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Abstract: Freezing of gait (FOG) is a common and disabling gait disturbance among patients with advanced 
Parkinson’s Disease (PD). FOG episodes are often overcome using attention or cues from the environment. 
Hence, identification of events prior to FOG may be very effective to improve mobility in PD patients. 
Previous work has suggested that there are changes in the gait pattern just prior to freezing. Nonetheless, 
little work has been done to explore the possibility of identifying motor patterns that are characteristic of the 
pre-FOG phase (few seconds before the FOG). We analysed the acceleration signals from sensors worn on 
the ankle, thigh, and trunk of eight patients with PD who experienced freezing. We translated windows of 
the raw signals in symbols by using Symbolic Aggregate approXimation. The aim was to discriminate the 
patterns of symbols characterizing pre-FOG from the ones characterizing normal activity (standing and 
walking with no FOG). Sensitivity over 50% and Specificity over 70% were obtained by using a classifier 
on symbolic data, with different combinations of sensor position/sampling/windows duration. These 
preliminary findings demonstrate that it is possible to automatically identify (some of) the motor patterns 
that eventually lead to FOG events before they occur by using wearable sensors. 

1 INTRODUCTION 

Freezing of gait (FOG) is a disabling gait 
disturbance that is common among patients with 
advanced Parkinson’s Disease (PD). FOG can 
manifest as an impairment of the initiation and 
termination of gait and as a sudden interruption of 
walking (Nieuwboer, 2004). During the FOG 
episode the patients feel as if their feet are glued to 
the ground and cannot resume walking. Recent work 
has focused on using wearable motion sensors to 
detect freezing of gait (FOG) as soon as it starts 
(Bächlin, 2010); (Moore, 2013); (Mazilu, 2013), 
obtaining satisfactory accuracies. Although previous 
work has suggested that there are changes in the gait 
pattern just prior to freezing (Nieuwboer, 2004), 
only one work has recently explored the possibility 
of identifying motor patterns that are characteristic 
of the pre-FOG phase (i.e., a few seconds before the 
FOG happens) (Mazilu, 2013). FOG episodes are 

often overcome using attention or cues; hence, 
identification of events prior to FOG may be very 
effective to improve mobility in PD patients by 
producing an auditory cue just before the FOG 
starts. This is why in the current study we focused 
on identification of the pre-FOG phase: we analyzed 
the acceleration signals from sensors worn on the 
ankle, thigh, and trunk of eight patients with 
Parkinson’s disease who experienced freezing 
(Bächlin, 2010). We translated windows of the raw 
signals in sequences of symbols by using SAX 
(Symbolic Aggregate approXimation) (Lin, 2002; 
2003). A previous work applied this technique to 
study gait symmetry in patients with PD (Sant’Anna, 
2011). The aim of the current study was to 
discriminate the patterns of symbols characterizing 
pre-FOG from the ones characterizing normal 
activity (i.e., standing and walking with no FOG). 
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Figure 1: Acceleration signal converted in symbols. 

2 METHODS 

Symbolic data analysis was applied on the Daphnet 
Database, which was described in (Bächlin, 2010)., 
and which stores acceleration signals from 
acceleration sensors positioned monolaterally on the 
ankle, thigh and trunk of 8 patients with PD who 
experienced freezing (the two patients who did not 
experience freezing were not considered in this 
study). The acceleration signals available for each 
sensor were: Antero-Posterior (forward), Medio-
Lateral (horizontal), and Vertical. We chose to 
consider the norm of the three acceleration signals 
for the following analysis.  

Parts of signal which did not correspond to the 
experiment part (as explained in the Daphnet 
documentation) were deleted. Resulting signals were 
normalized (z-score).  

As exemplified in Fig. 1, we divided the signals 
in a No-Event part (i.e., standing and walking with 
no FOG), followed by a pre-FOG window (i.e., few 
seconds before the FOG happened), followed by a 
FOG part (i.e. during FOG).  

The FOG part was not considered in this 
exploratory analysis, since we were interested in 
identifying the difference between normal activity 
and pre-FOG. 

The pre-FOG window was defined as a period of 
1, 2, or 3 seconds before the FOG. Correspondingly, 
the “No-Event” part of the signal was divided in 

consecutive No-Event windows of the same duration 
as the pre-FOG windows.  

Since the No-Event part of the signal was 
generally much longer than the pre-FOG window, 
the No-Event windows were much more than the 
pre-FOG windows, resulting in an unbalanced 
dataset (Table 1): later in this section, this issue will 
be dealt with. 

The different windows duration were considered 
in order to see if there was a duration which could 
allow a better identification of the pre-FOG patterns. 

When the time between two following FOG 
events was less than 3 seconds, no pre-FOG window 
was considered, for any window durations.  
This was done for two reasons: 

- In order to obtain a fair comparison between 
different window durations: in fact in this way 
the number of pre-FOG windows is the same for 
all the different durations (see Table 1). 

- In order to avoid that the pre-FOG window 
would partly capture patterns of the previous 
FOG. 

Table 1: Mean and std values of the number of pre-FOG 
and No-Event windows across all subjects. 

Win Duration 
num. pre-FOG 

windows 
num. No-Event 

windows 
1 25.75±14.2 1427±409 
2 25.75±14.2 693±203 
3 25.75±14.2 448±134 
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Figure 2: Results of sensitivity (± STD) and specificity (± STD) as function of different combinations of observation 
window duration, symbolic frequency, and sensor position. 

The obtained windows were translated into 
sequences of symbols by using the SAX algorithm 
(Lin, 2003). Symbols can be considered as letters 
from an alphabet (we arbitrarily considered a 10 
symbols alphabet) that represent the considered 
window instead of the raw acceleration values (as 
shown in Fig. 1).  

In SAX, a single symbol represents consecutive 
samples of the raw signals in the considered 
window, thus automatically performing 
dimensionality reduction. Therefore the symbolic 
data will have a new (lower) sampling frequency. 
The original sampling frequency of acceleration 
signals was 64 Hz: in order to choose the optimal 
symbolic sampling frequency (how many symbols in 
one second), we considered different options: 8, 16, 
and 32 Hz, corresponding to translate 8, 4, 2 original 
samples in one symbol respectively. 

In order to find patterns of symbols which are 
characteristic of the pre-FOG window (Fig. 1), and 

to discriminate them from the No-Event windows, 
we used the K-nearest neighbour’s classifier (with 
k=1). Instead of the Euclidean distance, we used the 
symbolic distance between sequences of symbols, 
which is defined in (Lin, 2002; 2003). 

In order to obtain a method that would be as 
generalizable as possible and that would perform 
well regardless of the different patients considered, 
we used a leave-one-subject-out cross validation to 
determine the accuracy of the proposed approach. In 
the leave-one-subject-out cross validation the data of 
one patient (all his/her signal segments) is classified 
by using  the data captured from the rest of patients. 

The results will be presented in terms of 
sensitivity (proportion of pre-FOG windows which 
are correctly identified) and specificity (proportion 
of No-Event windows which are correctly 
identified). 

Since the dataset is highly unbalanced between 
the two classes (see Table 1), a random under-
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sampling of the majority class (No-Event) was 
performed in the training phase of the classifier. This 
was done in order to have the same number of Pre-
FOG and No Event windows to train the classifier 
with. If no under-sampling had been performed, the 
classifier would have “learned” mostly No-Event 
patterns thus leading to high specificity but very 
poor sensitivity.  

In order to test the significance of results, a 
random classifier was made, which randomly 
assigned “No-Event” or “pre-FOG” classes based on 
the proportion of classes in the under-sampled 
training set. One would expect such a classifier to 
perform with sensitivity and specificity around 50%. 

3 RESULTS AND DISCUSSION 

Results are reported in Fig. 2. 
The best obtained result, in terms of trade-off 

between sensitivity and specificity (arithmetic 
mean), was  
- Sensitivity: 66.5 %  
- Specificity: 73.9 %,  

 

In the following, the details of all the parameters of 
the data analysis corresponding to this result are 
listed: 
- Thigh sensor 
- Norm of the signal 
- Symbolic Frequency of 16 Hz 
- Duration of the windows of 2 seconds 
- Alphabet size of 10 
 

Both sensitivity and specificity of this combination 
resulted significantly better than the ones of the 
random classifier (Fig. 3), which performed, as 
expected, with sensitivity and specificity around 
50%.  

 

Figure 3: Comparison between the performance of the best 
classifier and of the random classifier. 

From results in Fig. 2 it can be noted that 
different combinations of sensors/signals/ frequency 
can lead to higher specificity or higher sensitivity 
(but not to both).  

From results in Fig. 2 it can also be noted that 
thigh sensor seems to perform generally better than 
ankle and trunk sensors in sensitivity, and 
comparably in specificity. 

Also, sensitivity estimates tend to be less 
consistent (higher variability of performance across 
subjects) than specificity estimates. 

Although the best result is obtained with a 2-
seconds window, it seems that there is not a clear 
difference or pattern in considering windows of 
different durations. 

Finally, considering different symbolic 
frequencies leads to different combinations of 
sensitivity and specificity but no consistent pattern 
can be observed (e.g. higher symbolic frequency 
always leads to better sensitivity/specificity). 

Interestingly, the sensitivity in discriminating 
between pre-FOG patterns and normal activity is 
comparable to the sensitivity in discriminating 
between FOG patterns and normal activities 
obtained by previous studies (73.1% in Bächlin 
2010, 66.3% in Mazilu 2012, 68.5% in Mazilu 
2013). 

On the other hand, specificity is lower than the 
ones obtained in those studies (81.6% in Bächlin 
2010, 95.4% in Mazilu 2012, 86.8% in Mazilu 
2013). 

However, an overall lower performance was 
expected because the task of discriminating the 
patterns before the event occurs is generally more 
complex than detecting the event after it has 
happened. 

These preliminary findings demonstrate that it is 
possible to identify (some of) the motor patterns that 
eventually lead to FOG events before they occur, 
support the idea that the gait pattern changes prior to 
freezing, and suggest that this pre-event period can 
be automatically identified by using wearable 
sensors.  

As a limitation of this study, the algorithm 
presented in this study was not optimized for speed; 
in future work, a real-time implementation should be 
done.  

Moreover, the use of different classifiers and the 
fusion of decisions made from different 
combinations of sensors, time windows and 
frequencies, could possibly permit to improve the 
obtained results. 
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