
AgentSlang: A New Distributed Interactive System
Current Approaches and Performance

Ovidiu Şerban and Alexandre Pauchet
LITIS Laboratory, Normandy University, INSA de Rouen,

Avenue de l’Université - BP8, 76801 Saint Étienne du Rouvray Cedex, France

Keywords: Distributed Interactive System, Embodied Conversational Agent, System Benchmark.

Abstract: This paper proposes a generic platform for developing fast and reliable Distributed Interactive Systems. The
modelling is based on a component design approach, with element structure simple and versatile enough to
allow the integration of existing algorithms. The AgentSlang platform consists in a series of original com-
ponents integrated with several existing algorithms, to provide a development environment for Interactive
Systems. There are several original parts in our approach. First, the platform is based on a data and compo-
nent oriented design, which integrates into a unified system the concept of Feedback Management, Dialogue
Management and a flexible component architecture. Second, the Syn!bad language, is integrated as a com-
ponent of AgentSlang. Third, the message exchange speed is superior of any existing platforms, even in the
context of providing extra features, such as action execution feedback and data type consistency check.

1 INTRODUCTION

Building a virtual environment, in which the partici-
pants can interact naturally, is very challenging. Vir-
tual conversational agent (also called Embodied Con-
versational Agent: ECA (Ogan et al., 2012)), due to a
very realistic appearance, can increase the users’ ex-
pectations up to the point that they are disappointed
by the actual agent capabilities. This phenomenon is
called the “uncanny valley” (Mori, 1970).

Due to the complexity of complete dialogue sys-
tems, most of the existing ECAs only integrates basic
dialogue management processes, such as a keyword
spotter within a finite-state or a frame-based approach
(for instance, see the SEMAINE project (Schröder,
2010)). Therefore, dialogue management remains in-
efficient in existing ECAs (Swartout et al., 2006).

With the emergence of virtual environments and
especially with participative digital storytelling sys-
tems, situations with child-ECA interaction are in-
creasing. In such an environment, providing children
with natural reactions from an ECA becomes criti-
cal as their social capabilities are still in development.
Moreover, the new generation of children is now used
to virtual environments and therefore expects the best
for his/her interaction with a system.

Dealing with rich interaction, given by multiple
sources, in a very fast and reliable way has become

our current challenge. The human-computer interac-
tion problem is complex and requires work on mul-
tiple levels, such as speech and feedback recognition,
natural language processing, dialogue management or
speech generation. Each of these issues has been pro-
cessed independently, or at most a combination of
the two, but to our knowledge, a system dealing with
all of them has not been proposed yet. The integra-
tion problem becomes more complex when a certain
genericness is required.

We choose to focus our design around the story-
telling environments, where a narrative and classic di-
alogue model need to be introduced. The narrative
states are a set of fixed points where the only control
the user has is to stop or resume the narration, where
as the dialogue is a more dynamic phase, where the
user can ask or can be asked questions. Since none of
the existing ECA systems focus on these issues, we
decided to focus more on dialogue management.

This paper is structured as follows: we present a
brief state of art for the Distributed Interactive Field in
Section 2. Section 3 presents several components of
the AgentSlang platform, followed by our proposed
benchmark (Section 4). We conclude this paper with
a brief discussion over the proposed platform.

596 ÈŸerban O. and Pauchet A..
AgentSlang: A New Distributed Interactive System - Current Approaches and Performance.
DOI: 10.5220/0004907305960603
In Proceedings of the 6th International Conference on Agents and Artificial Intelligence (ICAART-2014), pages 596-603
ISBN: 978-989-758-015-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

2 RELATED WORK

An Interactive System (IS), as a complex system,
contains multiple critical components. The compo-
nents processing the user’s inputs can be formalized
as Knowledge Extractors, the Dialogue Manager as
an Interaction Manager and the output components
are Behaviour Generators associated to Players. For
each of these categories, the problem has been ap-
proached by multiple research projects. In this chap-
ter, we focus on platforms that propose an architecture
to model the integration of all these components into
a Distributed Interactive System (DIS).

The component that interprets the behaviour, the
Player, can be either a simple Speech Interface, an
Embodied Conversational Agent (ECA) or a Robot,
for instance. We restrict the presentation to projects
that propose a system with a player that are not
strongly linked with the interpreters and are generic
enough to be used in multiple environments and sce-
narios. All the presented platforms follow the evo-
lution of communication paradigms between compo-
nents for large Agent-based Architectures.

2.1 MULTIPLATFORM

The first example is an ad-hoc communication, for-
malized over a PVM Protocol (Geist et al., 1994).
The implementation of the protocol was used in the
MULTIPLATFORM project (Herzog et al., 2004) and
served as a component integration platform for two
well known projects: Verbmobil (Wahlster, 2000) and
Smartkom (Wahlster, 2006). However, the message
protocol is outdated and this project is not actively
maintained any more.

2.2 Psyclone

Another generation of systems is based on the Psy-
clone middleware platform (CMLabs, 2007), which
implements a classic blackboard communication pro-
tocol. This enables quick integration, but the middle-
ware tends to be rather slow for platforms that use
many updates of the shared blackboard space, as the
Semaine Middleware benchmark shows (Schröder,
2010). We present two platforms using the Psyclone
protocol: Mirage and GECA.

2.2.1 Mirage

Thorisson et al. (Thórisson et al., 2004) propose
a constructionist methodology to build a component
based architecture. This can be adapted to design
ECA systems, by modelling reusable components that

can be plugged in a unified architecture. The plat-
form aims at identifying existing software that could
be reused and integrated into the project. The system
allows the integration of different components writ-
ten in C++ or Java. The message format is a series of
well documented hard-coded protocols, that are dis-
tributed across the network on multiple machines in
order to obtain real-time performance. The platform
has no source code publicly released.

2.2.2 GECA

The Generic Embodied Conversational Agent Frame-
work (GECA) (Huang et al., 2008) aims at building
ECAs that interact with human users in face-to-face
conversations, while being able to recognize verbal
and non-verbal input, generate speech, gesture or pos-
ture behaviour and perform basic conversational func-
tions (i.e. utterance turn taking and feedback detec-
tion). The platform supports C++ and Java integration
through the OpenAIR protocol, integrated in the latest
revision of Psyclone (CMLabs, 2007). The messages
are sent using several distributed blackboards. The
system proposed various formats for the data mes-
sages, such as standard existing XML formats. More-
over, the authors propose a generic markup language
GECAML (Huang et al., 2008) which unifies all the
features offered by various Automatic Speech Recog-
niser and Text to Speech API.

2.3 Companions: A Generic ECA
Project using a Middleware
Platform

Companions (Cavazza et al., 2010) is not only an
ECA but also a companion, engaged into a long term
interaction process to forge an empathic relation with
its user. The Companions ECA is built around the
scenario “How was your day ?”, which acts as a gen-
eral interaction theme with an open dialogue. Unfor-
tunately, due to a proprietary technology, the platform
does not offer many research or technical details, such
as validation, licence or performance aspects.

From the technical perspective, the system uses
several proprietary platforms, designed by the indus-
trial partners: a middleware platform, Inamode, de-
veloped by Telefónica I+D1; an Automatic Speech
Recognition (ASR) and a Text To Speech (TTS) en-
gine, developed by Loquendo2; and a Virtual Charac-
ter, developed by As An Angel3.

1http://www.tid.es/en/
2http://www.loquendo.com/en/
3http://www.asanangel.com/

AgentSlang:�A�New�Distributed�Interactive�System�-�Current�Approaches�and�Performance

597

2.4 Message Oriented Communication

The idea of components communicating using a mes-
sage oriented protocol is well developed in indus-
trial applications (O’Hara, 2007). Recent develop-
ments lead to a unified stable model called the Ad-
vanced Message Queue Protocol (AMPQ) (O’Hara,
2007). This protocol provides more flexibility than
Psyclone in terms of communication models, such as
publish/subscribe and request/reply patterns. More-
over, these operations are optimised for large and fast
data exchange. There are various implementations of
this protocol and two platforms are very commonly
used in Open Source projects: ActiveMQ (Snyder
et al., 2011) and ZeroMQ (also spelled /0MQ) (Hin-
tjens, 2013). Two well known projects currently in-
tegrate the ActiveMQ platform: Semaine and VH-
Toolkit.

2.4.1 Semaine

Semaine (Schröder, 2010) is a Sensitive Artificial Lis-
tener (SAL), built around the idea of emotional in-
teraction. The project focuses on a Virtual Charac-
ter that perceives human emotions through a multi-
modal set-up and answers accordingly. The response
is not always a direct reaction to the affect perceived,
as a certain level of planning is supported. Sev-
eral virtual characters with different personalities are
proposed, each having a different reactive model to
the perceived emotion. The system introduced the
idea of component based, distributed interactive sys-
tem, where each algorithm or component could act
independently. The affect detection part is a fusion
of low level speech features extracted using OpenS-
MILE (Eyben et al., 2010) and face gestures classified
using iBug (Soleymani et al., 2012). The behaviour of
the agent is managed by two components developed
by the team, which is sent to a Text-to-Speech syn-
thesiser: MaryTTS (Pammi et al., 2010). The speech
is transmitted to a speech and gesture synthesis com-
ponent, which converts the data into Greta BML code
(Poggi et al., 2005).

2.4.2 VHToolkit

Virtual Human Toolkit (VHToolkit) (Hartholt et al.,
2013) is a generic platform designed to support ECA
systems, developed around a component-based de-
sign methodology. It has been used successfully in
many applications varying from e-learning to mil-
itary training. It provides a collection of compo-
nents for all the major tasks of an interactive system:
speech recognition, text-to-speech, dialogue man-
agement (using NPCEditor component (Leuski and

Traum, 2011), non-verbal body movement generator
(Lee and Marsella, 2006) and an uniform perception
layer (formalized as PML (Scherer et al., 2012)). The
project uses the SmartBody Embodiment (Shapiro,
2011) as a visual BML interpreter for verbal and non-
verbal behaviour.

2.5 Summary

The key functionalities for an efficient IS system are:
a fast Data-Oriented Design, Dialogue Management
and Affect Detection. First of all, except for Mirage,
all the presented platform do not discuss the choice of
internal data representation. Moreover, almost all the
systems use heavy XML messages or ad-hoc string
formats, which does not offer the possibility of future
extensions of these systems. Then, only Semaine and
Companions projects currently propose Affect Ori-
ented features. Finally, the Dialogue Management
is offered by VHToolkit, Companions, Mirage and
GECA.

Virtual Human Toolkit is the most complete plat-
form for building ECA systems that we found so far.
Unfortunately, even if the platform offers a multi-
modal perception component, its output is linked di-
rectly to the smart body behaviour, making the sys-
tem purely reactive rather than “emotion-aware”. The
dialogue manager and the non-verbal behaviour gen-
erator do not take into account such perception.

Semaine is a Sensitive Artificial Listener, where
the sensitive part refers to the affect recognition and
simulation aspect. The listening key word refers to
the ability to perceive certain emotions, but due to the
lack of dialogue/interaction management, the agent
is not able to reply with semantically adequate be-
haviour to the human companion.

Companions offers both dialogue management
and affective interaction, but with very few details
about this aspect. In fact, due to the proprietary li-
cence of the system, no component or source code has
been publicly released. This is making very difficult
an evaluation of the quality of these features. More-
over, the system is centred around the “How was your
day ?” scenario, which restricts even more the field
of application.

Mirage is used for an augmented reality applica-
tion, where the agent is participating to the environ-
ment. The dialogue capabilities of the system are very
basic, by providing some reactive model linked with
the perception. GECA does not offer support for af-
fect oriented design, but supports basic dialogue mod-
els. Both Mirage and GECA use different versions
of Psyclone (OpenAir is the previous version of Psy-
clone), which are not actively maintained.

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

598

In the following, we describe our proposition,
AgentSlang, that encapsulates some of the good
points of these platforms, while adding better perfor-
mance, Object-Oriented Data representation, simpli-
fied dialogue modelling and Affective Feedback de-
tection.

3 OUR PROPOSITION:
AgentSlang

AgentSlang is a collection of components, created
on top of the MyBlock middleware platform, which
enables to build rich, distributed and fast Interac-
tive Systems. MyBlock ensures the component-to-
component communication, dealing with data trans-
mission in an efficient way. It adds a transparent layer
of communication so that AgentSlang components do
not have to deal with all these concepts.

The choice of a certain Message Queue protocol
implementation has been done on licence availability,
popularity and performance. In particular, we bench-
marked ZeroMQ over ActiveMQ, to confirm that Ze-
roMQ (our choice) is a faster and reliable candidate,
which supports multiple connection types, different
communication patterns, the possibility to send bi-
nary data and the absence of a broker component,
which slows down a distributed pipeline architecture.

In a component-based approach, the data ex-
change between components becomes critical. There-
fore, we discuss the aspect of Data Oriented Design
by introducing the current existing issues, followed
by our proposition.

3.1 Data Oriented Design

Even if the formats do not have to be strictly identical
between linked components, the compatibility has to
be ensured at least. There are two main directions in
this area: 1. Design data to have a small transfer size
and memory footprint 2. Generic data representation,
written in standard formats (i.e. JSON or XML)

Ad-hoc feature representations are very popular in
early system integration, but since no specification is
used, the data becomes very difficult to maintain. An
alternative to this process is represented by Google
Protocol Buffers (Google, 2012), which formalises all
the data messages into a strict syntax which is trans-
lated into messages and data types in various pro-
gramming languages. This approach seems to be se-
cure and flexible enough for the usual data exchange
between services and is also very strict with data type
inheritance, a concept supported by all the major Ob-
ject Oriented programming languages.

On the other hand, generic data formats have been
formalised in the recent years, due to the increase
in popularity of Semantic Web technologies. Due
to increasing popularity of establishing strict inter-
changeable formats which a web service could “un-
derstand”, several formats have been proposed. World
Wide Web Consortium (W3C) is the authority that
deals with current and future web standards, including
the current web service data formats for the Semantic
Web. Whereas the standardisation of several data for-
mats is an ongoing process, this approach seems to be
more suitable for large scale web services, such as the
Semantic Web, rather than using them for small scale,
fast conversational agents.

Google Protocol Buffers (Google, 2012) presents
a comparison between their own serialisation format
and the XML parsing and conclude that their format
is 10 to 100 times faster than XML. MsgPack (Sa-
dayuki, 2012) follows the same direction of small
memory footprint data representation, by offering bet-
ter performance than Google Protocol Buffers, while
maintaining the multi-language binding and multi-
platform support.

We therefore propose to define our own Object-
Oriented data representation. Thanks to object hier-
archies, objects are extendible and independent from
the data serialisation level. This allows us to change
the serialisation level in the future if needed. Cur-
rently, the serialisation is done with MsgPack due to
the best performance. The data has a small memory
footprint than in the case of XML or JSON, has very
fast serialization mechanisms and offers the advan-
tages of working with native Object Structures rather
than XML trees or JSON maps.

On top of ZeroMQ and using our Object-Oriented
design for data exchange, MyBlock is designed to be
a middleware for a distributed pipeline processing. It
had to be small, flexible and fast enough to support the
development of a rich platform, capable of exchang-
ing information in real-time. The main platform has
a three level separation, such as in most of the mod-
ern architectures, to support an easy management and
understanding of the components.

3.2 MyBlock Components

A component is an atomic structure for the MyBlock
platform. The component processes a given set of
data types and forward the output to the next com-
ponent in the chain. The internal flow of a component
can have two different aspects: either it is a reactive
output to the input, or an active component that can
produce output based on the internal states without
any input. Special components are elements which

AgentSlang:�A�New�Distributed�Interactive�System�-�Current�Approaches�and�Performance

599

only consume (Sink) or produce (Source), without
any mixed function.

At this level, data types are an important aspect.
The data exchanged need to be compatible between
linked elements. A component formally defines pre-
conditions and postconditions in terms of data types,
in order to be linked with other components to form
complex processing pipes. The communication pro-
tocol between two components is a simple publish-
subscribe architecture to ease data exchange.

3.3 MyBlock Services

Similarly to the component, we define the services. A
service is designed is to respond to requests that can
be triggered by any component or other service. The
communication protocol used for services is a syn-
chronous request-reply.

3.3.1 Architecture Modelling

On the architecture level, the actual pipeline is con-
structed by passing the configuration parameters to
the components and services, and by building the dy-
namic links between all the elements. The important
features of this level are highlighted by the ability
to change dynamically the structure of the process-
ing pipeline, without changing the logic of the com-
ponents. If the data exchanged between several el-
ements is compatible, the order of processing is not
important. Moreover, in comparison with other plat-
forms which use the processing pipeline paradigm,
MyBlock does not need special components for data
multiplication or joining.

3.4 AgentSlang Components

All the principles enumerated for the MyBlock plat-
form are valid for AgentSlang. We the propose a
short presentation of the main components currently
implemented in the AgentSlang platform. Most of
the basic components are based on existing libraries,
such as: Google Speech API (Google, 2013) for Au-
tomatic Speech Recognition, Cereproc Voice (Cere-
Proc,) for speech synthesis, various Part-of-Speech
Taggers (SENNA (Collobert et al., 2011), TreeTagger
(Schmid, 1995)) and MARC (Courgeon et al., 2008)
as an Embodied virtual Agent. AgentSlang also in-
cludes various models for Natural Language Under-
standing, Dialogue Management and Affective Feed-
back Detection, as important parts of an IS. Figure 1
displays a summary of the current AgentSlang capa-
bilities.

3.4.1 Natural Language Understanding:
Synonym-based Key Word Spotting

This component is based an home-made regular ex-
pression language called Syn!bad , which is used
to extract information from sentences. Syn!bad is
an acronym of Synonyms [are] not bad, which sug-
gests that the main concept of Syn!bad is centred
among synonym processing. Syn!bad uses some
POSIX Regular Expression structures (Alfred, 1990)
extended to integrate synonyms. Synonyms are in-
dependent structures, grouped in different sets, ac-
cording to their meaning. The most common group-
ing currently known is the WordNet synsets (Miller,
1995), which consist of sets of different words ac-
cording to their semantics and part of speech. Each
synset has a unique id to enable an easy retrieval.

A Simplified Description of the Problem. In
IS, the knowledge extraction process is usually
slowed down by the complexity of the rules de-
scribing a certain concept. Using regular ex-
pressions associated to variable structure is an al-
ternative. For instance, to match the following
sentence: Bob do you have water, one can use
<name> do you <verb> <object>. The variable
extraction is already supported by certain implemen-
tations of regular expressions. The problem becomes
more complex when restrictions are added to the
matched variables, especially in the case of <verb>
and <object>. To our knowledge, the syntax of
matching only variable structures while having a cer-
tain part of speech is not supported by any regular
expression implementation.

Syn!bad Example. Based on the rules described
above, the following Syn!bad pattern introduces most
of the features of the language:

$name <#*>? do you <VB*>* [some|RB*]
[water#object]

where: 1. $name represents a context free variable,
which matches any single word and retrieves it as the
name variable. 2. <#*>? is an optional token that
can match any punctuation mark. The #* represents
a generic part of speech group matching punctuation
marks. 3. do and you are words matched by the ex-
pression. 4. <VB*>* is a none-or-many token matcher,
which restricts the element to match only a selected
part of speech, in this case a verb. 5. [some|RB*]
represents a matcher for a synonym of the word some.
A restriction over the part of speech is added, which
matches only adverbs. 6. The [water#object] token
is similar to the previous one, but matches a synonym

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

600

Automatic Speech
Recognition

Language Preprocessing
(i.e. POS Tagging)

Template Matching
(Syn!bad)

Affective Feedback
Recognition

Dialogue
Management

Text-To-Speech
Generator

Behaviour ML
Generator

Embodied Agent
(MARC)

H
um

an
 U

se
r

Figure 1: The current status of the AgentSlang platform.

of water and recovers the value of the detected word
into the object variable.

The matching process applied to the sentence:
Bob, do you want any aqua, produces the follow-
ing result: $name Bob and #ob ject aqua, while
<#*>? matches the comma, <VB*>* matches the verb
want and any is matched by the token [any|RB*].

3.4.2 Dialogue Manager and Natural Language
Generation

Our dialogue model is a simplified Deterministic Fi-
nite Automata (DFA), that deals with the agent pre-
sentation and state-transition in a narrative environ-
ment. This structure includes a series of hand-crafted
patterns, collected from our previous experiments in
story-telling environments. The component receives
a Syn!bad pattern identifier as an input and a series of
variables, and generates either a transition to the next
narrative state or a response to a question.

The reply action represents a sentence or a
command (in case of pointing certain key as-
pects in to the story) that is interpreted after-
wards. The reply action patterns allow vari-
able substitution, similar to the Syn!bad lan-
guage: item1 item2 $variable1 item3, where
item1,item2,item3 are actual words used to gener-
ate the reply and $variable1 is a variable. In the cur-
rent implementation, since the reply action is mapped
directly to the pattern identifier, the variable names
are mapped as well to the variables extracted previ-
ously. If no such variable can be extracted, the pro-
cess fails and a default pattern is generated.

3.4.3 Affective Feedback

The Affective Feedback component relies on an
extended version of affective information detection
based on a fusion of affective contextualised dictio-
naries (Serban et al., 2013). The component takes
as an input a sentence already annotates using a POS
Tagger. The valence is computed as a context over-
lap of the phrase and annotated contextonym (Serban
et al., 2013). A contextonym is a word relation struc-
ture, similar to the synonyms, which describes the ap-

pearance of words in a similar context (a phrase). This
structure makes the search of the proper context very
easy in comparison to the classic synonymic relations.
Finally, the valence of the phrase is given by the aver-
age valence of all matched contextonyms.

4 EVALUATION

We benchmarked AgenSlang over main IS platforms,
in order to evaluate the performance of future IS based
on this infrastructure. The machine used for this test
is a I7 Intel machine, at 1.6 GHz per core and 3.9 Gb
of RAM. The operating system used for the test is an
Ubuntu 12.04 Linux, with Oracle Java 1.7.

The setup is to send a series of random messages,
of a given size, from one component to another. We
choose to send random sequences in order to prevent
the caching speed of ActiveMQ, which applies a set
of heuristics in case the same message is sent over the
network. Moreover, in order to prevent local traffic
peaks, we sent 100 messages and presented only the
average time. For the message throughput4, we repre-
sented the number of messages that pass between the
two components in one second. Figure 2 represents
this measure, side-by-side, on a logarithmic scale.

AgentSlang, as integrating MyBlock, is presented
in two versions: with Automatic System Feed-
back (ASF) and non-ASF. This mechanism enables
AgentSlang to send a feedback message each time an
action is successfully executed. This is executed in
the case of sending and receiving a message. SE-
MAINE and VHToolkit does not provide a similar
mechanism, therefore, in order to achieve a fair com-
parison of the two systems, this feedback has also
been disabled.

The conclusion of this experiment is that Agent-
Slang is faster than SEMAINE and VHToolkit, when
having the ASF disabled. For messages longer than
10,000 characters, the ASF does not increase the

4The exact message throughput ratio is measured as the
number of messages per second that pass from one compo-
nent to another.

AgentSlang:�A�New�Distributed�Interactive�System�-�Current�Approaches�and�Performance

601

10

100

1,000

10,000

100,000

1,000,000

M
es

sa
ge

Le
ng

th

Messages / Second

1 10 100 1,000 10,000

VHToolkit (Java)
Semaine
AgentSlang (ASF)
AgentSlang (Simple)

Figure 2: The performance comparison between SEMAINE, VHToolkit and AgentSlang, for message throughput representa-
tion. The representation is done on a logarithmic scale.

sending time. Since AgentSlang targets a large spec-
trum of data types, both scenarios can be used in
practical situations. The choice of a platform de-
pends on the application. To achieve the best speed
while sending data, AgentSlang simple (non-ASF) is
a good choice. To ensure that a message has been
successfully processed, AgentSlang ASF is currently
the only choice. In conclusion, the two versions of
AgentSlang are better that the current implementa-
tions of SEMAINE and VHToolkit and the choice of
a version depends on the scenario.

The core functions of AgentSlang are the Data
Oriented design, Dialogue Management and Af-
fect Oriented design. Only AgentSlang, Semaine
and Companions projects propose Affect Oriented
features. For Dialogue Management, AgentSlang,
Companions, VHToolkit, Mirage and GECA of-
fers it. On the system management aspect, only
AgentSlang, VHToolkit and Semaine provides such
a tools, whereas real-time system messages that pro-
vide informations about the state and status of all the
components, are supported only by AgentSlang.

From the Natural Language Understanding and
Dialogue Management perspective, our proposition
introduces a solution to the natural language variabil-
ity, by using synonyms, which solve well the input
variability issue of spoken language. The dialogue
model is a simplified DFA, which is easy to adapt
in any situation and proves very efficient in narrative
situations. Nevertheless, with proper annotated data,
VHToolkit can resolve this task efficiently as well.

Two of the major differences between AgentSlang
and other platforms are that we focus on data-oriented
design rather than the source and by not using black-
boards. We consider that the data source is not im-
portant for Distributed Interactive System, since trust
among components is guaranteed by the builder of the
system. At most, components could provide a level
of confidence for certain tasks. Moreover, the black-

board as a fundamental mechanism for knowledge
sharing in AI is replaced by the services, modelled
by AgentSlang. A service offers similar functional-
ity through the request/reply protocol, with flexibility
and robust data synchronisation mechanisms.

5 CONCLUSIONS AND FUTURE
WORK

Currently, AgentSlang is the only ECA system that
aims at building realistic story-telling environments.
We shown in our previous work that such a system
needs to be able to deal with feedback from multi-
ple sources: dialogue, affective feedback and narra-
tive actions. We choose to combine narration to clas-
sic dialogue management in our approach in order to
produce better interaction, measured in an increased
satisfaction, especially on children. Finally, from the
performance point of view, we have shown that the
performance of AgentSlang is better than Semaine
and VHToolkit.

Nevertheless, such a complex platform has its lim-
its. First, the narrative states and answers to the user’s
questions are based on a series of patterns, chose ran-
domly based on matching rules. More complex Natu-
ral Language Generation techniques could be applied
in order to create non-repetitive and naturalistic con-
tent.

Second, the Non-Verbal Behaviour is fixed and at-
tached to each narrative state or answer. In the future,
this could be done in a dynamic way, based on the an-
swer, the context of the interaction (i.e. user profile,
environment) and the personality of the agent.

Moreover, a multi-modal Feedback Detection Al-
gorithm need to be implemented and tested. Currently
our approach is based on text features mainly, but of-
fering a generic platform for Distributed Interactive

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

602

System development enables to benchmark several
models on a common platform.

REFERENCES

Alfred, V. (1990). Algorithms for finding patterns in strings.
Handbook of Theoretical Computer Science: Algo-
rithms and complexity, 1:255.

Cavazza, M., de la Camara, R. S., and Turunen, M. (2010).
How was your day?: a companion eca. In Proceedings
of the 9th International Conference on Autonomous
Agents and Multiagent Systems: volume 1-Volume 1,
pages 1629–1630. International Foundation for Au-
tonomous Agents and Multiagent Systems.

CereProc. Cerevoice sdk. http://www.cereproc.com/.
CMLabs (2007). Psyclone. http://www.mindmakers.org/.
Collobert, R., Weston, J., Bottou, L., Karlen, M.,

Kavukcuoglu, K., and Kuksa, P. (2011). Natural lan-
guage processing (almost) from scratch. The Journal
of Machine Learning Research, 12:2493–2537.

Courgeon, M., Martin, J.-C., and Jacquemin, C. (2008).
Marc: a multimodal affective and reactive character.
In Proceedings of the 1st Workshop on AFFective In-
teraction in Natural Environments.

Eyben, F., Wöllmer, M., and Schuller, B. (2010). Opens-
mile: the munich versatile and fast open-source audio
feature extractor. In Proceedings of the international
conference on Multimedia, pages 1459–1462. ACM.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek,
R., and Sunderam, V. (1994). PVM: Parallel virtual
machine: a usersn’guide and tutorial for networked
parallel computing. MIT Press.

Google (2012). Protocol buffers.
https://code.google.com/p/protobuf/.

Google (2013). http://developer.android.com/reference/android/speech/.
Hartholt, A., Traum, D., Marsella, S. C., Shapiro, A., Stra-

tou, G., Leuski, A., Morency, L.-P., and Gratch, J.
(2013). All together now: Introducing the virtual hu-
man toolkit. In International Conference on Intelli-
gent Virtual Humans, Edinburgh, UK.

Herzog, G., Ndiaye, A., Merten, S., Kirchmann, H., Becker,
T., and Poller, P. (2004). Large-scale software integra-
tion for spoken language and multimodal dialog sys-
tems. Natural Language Engineering, 10(3-4):283–
305.

Hintjens, P. (2013). Zeromq: Messaging for Many Applica-
tions. O’Reilly Media.

Huang, H.-H., Cerekovic, A., Tarasenko, K., Levacic, V.,
Zoric, G., Pandzic, I. S., Nakano, Y., and Nishida,
T. (2008). Integrating embodied conversational agent
components with a generic framework. Multiagent
and Grid Systems, 4(4):371–386.

Lee, J. and Marsella, S. C. (2006). Nonverbal behavior gen-
erator for embodied conversational agents. In 6th In-
ternational Conference on Intelligent Virtual Agents,
Marina del Rey, CA.

Leuski, A. and Traum, D. (2011). NPCEditor: a tool for
building question-answering characters. In Interna-

tional Conference on Language Resources and Evalu-
ation (LREC), Valletta, Malta.

Miller, G. (1995). WordNet: a lexical database for English.
Communications of the ACM, 38(11):39–41.

Mori, M. (1970). The uncanny valley. Energy, 7(4):33–35.
Ogan, A., Finkelstein, S., Mayfield, E., D’Adamo, C., Mat-

suda, N., and Cassell, J. (2012). Oh dear stacy!: social
interaction, elaboration, and learning with teachable
agents. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 39–48.
ACM.

O’Hara, J. (2007). Toward a commodity enterprise middle-
ware. Queue, 5(4):48–55.

Pammi, S., Charfuelan, M., and Schröder, M. (2010). Multi-
lingual voice creation toolkit for the mary tts platform.
Proc. LREC. Valettea, Malta: ELRA.

Poggi, I., Pelachaud, C., Rosis, F., Carofiglio, V., and Car-
olis, B. (2005). Greta. a believable embodied con-
versational agent. Multimodal intelligent information
presentation, pages 3–25.

Sadayuki, F. (2012). Msgpack. http://msgpack.org/.
Scherer, S., Marsella, S. C., Stratou, G., Xu, Y., Morbini,

F., Egan, A., Rizzo, A., and Morency, L.-P. (2012).
Perception markup language: Towards a standardized
representation of perceived nonverbal behaviors. In
The 12th International Conference on Intelligent Vir-
tual Agents (IVA), Santa Cruz, CA.

Schmid, H. (1995). Improvements in part-of-speech tagging
with an application to german. In In Proceedings of
the ACL SIGDAT-Workshop. Citeseer.

Schröder, M. (2010). The semaine api: towards a standards-
based framework for building emotion-oriented sys-
tems. Advances in Human-Computer Interaction,
2010:2–2.

Serban, O., Pauchet, A., Rogozan, A., and Pecuchet, J.-P.
(2013). Modelling context to solve conflicts in senti-
wordnet. In Affective Computing and Intelligent Inter-
action (ACII), 2013 Humaine Association Conference
on, pages 393–398. IEEE.

Shapiro, A. (2011). Building a character animation system.
In The Fourth International Conference on Motion in
Games, Edinburgh, Scotland.

Snyder, B., Bosanac, D., and Davies, R. (2011). ActiveMQ
in Action. Manning Publications.

Soleymani, M., Pantic, M., and Pun, T. (2012). Multimodal
emotion recognition in response to videos. Affective
Computing, IEEE Transactions on, 3(2):211–223.

Swartout, W. R., Gratch, J., Jr., R. W. H., Hovy, E. H.,
Marsella, S., Rickel, J., and Traum, D. R. (2006). To-
ward virtual humans. AI Magazine, 27(2):96–108.

Thórisson, K. R., Benko, H., Abramov, D., Arnold, A.,
Maskey, S., and Vaseekaran, A. (2004). Construction-
ist design methodology for interactive intelligences.
AI Magazine, 25(4):77.

Wahlster, W. (2000). Verbmobil: foundations of speech-to-
speech translation. Springer verlag.

Wahlster, W. (2006). SmartKom: Foundations of Mul-
timodal Dialogue Systems (Cognitive Technologies).
Springer-Verlag New York, Inc.

AgentSlang:�A�New�Distributed�Interactive�System�-�Current�Approaches�and�Performance

603

