAX transfers the transition and reward
probabilities from a source task to a target task as prior knowledge. We theoretically analyze the sample
complexity of TR-MAX. Moreover, we show that TR-MAX performs much better in practice than R-MAX in

maze tasks.
1 INTRODUCTION bility as knowledge, because they should be useful for
efficient learning.
Reinforcement learning is one of the useful meth- ~ On the basis of the theoretical framework in

ods for providing control rules for machines, where (Kakade, 2003; Strehl and Littman, 2005) we pro-
an agent learns its own policy for an unknown envi- Pose the efficient learning algorithm TR-MAX that
ronment autonomously. Programmers do not have toiS an extension of R-MAX (Brafman and Tennen-
provide explicit rules for machines if the learning is holtz, 2003). From a theoretical viewpoint, we show
powerful enough. In reinforcement learning, learners the sample complexity of TR-MAX, which is smaller
consume many trials until they obtain optimal rules, than that of R-MAX, and it implies that TR-MAX is
however it is difficult in real world learning. Recent PAC-MDP (Kakade, 2003). From a practical view-
studies (Tan, 1993; Miyazaki et al., 1997; Kretchmar., Point, we compare TR-MAX with R-MAX in maze
2002) have attempted to reduce the number of trials Problems and verify that our TR-MAX algorithm is
for efficient learning. indeed efficient.

Some researchers have applteghsfer learning
to reinforcement learning (Konidaris and Barto, 2006;
Taylor and Stone, 2009; Taylor et al., 2007). Trans- 2 PRELIMINARIES
fer learning applies the knowledge obtained in some

source tasks to a target task to solve it efficiently. The reinforcement learning framework assumes that
Some studies (Konidaris and Barto, 2006; Taylor ji5 a5k satisfies the Markov property. This task is

et al., 2007) experimentally showed that applying cajied a Markov decision process (MDP) (Sutton and
transfer learning to reinforcementlearning is effective gaio 1998).

in reducing the number of trials. o o o ]
However, the theoretical aspects of transfer learn- Definition 1. Afinite Markov Decision Process a
ing for reinforcement learning are not yet fully five tUPICSAT.RyY). Sis afinite set called thetate
known. In (Mann and Choe, 2012), the authors de- SPac& and A is a finite set called thaction space
fined ana-weak admissible heuristand showed the- 1 - SXAx S— [0, 1] is thetransition probabilityand
oretically that transferring some action values yields R: SxA— Ris thereward function0 <y < 1is the
efficient reinforcement learning. discount factor
In this position paper, we outline our approach to According to the related work (Strehl et al., 2009;
transfer learning for reinforcement learning: we tryto  Mann and Choe, 2012), we assume that rewards take
transfer theransition probabilityandreward proba- a value in the intervalD, 1], so that we obtailR : Sx
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A — [0,1]. M denotes a finite MDP in the sequel.
Definition 2. For any policy in M, let

VM =Ex l zov' Mty14i|S = 5‘|

denote thepolicy (or state) value functiofrom state
§ = s attimestep t, and let

Qu(s,a) = En l_iyjrwlﬂ

denote theaction value functiorfrom state = s
and action a= a. Note that sdenotes the state at
timestep t, and@denotes the action at timestep t.

The policy (or state) value function indicates how
good it is to be in a particular state for the agent.
Moreover, the action value function indicates how
good it is to perform the action in that state for the
agent.

A policy 1 is called optimal if it satisfies
Vi (s) > Vyi(s) for any policymand states€ S,
Definition 3~ ((Kakade, 2003)) Let (s1,a1,r1,

S, a2,r2,...) be a random path generated by execut-
ing an algorithmA4 in an MDP M. For any fixed

€ > 0, the sample complexityf 4 is the number of
timesteps t such that the policg at time t satis-
fies (i (s) <ViF (3) —&. The algorithm4 is called
Probably ApprOX|mater Correct in Markov Decision
Processes (PAC-MDRjthe sample complexity o

is bounded by some polynomial|®, |A|, £ £ (ﬁy)
with probability at leastl — &, for anyO < € < 1 and
0<d< 1l

If a reinforcement learning algorithm is PAC-
MDP, the algorithm can efficiently learn in any MDP.

Definition 4 ((Kakade, 2003)) Let (s1,a1,r1,
S, a2,r2,...) be a random path generated by execut-
ing an algorithm4 in an MDP M. For any fixed
€ > 0, the sample complexityf 4 is the number of
timesteps t such that the policg at time t satis-
fies (i (s) <ViF (3) —&. The algorithm4 is called
Probably Approxmately Correct in Markov Decision
Processes (PAC-MDRjthe sample complexity o: ]

is bounded by some polynomial|®, |A|, 1 £ 3 (1fy>
with probability at leastl — §, for anyO < € < 1 and
0<d< 1

If a reinforcement learning algorithm is PAC-

&—S,at—a]

Transferring Transition and Reward Probabilities

only the rewards but also the number of selections
selects,a) and the number of transitiotrans(s, a,s')

for any states; s € S and actiona € A, and cal-
culate theempirical transition probability Ts'|s,a)
and theempirical expectation of the reward distri-
bution R(s,a). In R-MAX, the action value is up-
dated only for the state-action paifs a) satisfying
selects,a) > m. The sample complexity of R-MAX

is analyzed by (Strehl et al., 2009) as follows.

Theorem 1 ((Strehl et al,, 2009))Let 0 < & < &,

and 0 < 0 < 1 be any real numbers, and as-
sume that the two inputs m ard of R-MAX in

M satisfy m= O<(|S| +1In |S|6|A|) XZ) where X=

Vimax/(£(1 —y)) and % =0(1). Let# denote the
policy of R-MAX at timestep t ang denote the state

at timestep t. Then,,\'ff(st) > V(&) — € is true for

all but
o (|S||A| <|S| +1In |S||A|> X3Y) ,

1 1
In<In

5" ed-)

timesteps t with probability at leadt— 6.
Corollary 1. R-MAX is PAC-MDP.

By corollary 1, in theory, R-MAX performs effi-
ciently for any MDP. In practice, however, it is very
slow compared with other well-known algorithms
such as Sarsa) (Rummery and Niranjan, 1994), be-
cause R-MAX requires many trials in order to guar-
antee the theoretical bound for all states and actions.
We note that R-MAX uses no prior knowledge for the
reinforcement learning problem.

where Y=

3 TR-MAX

In this section, we propose the learning algorithRy
MAX;, which uses prior knowledge in order to speed
up learning.

First, we define aheuristic transition function
Th: Sx Ax S— [0,1] and aheuristic reward function
Rn: Sx A— [0,1]. They are regarded as prior knowl-
edge ofM. Next, we define the useful knowledge for
efficient reinforcement learning.

MDP, the algorithm can efficiently learn in any MDP.  Definition 5. For a state-action pait(s,a) € Sx A,

Brafmanet al. (Brafman and Tennenholtz, 2003) e define the setsZ C S of zero-transitioned states
proposed an efficient model based algorithm called py

R-MAX 1. Model-based algorithms maintain not
Zsa:={s € S| T(S|s,a) =Tn(S|s,a) =0} .
This means that the agent never transitions to any
s € Zs, from states by actiona, and this fact is

1The R-MAX algorithm is obtained from Algorithm 1
by omitting lines 7-16, because our TR-MAX algorithm is
an extension of the R-MAX algorithm.
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known to the agent vid,. We simply denotéZmin| =

Algorithm 1: TR-MAX.

MiNs a)esxalZsal in the sequel.
Definition 6. Let M be a finite MDP whose optimal 1

action value is upper bounded by}, and T, (resp. 2
Ry) be a heuristic transition (resp. reward) function 3
for M. ForanyO<e< 1—fy we define the set.P- 4
Sx A of useful state-action paitsy g
— 7
P ::{(s,a)eSxA’ |R(s,a)—Rh(s7a)|§£(1 Y) , 8
Vmax

e(1-y) 9

T(gs,a)—T'(gs,a)| < .
2 [TEsa) T Esa)| <~ } 9

This means that the heuristic values providedTRy
andRy are close enough to the true probabilities for 12
the state-action pails,a) € P. 13
Algorithm 1 describes our algorithm TR-MAX, 14
which is based on R-MAX: the input arguments 15
Th, R, Z and P;, and lines 7-16 are added to R-
MAX, to utilize the prior knowledge foM; T(s|s,a) 16
and R(s,a) are initialized by usingT,(s|s,a) and 18
Rn(s a) respectively if they are useful (lines 7-13);  1q
and Q(s,a) is initialized to reflect them (lines 14- 5
16). Most model-based algorithms consume a con- 54
siderable number of timesteps to make the empiri- 22
cal probabilities close to the true probabilities &df 23
pairs (s,a) € Sx A, whereas TR-MAX does itnly for 24
(s,a) ¢ P, owing to the prior knowledge. We show
the sample complexity of TR-MAX as follows.

Theorem 2. Let0<£<l—fy and 0 < 0 < 1 be

Input: SAy,m €, Th, Ry, Z andP;
forall the (s,a) € Sx Ado
Q(sa) « ¢&; selects,a) - 0;
forall s € Sdotrang(s,a,s) < 0;
reward(s, a) < 0;
forall s’ € Zs, do f(s’\sa) «— Th(S]s @);
if (s,a) € P then

forall S € SdoT(s|s a) « Th(S|s a);
L R(s a) « Ry(s,a); selects a) < m;

fori=1,23,. [7'"(1/51(1’”)} do
forall the (s,a) € P, do
L Q(s,a) « R(s a) +yZT (s, a)maxQ(s’ a);

seS

fort=1,23,...do

Let sdenote the state at timestep

Choose actiom := argn/laxQ(s a);
aec,

Executea and obtain the next staggand the
rewardr;
if selecfs,a) < mthen
selects, a) + selects,a) + 1;
trans(s,a,s) +- trans(s,a,s) + 1;
reward(s,a) < reward(s,a) +r;
if selects,a) = mthen
for i =1,2 3[%@} do
forall the (s,a) € Sx Ado
if selects,a) > mthen
Q(5.a) « R(5a) +
T o /.
VAT(d\SQQQXQ(d,a),

any real numbers, andyT(reps. R) be a heuris-
tic transition (resp. reward ) function for M. Sup-
pose that two inputs m and; of TR-MAX in

M satisfy m= 0 ( (\S| — |Zmin| +In W) xz) ,

|P:|is non-zero. When they are bigger, a smaller sam-
ple%omplexity is realized.

We prove Theorem 2 after reviewing the existing

where X= Vmax/(e(1~)), and & =O(3). Then,
Vit(st) > V() — g is true for all but

o (1A~ i) (15 ~ 20wl +1 FAZ B ) v 2)
1 1
where Y=1In 5 In m
timesteps t with probability at leadt— d.
As a special case, if (E|s,a) = Th(S|s,a) holds
forall (s,a,8) € Sx Ax S, then \! (s) > Vyi(s) —¢€
is true for all but

SIA -~ Py
o((sial- rm BE=Phev) @

timesteps t with probability at leadt— o.

By Theorem 2, the sample complexity of TR-

MAX is less than that of R-MAX if eithefZm;,| or

634

theorems and lemmas and providing new lemmas.
Definition 7. An algorithm 4 is greedyif the ac-
tiona of 4is a = argrr/laxQ(st,a) at any timestep
ac

t, where sis the i-th state reached by the agent.
Definition 8. Let M be a finite MDP, and let
O<e< l—fy and0 < & < 1 be any real numbers. Let
m = m(M,¢,0) be an integer determined by M,
andd. During learning process, letKbe the set of
state-action pairs(s,a) that have been experienced

by the agent at least m times until timestep t, and

we call K a known state-action pair For K;, we

define a set @ of new states, where each element

&sa € Shew COrresponds to amnknownstate-action
pair (s,a) ¢ K;. We then define tHenown state-action
MDP Mg, = (SU Shew, A, Tk, , Rk, Y), where Tk, and
Rk, are defined as follows:

o Forse Sew
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Tk (§sa | Esa @) = 1 for eachae A,
Rk, (&sa,a) = Q(s,a)(1—vy) for eacha e A.
e Forse Sand(s,a) € Ki,
Tk, (S| s,a) =T(s| s,a) for eachse S,
R (s, a) =R(s,a).
e Forse Sand(s,a) ¢ K,
T (&sa|s.@) =1,
R (s,:2) = Q(s.@)(1 ).
Theorem 3((Strehl et al., 2009))Let A4(¢, 8) be any
greedy algorithm, Kbe the known state-action pairs
attimestept, and I\ be the known state-action MDP.
Assume that @s,a) < Vinax for all timestep t and
(s,a) € Sx A. Suppose that for any inpu¢sand 9,
with probability at leastl — 9, the following condi-
tions hold for all state s, action a and timestep t:
optimism: Vk(s) > V\F (s) —€
accuracy: V(s) —V,\T,,“Kt (s) <e
learning complexity: the total number of updates of

Transferring Transition and Reward Probabilities

state-action paifs,a) € Sx A we have| Q’,\},Kt (s,a) —
Q;\ThK (s, a)| < g;. That is, theg;-close event occurs.
t

Then, we choose large enoughto obtain%lzy)-
approximate transition and reward probabilﬂ?es. We
now fix a state-action paifs,a) € Sx A arbitrarily.

By Lemma 13 and Lemma 14 in (Strehl et al., 2009),
we obtain the following inequalities for the transition
and reward probabilities:

1 2 C81(1— )
"8 = Vew o ©

2In(2I8 —2) —In¥) Cer(1-y)
\/ m - Vmax 7)

Let us focus on the quantity§| on the left-hand of
the inequality in (7), which represents the number of
states that can be transitioned from stabg actiona.

If there is no prior knowledge, the number of possible

the action-value estimates plus the number of States isS| indeed. However, we have prior knowl-
times that the agent experiences some state-action€d9€ f0iZsa. By the definition oZs 5, the agent never

pair (s,a) ¢ K; is bounded by (€, d).

Note that ¥(s) denotes the estimated value of the state

s attimestep t. Then, wheti(g, ) is executed on M,
the inequality\clqt (s) > Vyj(s) — 4¢ holds for all but

Vil (€,8), 1 1
O( £(1-0) '”S'”a(l-é))

timesteps t with probability at leadt— 20.

®)

Definition 9. We say thathe g1-close event occurs
if for every stationary policym, timestep t and state
s during the execution of TR-MAX on some MDP M,
WhereM’,}Kt (s) —Vl\’/IJKt (s)| < &1 holds.

Lemma 1. Let M be a finite MDP whose optimal ac-
tion value is upper bounded by¥. There exists a
constant C such that if TR-MAX is executed on M for

m satisfying
Al —|P,
<|S\ — | Zumin| +In L&S“') (4)

2

m 2 ZCVmax 5
e1(1-vy)

then thegs-close event will occur with probability at

leastl —d.

As a special case, suppose thafsTsa) =
Th(Ss,a) forany(s,a,s') € Sx Ax S. If m satisfies

o Rl

then thegs-close event will occur with probability at
leastl—d.

Proof. By Lemma 12 in (Strehl et al., 2009), if

we obtain %{;W-approximate transition and re-
ward probabiﬁnes, then for any policyt and any

transitions to the stat € Zs » from (s,a). Therefore,
we can replaces| with |S|—|Zs 4|, and obtain a better
inequality:

\/2["1(23'2&a —2)—1In¥]

Cal(l—y).

Vm ax

(8)

m
By the inequalities in (6) and (8), ih satisfies

Vidax < 1)
S -1z In

we then obtain%-approximate transition and
reward probabilities with probability at least-1&.
Then, in order to ensure a total failure probability of
5, we setd’. Without prior knowledge, we have to set
o = W?A\‘ We have, however, the prior knowledge for

P:. By the definition ofP;, we already havgw—
approximate transition and reward probabilitrréxs forall
(s.a) € P. Thus, we can s&¥ = g’y and ifm
satisfies the condition in (4) then tlag-close event
occurs with probability at least-2 d.

Next, we consider the case thdi(s|s.a) =
Th(s'|s,a) for any (s,a,s) € Sx Ax S In this case,
by Lemma 12 and Lemma 13 in (Strehl et al., 2009),
m only has to satisfy the condition in (6). Then, we
have

m

Vitax o 1
e(1-y?2 3

Similar to the condition in (4), we have the condition
in (5) by settingd’ = SACE O

We are now ready to prove Theorem 2.

m[
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Proof. (Theorem 2) We show that TR-MAX satisfies
the three conditions in Theorem 3: optimism, accu-
racy, and learning complexity. We begin by show-
ing that optimism and accuracy are satisfied if¢he

4 EXPERIMENTS

We compare TR-MAX with R-MAX for the rein-
forcement learning task of mazes, as illustrated in

close event occurs, and then explain that the learningFigure 1. Maze tasks are popular in reinforcement

complexity is sufficient to cause tlag-close event.

First, we verify optimism. Similar to the proof of
Theorem 11 in (Strehl et al., 2009) (we referred it as
Theorem 1 in this paper), we obtain the inequalities
as follows:

M) = Vi (s -& (9)
> Vi (8 —2e1 (10)
> VT (s) — 2¢. (11)

By Proposition 4 in (Strehl et al., 2009), we have
the inequality in (9); it shows that the estimated state
valueV;(s) obtained by the value iteration §s-close
to the true state value in the empirical known state-
action MDPMy,. The inequality in (10) comes from
the assumption that thee-close event occurs, and the
inequality in (11) comes from the definition of the
known state-pair MDRVlk,. By settingey = §, op-
timism is ensured.

Next, we verify accuracy. By the definition of
Mk, the state value oMy, is more valuable than
that of M for all state, such tha¥;(s) < VSKt ().

Because we assumed that theclose event occurs,

V&Kl (s) —V,G‘Kt (s) < &1 holds. Bye; =5, we have
T, T, T

that Vi (s) __VMKt < V,\7th (s) — Vv, (s) <& <¢eand

accuracy is also ensured.

Finally, we explain that the learning complexity is
sufficient to cause thg -close event. If we set

_ CVifax ISIA] — [P

m=— 5 ,
e1(1-y) 5

then thee;-close event occurs with probability at least

1-0 by Lemma 1. Moreover, if we sef(g,d) =
m(|S||A] — |P|), thenl(g,d) satisfies the condition of

(|S| ~ Za| +1n

learning (see e.qg., (Sutton and Barto, 1998; Schuitema
etal., 2010; Saito et al., 2012)). The agent observesits
own position as a state, and an initial state is the cell
marked ‘S” (the state space is of siz§ = 100). The
goal of the agent is to reach the cell markef, by
selecting an action among UP, DOWN, RIGHT and
LEFT at each step (thus, the action space is of size

A= 4).

B BEEEES
N N
HEmE B

[ | | | |
SL L]

S, S

(c) Source task 2 (d) Source task 3

Figure 1: Reinforcement learning tasks of a maze.

If the selected direction is blocked by a wall, the
agent remains at the same position. Moreover, we as-
sume that the environment i®isy. With a proba-
bility of 0.2, the next state is randomly chosen from
its neighbors of the current state, regardless of the se-
lected action. The discount factor ys= 0.7. The
agentreceives a reward 1 only when the agent reaches
the goal; otherwise, the reward is 0. One trial con-
sists of either “from start to reaching the goal state”

learning complexity, because the action value of the or “from start to the timestep that exceeds a fixed

state-action paifs,a) € K; is never updated for any
timesteg, andK; consists of the state-action pair such
thatselects,a) > m. In addition, by the definition of
P, the state-action paifs,a) € P is included inK;
for any timestef.

We showed that the three conditions in Theorem 3

time limit.” The aim of the agent is to minimize the
number of timesteps per trial.

A target taskis a task to be solved, andsaurce
taskis an accomplished task that may be similar to
the target task. We illustrate target and source tasks
in Figure 1. In the experiments, we provide the true

are satisfied, and obtained the sample complexity in transition (resp. reward) probability of each source

(1) by applying( (g, d) to (3).

Similarly, for the special case that(s'|s,a) =
Th(S|s,a) for any(s,a,s') € Sx Ax S, we obtain (2)
by applying (5) in Lemma 1. O
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task as the heuristic transition (resp. reward) proba-
bility for the target task. Fofs,a) € P, the empirical
transition (resp. reward) probability is initialized to
the heuristic transition (reps. reward) probability.
is derived fromZs 5 for each state-action pair.

In the experiments, we executed each algorithm
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800 A (o owtedae) ful state-action pair$; significantly depends on the

TEMaX (Source task 1)~ similarity, where the siz& | of the minimum zero-

TR-MAX (Source task 3) —-—-- transitioned sets does not.

400

5 CONCLUDING REMARKS

200

We proposed the TR-MAX algorithm that improved
the R-MAX algorithm by using prior knowledge for a
e target task obtained from a source task. We proved
° ZOOOONumberoftriaI 40000 60000 that the sample complexity of TR-MAX is indeed
_ _ ~smaller than that of R-MAX, and that TR-MAX is
Figure 2: Average number of steps above first 60,000 tri- PAC-MDP. In computational experiments, we verified

2:;SUL2$Z;?§E;$;';(SZLB_MAX and TR-MAX using each g%;i-MAX could learn much more efficiently than

10 times for target task. In each execution, the agent_ N our future work, we are interested in capturing
experiences 240,000 trials. Then, we calculated the Knowledge transfer in reinforcementlearning” in an-
average steps that the agent consumes by reachin@tN€r way. In this position paper, we captured this as
the goal for each trail. Figure 2 shows the results @ Z€ro-transitioned state sand auseful state-action
of the initial 60,000 trials because almost no change pair setdefined py the heurlgtlc transition and heuris-
occurred after 60,000 trials. TR-MAX converged at t!c reward functions. I_n reahty, however,_these func-
about 10,000 to 20.000 trials, whereas R-MAX did -tions-cannot be obtained without knowing the true
not converge within 60,000 trials. Moreover, we ob- transition and reward probabilities. In a real en_vi-
serve that the similarity of the source task to the tar- "ONment, we never know the true probabilities, which
get task affects the convergence speed. For instanceShould be treated in future work.

among these three source tasks, Source task 1 in Fig-

ure 1(b) is the most similar to the target task in Fig-

ure 1(a), and “TR-MAX (Source task 1)" in Figure 2 REFERENCES

converged the fastest among others. On the other

hand, “TR-MAX (Source task 3)” converged very Brafman, R. |. and Tennenholtz, M. (2003). R-max - a gen-

Average steps by the agent reaches a goal

0

slowly, because Source task 3 in Figure 1(d) is not eral polynomial time algorithm for near-optimal rein-
similar to the target. In this sense, we verified that TR- fOfcesmzelgt |2e§1{n|ng.The Journal of Machine Learn-
ing, 3:213-231.

MAX could effectively utilize the prior knowledge. )
Kakade, S. M. (2003).0n the Sample Complexity of Re-

inforceent Learning PhD thesis, University College
London.

Konidaris, G. and Barto, A. (2006). Autonomous shaping:
Knowledge transfer in reinforcement learning Firoc
of ICML, pages 489-496.

Table 1: Sample complexities of R-MAX and TR-MAX us-
ing each source task's knowledgfZy;,| is the minimum
size of the zero-transitioned state set, #Rd is the size of
the useful state-action pairs for the target task.

TR-MAX Kretchmar., R. M. (2002). Parallel reinforcement learning
R-MAX Source [ Source | Source In Proc. of SC] pages 114-118.
task1 | task2 | task3 Mann, T. A. and Choe, Y. (2012). Directed exploration in
Samp'? reinforcement learning with transferred knowledge. In
complexity 4970 3.88 4.99 5.34 Proc. of EWRLpages 59-76.
x10° Miyazaki, K., Yamamura, M., and Kobayashi, S. (1997).
Igfil\t/llzy 100% | 0.078% | 0.100% | 0.107% k-certainty exploration method: an action selector to
identify the environment in reinforcement learning.
m 46742738) 36550| 46956| 50243 Artificial intelligence 91(1):155-171.
|Zg"‘| - 332 382 122 Rummery, G. A. and Niranjan, M. (1994).0On-line Q-
[Pl - learning using connectionist systen@mbridge Uni-
. versity.

Next, we Compar_e the sample complexities of R- Saito, J., Narisawa, K., and Shinohara, A. (2012). Predic-
MAX and TR-MAX'in Table 1. As expected, the tion for control delay on reinforcement learning. In
sample complexities of TR-MAX are by far smaller Proc. of ICAART pages 579-586.
than the complexity of R-MAX, and they reflect the schuitema, E., Busoniu, L., Babuska, R., and Jonker,
similarities. We also note that the sig&| of the use- P. (2010). Control delay in reinforcement learning

637



ICAART 2014 - International Conference on Agents and Artificial Intelligence

for real-time dynamic systems: a memoryless ap-
proach. Inintelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference, grages
3226-3231. IEEE.

Strehl, A. L., Li, L., and Littman, M. L. (2009). Reinforce-
ment learning in finite mdps: Pac analysihe Jour-
nal of Machine Learning Research0:2413-2444.

Strehl, A. L. and Littman, M. L. (2005). A theoretical anal-
ysis of model-based interval estimation. Pmoc. of
ICML, pages 857-864.

Sutton, R. S. and Barto, A. G. (1998 einforcement learn-
ing. MIT Press.

Tan, M. (1993). Multi-agent reinforcement learning: In-
dependent vs. cooperative agents.Phoc. of ICML,
pages 330-337.

Taylor, M. E. and Stone, P. (2009). Transfer learning for re-
inforcement learning domains: A survehe Journal
of Machine Learning Research0:1633-1685.

Taylor, M. E., Stone, P., and Liu, Y. (2007). Transfer
learning via inter-task mappings for temporal differ-
ence learningJournal of Machine Learning Research
8(1):2125-2167.

638



