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Abstract: DataBase as a Service (DBaaS) providers need to improve their existing capabilities in data management 
and balance the efficient usage of virtual resources to multi-users with varying needs. However, there is still 
no existing method that concerns both with the optimization of the total ownership price and the 
performance of the queries of a Cloud data warehouse by taking into account the alternative virtual resource 
allocation and query execution plans. Our proposed method tunes the virtual resources of a Cloud to a data 
warehouse system, whereas most of the previous studies used to tune the database/queries to a given static 
resource setting. We solve this important problem with an exact Branch and Bound algorithm and a robust 
Multiobjective Genetic Algorithm. Finally, through several experiments we conclude remarkable findings of 
the algorithms we propose. 

1 INTRODUCTION 

Cloud computing has emerged as a new computation 
paradigm that builds elastic and scalable software 
systems. Vendors such as Amazon, Google, 
Microsoft, and Salesforce offer several options for 
computing infrastructures, platforms software 
systems and supply highly-scalable database 
services with the goal of reducing the total cost of 
ownership price (Amazon, 2013). Users pay all costs 
associated with hosting and querying their data 
where service providers present different choices to 
trade-off price and performance to increase the 
satisfaction of the customers and optimize the 
overall performance (Balazinska et al., 2011). 
Recently, extensive academic and commercial 
research is being done to construct self-tuned, 
efficient, and resource-economic Cloud database 
services that protect the benefits of both the 
customers and the vendors. Virtualization that 
provides the illusion of infinite resources in many 
respects is the main enabling technology of Cloud 
computing. This skill is being exploited to simplify 
the administration of physical machines and 
accomplish efficient systems. The perception of 
hardware and software resources is decoupled from 
the actual implementation and the virtual resources 

perceived by applications are mapped to real 
physical resources. Through mapping virtual 
resources to physical ones as needed, the 
virtualization can be used by several databases that 
are located on physical servers to share and change 
the allocation of resources according to query 
workload requests. This capability of virtualization 
can provide efficient Cloud databases where each 
Virtual Machine (VM) has its own operating system 
and thinks that it is using dedicated resources (CPU, 
main memory, network bandwidth, etc.), whereas in 
reality the physical resources are shared among by 
using a VM Monitor (VMM) that controls the 
allocation of resources (Soror et al., 2010; Xiong et 
al., 2011; Curino et al., 2011). 

In addition to providing efficient queries in 
accordance with the service level agreements, 
contemporary relational Cloud database 
management systems need to optimize a 
multicriteria problem that the overall cost of 
hardware ownership price is also to be minimized. In 
this study, we develop a framework to provide (near-
)optimal virtual resource allocations with respect to 
the overall cost of hardware ownership price and a 
good tradeoff between the efficiency and the overall 
cost of a relational data warehouse is ensured. More 
specifically ’Given a budget constraint and a query 
workload, how can the available virtual resources of 
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the Cloud (CPU, main memory, network bandwidth, 
I/O bandwidth, and etc.) be allocated to Virtual 
Machines, each having a part of a distributed 
database that the best overall query performance can 
be achieved with minimum pricing?’ Our framework 
produces cost-efficient design alternatives (virtual 
resource configuration and query plans) and 
recommends them to the decision makers. A 
budgetary constraint can be a more important issue 
for a consumer, whereas the response time of the 
queries is more crucial for another (D’Orazio et al., 
2012). Therefore, in order to fully realize the 
potential of the Cloud, alternative query plans are 
executed with well configured virtual resources 
instead of only optimizing single query plans on 
statically designed virtual resources. This means that 
instead of designing the database over standard 
VMs, we configure the virtual resources. It indicates 
that CPU usage and RAM can be crucial for a data 
warehouse workload, whereas network or I/O 
bandwidth can be more important for another. 

In order to explain the multiobjective query 
optimization problem, we give an illustrative 
example. Consider a distributed decision support 
database (TPC-H) where all of its eight tables are 
located on different VMs. When we execute TPC-H 
Query 3 with two different query plans and with 
alternative virtual resource allocations, we certainly 
obtain different performances. During the 
experiments, the configuration with higher 
performance VMs (4 x 2Ghz CPU, 8GB RAM, 
300Mbit/sec network bandwidth) and with query 
plan QP1 SQL statement is observed to be the fastest 
performing platform, however its monetary price is 
one of the most expensive alternatives. A cheaper 
VM configuration with 1 x 2Ghz CPU, 768MB 
RAM, 100 Mbit/sec network bandwidth and with 
QP1 SQL statement has a response time that is only 
25.9% slower but 72.0% cheaper. The pareto-
optimal visualization of the proposed solutions that 
we obtain by executing with different VM and 
network configurations is presented in Figure 1 (see 
Appendix for query plans). Looking at the results we 
can see that finding solutions that are closer to the 
ideal point is the main objective of the problem. In a 
two dimensional search space, the optimizers 
explore solutions for this NP-Hard problem. 
Solutions with appropriate VMs, network bandwidth 
and efficient QP configurations can meet the 
demand of consumers. 

Some queries may request more network 
resource, whereas others consume more CPU and 
main memory. In this case, the former one can be 
executed in a better way by spending the budget on a 

broader network bandwidth instead of multiple 
CPUs. In order to investigate the effectiveness of our 
approach, we incorporate the devised framework 
into a prototype system for evaluation and instantiate 
it with an exact solution method, multiobjective 
branch-and-bound and an evolutionary computation 
method multiobjective genetic algorithms. Finally, 
through several experiments that we conduct with 
the prototype elastic virtual resource deployment 
optimizer on different TPC-H query workloads, we 
conclude significant results of the space of 
alternative deployments as well as the advantages 
and disadvantages of the multiobjective optimization 
algorithms. 

 

Figure 1: Pareto-optimal curve for the response time and 
monetary cost of TPC-H Q3 with different virtual resource 
configurations and query plans. 

3 MULTIOBJECTIVE DATA 
WAREHOUSE DESIGN AND 
EXPERIMENTS 

The studies concerning the performance of 
multiobjective Cloud databases are at their early 
ages. Most of the distributed database design and 
optimization concepts can be applied to this area 
however; multiobjective optimizations are newly 
being studied. There has been substantial amount of 
work on the problem of tuning database system 
configurations for specific workloads or execution 
environments (Weikum and Vossen, 2002) and on 
the problem of making database systems more 
flexible and adaptive in their use of computing 
resources. On the other hand, to the best of our 
knowledge, there is no approach like ours that 
concern both with the optimization of the total 
ownership price and the performance of the queries 
of a data warehouse by taking into account 
alternative virtual resource allocation, and different 
query plans workloads, and materialized views. 
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In this study, we tune the virtual resources to a 
distributed data warehouse system, rather than 
tuning the database system for a given resource 
setting. Moreover, our study optimizes the 
objectives of minimum money consumption and 
maximum benefit from the virtual resources by 
using   multiobjective branch and bound genetic 
algorithms. In summary, our study focuses on the 
elasticity of Cloud resources and produces multiple 
virtual resource deployment plans with alternative 
query plans for a set of queries in a workload, 
enabling the user to select the desired tradeoff with 
efficient cost models. Materialized views are 
effective techniques for speeding up query 
workloads and they are increasingly being used by 
many commercial database systems. Materialized 
views are especially good for data warehouses 
because of the intensive usage of common 
subexpressions including select-project-join 
operations. In our study, we focus on the selection of 
the appropriate materialized views to reduce the 
communication cost, response time, and the 
ownership price of a relational Cloud database with 
respect to the pricing scheme of vendors. The 
multiobjective query optimization can benefit from 
carefully selected materialized views. In addition to 
reducing the response time of the queries, total 
ownership prices decrease significantly. Although 
storing/maintaining the selected materialized view 
has an additional cost, it is still a very effective way 
of executing queries. No resource deployment 
processing system deals with the concept of 
elasticity and cost-efficiency of relational Cloud 
databases that makes use of the appropriate 
materialized views like our system. 

Our design system relies on multiobjective query 
optimizers. Therefore, we turn a conventional query 
optimizer into a multiobjective query optimizer. 
During the execution of the queries, we use a variant 
of operator centric model that is known to be more 
appropriate than the classical iterative-based (pull-
based) query execution models for multiple query 
optimizations. Main component of this system is an 
alternative query generator that generates different 
bushy-plan based query plans for the incoming 
queries. 

In order to design a multiobjective Cloud data 
warehouse, a multiobjective query optimizer must be 
used. Therefore first thing we do is to enhance a 
conventional query optimizer to a multobjective one.  

Data storage cost depends on the size of the data 
(including the structures such as indexes, 
materialized views, and replications of the tables) 
and its storage period. Processing time of the VMs is 

the total price for CPU usage. During the execution 
of the queries, different VM configurations can be 
used and the configuration of a VM (RAM, number 
of CPUs, and etc.) is flexible in accordance with the 
resources used. Micro, small, large, and extra large 
are some of the configurations provided by the 
Cloud vendors at various prices. Data transfer cost is 
related with the amount of data migrated between 
sites. 

Alternative query plans (QP) provide different 
ways for executing a query. Alternative QPs can 
take advantage of different ways of executing the 
same query, thus cheaper resources can reduce the 
total price of a query while increasing the response 
time. This elasticity provides new opportunities for 
the solution of our multiobjective problem. 

The formulation of the problem consists of two 
parts. The monetary cost and the response time of 
the query workloads that will work on the selected 
VMs with the alternative QPs of the queries. There 
are n VMs with independent DBMS and each VM 
has a set of processors and a main memory. Each 
DBMS has a workload that consists of a set of SQL 
statements. Workload represents the queries 
submitted to DBMS i. There are m different physical 
resources (CPU capacity, main memory, network 
bandwidth, etc.) that are to be deployed to VMs. Our 
main goal is to obtain a set of pareto- optimal 
solutions that the overall monetary and response 
time cost are minimized. 

Pricing Scheme Parameters of the Cloud: 
Each customer requests queries from the Cloud data 
warehouse by using Internet and contacts with the 
aggregate node. The aggregate node distributes the 
query to the appropriate VM. The Cloud 
infrastructure provides unlimited amount of storage 
space, CPU nodes, RAM, and very high speed intra-
cloud networking. All the resources of the Cloud are 
assumed to be on a network. The CPU nodes, RAM, 
and I/O bandwidth of each VM are different from 
each other and can be deployed by using VM 
Monitors in milliseconds (Barham et al., 2003). The 
storage system is based on a clustered file system 
where the disk blocks are stored close the CPU 
nodes accessing them. I/O bandwidth of the storage 
is divided evenly to the VMs (that may have 
multiple cores up to 8). 

There are several Cloud Service Providers (CSP) 
in the market and they offer different pricing schema 
for the services they provide. Different pricing 
schema of Cloud server providers can be 
opportunities for customers in accordance with the 
tasks they want to complete. The cost for a small 
VM (1GHz CPU, 768MB RAM) is $0.02/hr, 
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whereas A7 (8 x 1.6GHz CPU, 56GB RAM) is 
$1.64/hr. Data storage is also billed by the Cloud 
service providers. In our model, monthly storage 
price is used. During our experiments, the data 
storage price is constant for all the queries. But for 
database designs that use materialized views an 
additional storage cost needs to be added. Most of 
the Cloud providers do not charge for the data 
transfers in a private Cloud but the data that leaves 
the Cloud. The bandwidth of the intra-Cloud 
network can reach up to 10GBit/sec. In order to 
make our problem more interesting and handle this 
dimension of the optimization, we have located our 
VMs on a virtual switch. Different bandwidth 
networks can be chosen and the pricing scheme 
changes in this communication infrastructure.  

Branch-and-Bound Algorithm (MOD-B&B) is 
an exhaustive optimization algorithm. It enumerates 
all candidate solutions, where fruitless subsets of 
candidates are discarded, by using upper and lower 
estimated bounds of the problem instance being 
optimized. MOD-B&B starts searching with null 
initial values indicating that no QP has yet been 
selected for any queries with the current VM 
configuration. Later, QPs are assigned to current 
selected VM. At each level of the tree, one 
additional QP is assigned to the query workload 
(Bayir et al., 2007). This procedure is repeated for 
every VM configuration. We define two initial upper 
bounds for MOD-B&B. The minimum monetary 
cost is the running time of VMs that execute the 
queries in a workload of queries. The response time 
is the finishing time of the workload with the given 
VM configuration. In order to estimate a lower 
bound, different heuristic functions can be used. The 
heuristic we proposed here is reasonable and 
performs well during the optimization process. We 
will explain the heuristic with a scenario. In Figure 
2, we can see the results of a sample multiobjective 
query workload optimization. The best response 
time and the minimum monetary cost values are 
defined and marked on the Figure. We can obtain 
these values with the most expensive and the 
cheapest VM configurations easily. Hereby, we 
propose a heuristic point (marked as Heuristic point 
on the Figure) that is the center of the square 
constructed by the response time and monetary costs 
of the best and worst (the cheapest) VM 
configurations. If the response time of a workload 
falls above heuristic point or if the monetary cost is 
at the right-hand side of heuristic point on the Figure 
then it is pruned according to our heuristic. 

Multiobjective Genetic Algorithm (MOD-
GA): The principles of applying natural evolution to 

 

Figure 2: Proposed heuristic value for MOD-B&B 
algorithm. 

optimization problems were first described by 
Holland (1975). The GA theory has been further 
developed and GAs have become very powerful 
tools for solving search and optimization problems 
(Tosun et al., 2013; Dokeroglu, 2012). GAs are 
based on the principle of genetics and have been 
frequently used to solve many NP-Complete 
problems. GAs use a computational model that 
simulates the natural processes of selection and 
evolution. Individuals with better quality have more 
chance to survive, to reproduce, and to pass their 
genetic characteristics to future generations. Each 
potential solution in the search space is considered 
as an individual and is represented by strings called 
chromosomes. Genes are the atomic parts of 
chromosomes and codify a specific characteristic. 
Chromosomes are encoded in different ways for 
each application. A random population is generated 
in the first step of the algorithm and by applying 
selection, crossover, and mutation operations 
iteratively, new generations are created. The 
individual having the best fitness value in the 
population is returned as the solution of the problem. 
Our multiobjective data warehouse design problem 
can be modeled by using evolutionary methods. A 
chromosome corresponds to a solution instance 
including a set of VMs (having different CPU, 
RAM, I/O bandwidth and etc.) with 
tables/replications located on their databases, 
alternative query plans (QPs) of queries in the 
workload, and a network gene. Figure 3 shows the 
chromosome structure of a solution. The leftmost 
segment represents the configuration of the VMs 
with the tables/replications on its database. Middle 
segment is the set of QPs for the queries in the 
workload. Rightmost part gene represents the 
selected network layer of the solution vector. 
Because we do not make use of partitioned 
fragments of the relations, the size of the VM 
segment of the chromosome can be at most as many 
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as the number of tables in the database. Using 
fragments (partitions) of larger tables can even 
further improve the performance as it is used by 
most of the commercial data warehouses. Our 
proposed genetic model can be enhanced to include 
the fragments of the tables. 

 

Figure 3: Chromosome structure for the proposed 
multiobjective genetic algorithm that consists of Virtual 
Machines, query plans and a network layer. 

We have introduced three operators for the 
MOD-GA. Global and local crossovers, and a 
mutation operator. Global crossover operator uses 
two parents that are selected from the population by 
a selection method. We have proposed two types of 
crossover operators, global and local. Global 
crossover operator swaps VM, QP, or network part 
of two selected chromosomes with the same counter 
chromosome. Below we can see two parents and 
their VM parts are exchanged to provide two new 
chromosomes. Local crossover operator works on 
the VM and QP segments of the chromosome by 
dividing the parents and exchanging the segments 
with each other. Mutation operator changes a 
randomly selected gene of a chromosome. In our 
chromosome structure this operator can act on any 
of the segments. Only a gene is replaced at every 
mutation process.  

Experimental Results: In this part, we perform 
experiments with a sample TPC-H workload.  The 
workload is first optimized with MOD-B&B and 
MOD-GA algorithms. Later, selected solutions that 
are produced by our algorithms are executed in our 
Cloud Database environment to verify the 
correctness of our approach. There are alternative 
selected set of VM and query plan configurations in 
these results. The solutions are used to measure the 
effectiveness of other solutions. The workloads are 
executed 10 times with the selected VM 
configurations and average values are presented. In 
Figure 4, we present the results of pareto-optimal 
solutions that are produced by MOD-B&B 
(represented with + sign), MOD-GA (represented 

with x sign) and solutions with average prices 
(represented with triangle sign). The solutions with 
the highest and the cheapest performance VMs are 
also added to define upper and lower bounds. VMs 
with the highest configuration capabilities (XL) give 
the best response time and WMs with the worst 
configurations (XS) give the longest execution time. 
In this sense, they provide meaningful results to 
evaluate the quality of solutions provided by MOD-
B&B, and MOD-GA. In the Figure, a hypothetical 
ideal point is defined to show the optimal fitness 
value that can be achieved within the given 
minimum response time and minimum pricing. The 
solutions that are chosen from the set of solutions 
produced by MOD-B&B, and MOD-GA algorithms 
construct a pareto-optimal convex curve that a 
decision maker can choose any of the solutions 
according to his/her requirements. The MOST 
expensive VMs option gives the fastest response 
time and the cheapest VMs option is the most time 
consuming. 

 

Figure 4: Proposed pareto-optimal solutions for a sample 
TPC-H workload with MOD-B&B and MOD-GA 
algorithms. 

Although view materialization has additional storage 
costs for a Cloud data warehouse, it provides faster 
response times up to 60-80% for query workloads. It 
is observed to be an efficient way of designing a 
Cloud data warehouse with respect to monetary and 
response time costs. The experimental results 
concerning the appropriate selection of the 
materialized views for the Cloud data warehouses 
are not presented due to the space limitations. 

4 CONCLUSIONS 

In this paper, we define some principles to design 
efficient multiobjective Cloud data warehouses by 
making use of the elasticity of the virtual resources. 
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We minimize the monetary cost as well as providing 
fast response times. We formulate the problem and 
propose exhaustive and heuristic algorithms, 
namely, multiobjective branch-and-bound (MOD-
B&B) and multiobjective robust genetic algorithm 
(MOD-GA) for the optimization of the problem. To 
the best of our knowledge, the multiobjective design 
of Cloud data warehouses is being solved for the 
first time with such an approach. There are studies 
that concern with the best virtual resource 
deployment or with the minimal monetary cost of 
workloads in static hardware resources individually. 
However we combine both of these optimization 
techniques together and obtain significant results as 
they are presented in our study. It is possible to 
design and expand the study with additional elastic 
virtual resources such as I/O bandwidth and dynamic 
RAMs. 
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APPENDIX 

Alternative query execution plans for TPC-H query Q3 

TPC-H Q3 statement in accordance with the query execution 
plan 1 where all of the tables are shipped to query issuing 
node. 
 
SELECT TOP 10 L ORDERKEY ,..., O SHIPPRIORITY 
FROM [VM2].CUSTOMER C, [VM3].ORDERS O, 
[VM1].LINEITEM L, 
WHERE C.C MKTSEGMENT = ’BUILDING’ 
AND C.C CUSTKEY = O.O CUSTKEY 
AND L.L ORDERKEY = O.O ORDERKEY 
AND O.O ORDERDATE < ’1995-03-15’ 
AND L.L SHIPDATE > ’1995-03-15’ 
GROUP BY L.L ORDERKEY, O.O ORDERDATE, O.O 
SHIPPRIORITY 
ORDER BY REVENUE DESC, O.O ORDERDATE; 
 
TPC-H Q3 statement in accordance with query execution plan 
2 where CUSTOMER and ORDERS tables are joined at 
virtual machine 3 and the resulting tuples are shipped to 
virtual machine 2 to join with LINEITEM table. 
 
SELECT TOP 10 L ORDERKEY ,..., O SHIPPRIORITY 
FROM OPENQUERY ( [VM3]. ’SELECT O ORDERDATE, O 
SHIPPRIORITY, O ORDERKEY 
FROM [VM2].CUSTOMER C, [VM3].ORDERS O 
WHERE C.C MKTSEGMENT = ’BUILDING’ 
AND C.C CUSTKEY = O.O CUSTKEY 
AND O.O ORDERDATE < ’1995-03-15’ 
GROUP BY O.O ORDERDATE, O.O SHIPPRIORITY, O 
ORDERKEY ORDER BY O.OORDERDATE) Remote1, 
[VM1].LINEITEM L WHERE AND L.L ORDERKEY = 
Remote1.O ORDERKEY AND L.L SHIPDATE > ’1995-03-15’ 
GROUP BY L.L ORDERKEY, Remote1.O ORDERDATE, 
Remote1.O SHIPPRIORITY 
ORDER BY REVENEU DESC’); 
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