
Designing Cloud Data Warehouses using Multiobjective
Evolutionary Algorithms

Tansel Dökeroğlu1, S. Alper Sert1, M. Serkan Çinar2 and Ahmet Coşar1
1Department of Computer Engineering, Middle East Technical University, Ankara, Turkey

2Department of Computer Engineering, Hacettepe University, Ankara, Turkey

Keywords: Cloud, Multiobjective Data Warehouse Design, Virtualization, Elasticity.

Abstract: DataBase as a Service (DBaaS) providers need to improve their existing capabilities in data management
and balance the efficient usage of virtual resources to multi-users with varying needs. However, there is still
no existing method that concerns both with the optimization of the total ownership price and the
performance of the queries of a Cloud data warehouse by taking into account the alternative virtual resource
allocation and query execution plans. Our proposed method tunes the virtual resources of a Cloud to a data
warehouse system, whereas most of the previous studies used to tune the database/queries to a given static
resource setting. We solve this important problem with an exact Branch and Bound algorithm and a robust
Multiobjective Genetic Algorithm. Finally, through several experiments we conclude remarkable findings of
the algorithms we propose.

1 INTRODUCTION

Cloud computing has emerged as a new computation
paradigm that builds elastic and scalable software
systems. Vendors such as Amazon, Google,
Microsoft, and Salesforce offer several options for
computing infrastructures, platforms software
systems and supply highly-scalable database
services with the goal of reducing the total cost of
ownership price (Amazon, 2013). Users pay all costs
associated with hosting and querying their data
where service providers present different choices to
trade-off price and performance to increase the
satisfaction of the customers and optimize the
overall performance (Balazinska et al., 2011).
Recently, extensive academic and commercial
research is being done to construct self-tuned,
efficient, and resource-economic Cloud database
services that protect the benefits of both the
customers and the vendors. Virtualization that
provides the illusion of infinite resources in many
respects is the main enabling technology of Cloud
computing. This skill is being exploited to simplify
the administration of physical machines and
accomplish efficient systems. The perception of
hardware and software resources is decoupled from
the actual implementation and the virtual resources

perceived by applications are mapped to real
physical resources. Through mapping virtual
resources to physical ones as needed, the
virtualization can be used by several databases that
are located on physical servers to share and change
the allocation of resources according to query
workload requests. This capability of virtualization
can provide efficient Cloud databases where each
Virtual Machine (VM) has its own operating system
and thinks that it is using dedicated resources (CPU,
main memory, network bandwidth, etc.), whereas in
reality the physical resources are shared among by
using a VM Monitor (VMM) that controls the
allocation of resources (Soror et al., 2010; Xiong et
al., 2011; Curino et al., 2011).

In addition to providing efficient queries in
accordance with the service level agreements,
contemporary relational Cloud database
management systems need to optimize a
multicriteria problem that the overall cost of
hardware ownership price is also to be minimized. In
this study, we develop a framework to provide (near-
)optimal virtual resource allocations with respect to
the overall cost of hardware ownership price and a
good tradeoff between the efficiency and the overall
cost of a relational data warehouse is ensured. More
specifically ’Given a budget constraint and a query
workload, how can the available virtual resources of

571Dökeroğlu T., Alper Sert S., Serkan Çinar M. and Coşar A..
Designing Cloud Data Warehouses using Multiobjective Evolutionary Algorithms.
DOI: 10.5220/0004906805710576
In Proceedings of the 6th International Conference on Agents and Artificial Intelligence (ICAART-2014), pages 571-576
ISBN: 978-989-758-015-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

the Cloud (CPU, main memory, network bandwidth,
I/O bandwidth, and etc.) be allocated to Virtual
Machines, each having a part of a distributed
database that the best overall query performance can
be achieved with minimum pricing?’ Our framework
produces cost-efficient design alternatives (virtual
resource configuration and query plans) and
recommends them to the decision makers. A
budgetary constraint can be a more important issue
for a consumer, whereas the response time of the
queries is more crucial for another (D’Orazio et al.,
2012). Therefore, in order to fully realize the
potential of the Cloud, alternative query plans are
executed with well configured virtual resources
instead of only optimizing single query plans on
statically designed virtual resources. This means that
instead of designing the database over standard
VMs, we configure the virtual resources. It indicates
that CPU usage and RAM can be crucial for a data
warehouse workload, whereas network or I/O
bandwidth can be more important for another.

In order to explain the multiobjective query
optimization problem, we give an illustrative
example. Consider a distributed decision support
database (TPC-H) where all of its eight tables are
located on different VMs. When we execute TPC-H
Query 3 with two different query plans and with
alternative virtual resource allocations, we certainly
obtain different performances. During the
experiments, the configuration with higher
performance VMs (4 x 2Ghz CPU, 8GB RAM,
300Mbit/sec network bandwidth) and with query
plan QP1 SQL statement is observed to be the fastest
performing platform, however its monetary price is
one of the most expensive alternatives. A cheaper
VM configuration with 1 x 2Ghz CPU, 768MB
RAM, 100 Mbit/sec network bandwidth and with
QP1 SQL statement has a response time that is only
25.9% slower but 72.0% cheaper. The pareto-
optimal visualization of the proposed solutions that
we obtain by executing with different VM and
network configurations is presented in Figure 1 (see
Appendix for query plans). Looking at the results we
can see that finding solutions that are closer to the
ideal point is the main objective of the problem. In a
two dimensional search space, the optimizers
explore solutions for this NP-Hard problem.
Solutions with appropriate VMs, network bandwidth
and efficient QP configurations can meet the
demand of consumers.

Some queries may request more network
resource, whereas others consume more CPU and
main memory. In this case, the former one can be
executed in a better way by spending the budget on a

broader network bandwidth instead of multiple
CPUs. In order to investigate the effectiveness of our
approach, we incorporate the devised framework
into a prototype system for evaluation and instantiate
it with an exact solution method, multiobjective
branch-and-bound and an evolutionary computation
method multiobjective genetic algorithms. Finally,
through several experiments that we conduct with
the prototype elastic virtual resource deployment
optimizer on different TPC-H query workloads, we
conclude significant results of the space of
alternative deployments as well as the advantages
and disadvantages of the multiobjective optimization
algorithms.

Figure 1: Pareto-optimal curve for the response time and
monetary cost of TPC-H Q3 with different virtual resource
configurations and query plans.

3 MULTIOBJECTIVE DATA
WAREHOUSE DESIGN AND
EXPERIMENTS

The studies concerning the performance of
multiobjective Cloud databases are at their early
ages. Most of the distributed database design and
optimization concepts can be applied to this area
however; multiobjective optimizations are newly
being studied. There has been substantial amount of
work on the problem of tuning database system
configurations for specific workloads or execution
environments (Weikum and Vossen, 2002) and on
the problem of making database systems more
flexible and adaptive in their use of computing
resources. On the other hand, to the best of our
knowledge, there is no approach like ours that
concern both with the optimization of the total
ownership price and the performance of the queries
of a data warehouse by taking into account
alternative virtual resource allocation, and different
query plans workloads, and materialized views.

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

572

In this study, we tune the virtual resources to a
distributed data warehouse system, rather than
tuning the database system for a given resource
setting. Moreover, our study optimizes the
objectives of minimum money consumption and
maximum benefit from the virtual resources by
using multiobjective branch and bound genetic
algorithms. In summary, our study focuses on the
elasticity of Cloud resources and produces multiple
virtual resource deployment plans with alternative
query plans for a set of queries in a workload,
enabling the user to select the desired tradeoff with
efficient cost models. Materialized views are
effective techniques for speeding up query
workloads and they are increasingly being used by
many commercial database systems. Materialized
views are especially good for data warehouses
because of the intensive usage of common
subexpressions including select-project-join
operations. In our study, we focus on the selection of
the appropriate materialized views to reduce the
communication cost, response time, and the
ownership price of a relational Cloud database with
respect to the pricing scheme of vendors. The
multiobjective query optimization can benefit from
carefully selected materialized views. In addition to
reducing the response time of the queries, total
ownership prices decrease significantly. Although
storing/maintaining the selected materialized view
has an additional cost, it is still a very effective way
of executing queries. No resource deployment
processing system deals with the concept of
elasticity and cost-efficiency of relational Cloud
databases that makes use of the appropriate
materialized views like our system.

Our design system relies on multiobjective query
optimizers. Therefore, we turn a conventional query
optimizer into a multiobjective query optimizer.
During the execution of the queries, we use a variant
of operator centric model that is known to be more
appropriate than the classical iterative-based (pull-
based) query execution models for multiple query
optimizations. Main component of this system is an
alternative query generator that generates different
bushy-plan based query plans for the incoming
queries.

In order to design a multiobjective Cloud data
warehouse, a multiobjective query optimizer must be
used. Therefore first thing we do is to enhance a
conventional query optimizer to a multobjective one.

Data storage cost depends on the size of the data
(including the structures such as indexes,
materialized views, and replications of the tables)
and its storage period. Processing time of the VMs is

the total price for CPU usage. During the execution
of the queries, different VM configurations can be
used and the configuration of a VM (RAM, number
of CPUs, and etc.) is flexible in accordance with the
resources used. Micro, small, large, and extra large
are some of the configurations provided by the
Cloud vendors at various prices. Data transfer cost is
related with the amount of data migrated between
sites.

Alternative query plans (QP) provide different
ways for executing a query. Alternative QPs can
take advantage of different ways of executing the
same query, thus cheaper resources can reduce the
total price of a query while increasing the response
time. This elasticity provides new opportunities for
the solution of our multiobjective problem.

The formulation of the problem consists of two
parts. The monetary cost and the response time of
the query workloads that will work on the selected
VMs with the alternative QPs of the queries. There
are n VMs with independent DBMS and each VM
has a set of processors and a main memory. Each
DBMS has a workload that consists of a set of SQL
statements. Workload represents the queries
submitted to DBMS i. There are m different physical
resources (CPU capacity, main memory, network
bandwidth, etc.) that are to be deployed to VMs. Our
main goal is to obtain a set of pareto- optimal
solutions that the overall monetary and response
time cost are minimized.

Pricing Scheme Parameters of the Cloud:
Each customer requests queries from the Cloud data
warehouse by using Internet and contacts with the
aggregate node. The aggregate node distributes the
query to the appropriate VM. The Cloud
infrastructure provides unlimited amount of storage
space, CPU nodes, RAM, and very high speed intra-
cloud networking. All the resources of the Cloud are
assumed to be on a network. The CPU nodes, RAM,
and I/O bandwidth of each VM are different from
each other and can be deployed by using VM
Monitors in milliseconds (Barham et al., 2003). The
storage system is based on a clustered file system
where the disk blocks are stored close the CPU
nodes accessing them. I/O bandwidth of the storage
is divided evenly to the VMs (that may have
multiple cores up to 8).

There are several Cloud Service Providers (CSP)
in the market and they offer different pricing schema
for the services they provide. Different pricing
schema of Cloud server providers can be
opportunities for customers in accordance with the
tasks they want to complete. The cost for a small
VM (1GHz CPU, 768MB RAM) is $0.02/hr,

Designing�Cloud�Data�Warehouses�using�Multiobjective�Evolutionary�Algorithms

573

whereas A7 (8 x 1.6GHz CPU, 56GB RAM) is
$1.64/hr. Data storage is also billed by the Cloud
service providers. In our model, monthly storage
price is used. During our experiments, the data
storage price is constant for all the queries. But for
database designs that use materialized views an
additional storage cost needs to be added. Most of
the Cloud providers do not charge for the data
transfers in a private Cloud but the data that leaves
the Cloud. The bandwidth of the intra-Cloud
network can reach up to 10GBit/sec. In order to
make our problem more interesting and handle this
dimension of the optimization, we have located our
VMs on a virtual switch. Different bandwidth
networks can be chosen and the pricing scheme
changes in this communication infrastructure.

Branch-and-Bound Algorithm (MOD-B&B) is
an exhaustive optimization algorithm. It enumerates
all candidate solutions, where fruitless subsets of
candidates are discarded, by using upper and lower
estimated bounds of the problem instance being
optimized. MOD-B&B starts searching with null
initial values indicating that no QP has yet been
selected for any queries with the current VM
configuration. Later, QPs are assigned to current
selected VM. At each level of the tree, one
additional QP is assigned to the query workload
(Bayir et al., 2007). This procedure is repeated for
every VM configuration. We define two initial upper
bounds for MOD-B&B. The minimum monetary
cost is the running time of VMs that execute the
queries in a workload of queries. The response time
is the finishing time of the workload with the given
VM configuration. In order to estimate a lower
bound, different heuristic functions can be used. The
heuristic we proposed here is reasonable and
performs well during the optimization process. We
will explain the heuristic with a scenario. In Figure
2, we can see the results of a sample multiobjective
query workload optimization. The best response
time and the minimum monetary cost values are
defined and marked on the Figure. We can obtain
these values with the most expensive and the
cheapest VM configurations easily. Hereby, we
propose a heuristic point (marked as Heuristic point
on the Figure) that is the center of the square
constructed by the response time and monetary costs
of the best and worst (the cheapest) VM
configurations. If the response time of a workload
falls above heuristic point or if the monetary cost is
at the right-hand side of heuristic point on the Figure
then it is pruned according to our heuristic.

Multiobjective Genetic Algorithm (MOD-
GA): The principles of applying natural evolution to

Figure 2: Proposed heuristic value for MOD-B&B
algorithm.

optimization problems were first described by
Holland (1975). The GA theory has been further
developed and GAs have become very powerful
tools for solving search and optimization problems
(Tosun et al., 2013; Dokeroglu, 2012). GAs are
based on the principle of genetics and have been
frequently used to solve many NP-Complete
problems. GAs use a computational model that
simulates the natural processes of selection and
evolution. Individuals with better quality have more
chance to survive, to reproduce, and to pass their
genetic characteristics to future generations. Each
potential solution in the search space is considered
as an individual and is represented by strings called
chromosomes. Genes are the atomic parts of
chromosomes and codify a specific characteristic.
Chromosomes are encoded in different ways for
each application. A random population is generated
in the first step of the algorithm and by applying
selection, crossover, and mutation operations
iteratively, new generations are created. The
individual having the best fitness value in the
population is returned as the solution of the problem.
Our multiobjective data warehouse design problem
can be modeled by using evolutionary methods. A
chromosome corresponds to a solution instance
including a set of VMs (having different CPU,
RAM, I/O bandwidth and etc.) with
tables/replications located on their databases,
alternative query plans (QPs) of queries in the
workload, and a network gene. Figure 3 shows the
chromosome structure of a solution. The leftmost
segment represents the configuration of the VMs
with the tables/replications on its database. Middle
segment is the set of QPs for the queries in the
workload. Rightmost part gene represents the
selected network layer of the solution vector.
Because we do not make use of partitioned
fragments of the relations, the size of the VM
segment of the chromosome can be at most as many

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

574

as the number of tables in the database. Using
fragments (partitions) of larger tables can even
further improve the performance as it is used by
most of the commercial data warehouses. Our
proposed genetic model can be enhanced to include
the fragments of the tables.

Figure 3: Chromosome structure for the proposed
multiobjective genetic algorithm that consists of Virtual
Machines, query plans and a network layer.

We have introduced three operators for the
MOD-GA. Global and local crossovers, and a
mutation operator. Global crossover operator uses
two parents that are selected from the population by
a selection method. We have proposed two types of
crossover operators, global and local. Global
crossover operator swaps VM, QP, or network part
of two selected chromosomes with the same counter
chromosome. Below we can see two parents and
their VM parts are exchanged to provide two new
chromosomes. Local crossover operator works on
the VM and QP segments of the chromosome by
dividing the parents and exchanging the segments
with each other. Mutation operator changes a
randomly selected gene of a chromosome. In our
chromosome structure this operator can act on any
of the segments. Only a gene is replaced at every
mutation process.

Experimental Results: In this part, we perform
experiments with a sample TPC-H workload. The
workload is first optimized with MOD-B&B and
MOD-GA algorithms. Later, selected solutions that
are produced by our algorithms are executed in our
Cloud Database environment to verify the
correctness of our approach. There are alternative
selected set of VM and query plan configurations in
these results. The solutions are used to measure the
effectiveness of other solutions. The workloads are
executed 10 times with the selected VM
configurations and average values are presented. In
Figure 4, we present the results of pareto-optimal
solutions that are produced by MOD-B&B
(represented with + sign), MOD-GA (represented

with x sign) and solutions with average prices
(represented with triangle sign). The solutions with
the highest and the cheapest performance VMs are
also added to define upper and lower bounds. VMs
with the highest configuration capabilities (XL) give
the best response time and WMs with the worst
configurations (XS) give the longest execution time.
In this sense, they provide meaningful results to
evaluate the quality of solutions provided by MOD-
B&B, and MOD-GA. In the Figure, a hypothetical
ideal point is defined to show the optimal fitness
value that can be achieved within the given
minimum response time and minimum pricing. The
solutions that are chosen from the set of solutions
produced by MOD-B&B, and MOD-GA algorithms
construct a pareto-optimal convex curve that a
decision maker can choose any of the solutions
according to his/her requirements. The MOST
expensive VMs option gives the fastest response
time and the cheapest VMs option is the most time
consuming.

Figure 4: Proposed pareto-optimal solutions for a sample
TPC-H workload with MOD-B&B and MOD-GA
algorithms.

Although view materialization has additional storage
costs for a Cloud data warehouse, it provides faster
response times up to 60-80% for query workloads. It
is observed to be an efficient way of designing a
Cloud data warehouse with respect to monetary and
response time costs. The experimental results
concerning the appropriate selection of the
materialized views for the Cloud data warehouses
are not presented due to the space limitations.

4 CONCLUSIONS

In this paper, we define some principles to design
efficient multiobjective Cloud data warehouses by
making use of the elasticity of the virtual resources.

Designing�Cloud�Data�Warehouses�using�Multiobjective�Evolutionary�Algorithms

575

We minimize the monetary cost as well as providing
fast response times. We formulate the problem and
propose exhaustive and heuristic algorithms,
namely, multiobjective branch-and-bound (MOD-
B&B) and multiobjective robust genetic algorithm
(MOD-GA) for the optimization of the problem. To
the best of our knowledge, the multiobjective design
of Cloud data warehouses is being solved for the
first time with such an approach. There are studies
that concern with the best virtual resource
deployment or with the minimal monetary cost of
workloads in static hardware resources individually.
However we combine both of these optimization
techniques together and obtain significant results as
they are presented in our study. It is possible to
design and expand the study with additional elastic
virtual resources such as I/O bandwidth and dynamic
RAMs.

REFERENCES

Amazon Web Services (AWS). aws.amazon.com.
Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,

Ho, A., and Warfield, A. (2003). Xen and the art of
virtualization. ACM SIGOPS Operating Systems
Review, 37(5), 164-177.

Balazinska, M., Howe, B., and Suciu, D. (2011). Data
markets in the cloud: An opportunity for the database
community. PVLDB, 4(12).

Bayir, M. A., Toroslu, I. H., and Cosar, A. (2007). Genetic
Algorithm for the Multiple- Query Optimization
Problem. IEEE Transactions on Systems, Man, and
Cybernetics- Part C: Applications and Reviews, Vol.
37 (1):147-153.

Curino, C., Jones, E., Popa, R., Malviya, N., Wu, E.,
Madden, S., Balakrishnan, H., and Zeldovich, N.
(2011). Relational Cloud: A Database Service for the
Cloud. CIDR, pp.235-240.

D’Orazio, L., Bimonte, S., and Darmont, J. (2012). Cost
Models for View Materialization in the Cloud. In
Proceedings of the Workshop on Data Analytics in the
Cloud (EDBT-ICDT/DanaC).

Dokeroglu, T. (supervised by Ahmet Cosar) (2012).
Parallel Genetic Algorithms for the Optimization of
Multi-Way Chain Join Queries of Distributed
Databases, 38th VLDB Ph.D. Workshop, August 27-
31, Istanbul/TURKEY.

Holland, J. H. (1975) Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
MI, USA.

Soror, A. A., Minhas, U. F., Aboulnaga, A., Salem, K.,
Kokosielis, P., and Kamath, S. (2010). Automatic
virtual machine configuration for database workloads.
ACM Transactions on Database Systems (TODS),
35(1), 7.

Tosun, U., Dokeroglu, T., and Cosar, A. (2013). A robust
Island Parallel Genetic Algorithm for the Quadratic
Assignment Problem. International Journal of
Production Research, 1-17.

Weikum, G. and Vossen, G. (2002). Transactional
Information Systems. Morgan Kaufmann.

Xiong, P., Chi, Y., Zhu, S., Moon, H. J., Pu, C., and
Hacigumus, H. (2011). Intelligent management of
virtualized resources for database systems in cloud
environment. In Data Engineering (ICDE), IEEE 27th
International Conference on (pp. 87-98).

APPENDIX

Alternative query execution plans for TPC-H query Q3

TPC-H Q3 statement in accordance with the query execution
plan 1 where all of the tables are shipped to query issuing
node.

SELECT TOP 10 L ORDERKEY ,..., O SHIPPRIORITY
FROM [VM2].CUSTOMER C, [VM3].ORDERS O,
[VM1].LINEITEM L,
WHERE C.C MKTSEGMENT = ’BUILDING’
AND C.C CUSTKEY = O.O CUSTKEY
AND L.L ORDERKEY = O.O ORDERKEY
AND O.O ORDERDATE < ’1995-03-15’
AND L.L SHIPDATE > ’1995-03-15’
GROUP BY L.L ORDERKEY, O.O ORDERDATE, O.O
SHIPPRIORITY
ORDER BY REVENUE DESC, O.O ORDERDATE;

TPC-H Q3 statement in accordance with query execution plan
2 where CUSTOMER and ORDERS tables are joined at
virtual machine 3 and the resulting tuples are shipped to
virtual machine 2 to join with LINEITEM table.

SELECT TOP 10 L ORDERKEY ,..., O SHIPPRIORITY
FROM OPENQUERY ([VM3]. ’SELECT O ORDERDATE, O
SHIPPRIORITY, O ORDERKEY
FROM [VM2].CUSTOMER C, [VM3].ORDERS O
WHERE C.C MKTSEGMENT = ’BUILDING’
AND C.C CUSTKEY = O.O CUSTKEY
AND O.O ORDERDATE < ’1995-03-15’
GROUP BY O.O ORDERDATE, O.O SHIPPRIORITY, O
ORDERKEY ORDER BY O.OORDERDATE) Remote1,
[VM1].LINEITEM L WHERE AND L.L ORDERKEY =
Remote1.O ORDERKEY AND L.L SHIPDATE > ’1995-03-15’
GROUP BY L.L ORDERKEY, Remote1.O ORDERDATE,
Remote1.O SHIPPRIORITY
ORDER BY REVENEU DESC’);

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

576

