
Norm-based Behavior Modification in Reflex Agents
 An Implementation in JAMDER 2.0

Francisco I. S. Cruz, Robert M. Rocha Jr, Emmanuel S. S. Freire and Mariela I. Cortés
GESSI - Grupo de Engenharia de Software e Sistemas Inteligentes, Computer Science Department,

Universidade Estadual do Ceará (UECE), Fortaleza, Ceará, Brazil

Keywords: Normative Simple Reflex Agent, Norms, Framework, Normative Multi-agent Systems.

Abstract: The agent-oriented development is becoming more frequent in the industry and academy. Currently, more
works are turning to the growth of this area. Many frameworks that support the development of Normative
Multi-agent Systems. However, few works deal the impact of norms on individual behavior of the agent. Like
many others, JAMDER 2.0 framework follows this aspect. This paper discusses the modification of the
behavior of simple reactive agent based on impact caused by norms on the JAMDER 2.0 platform. This work
has been collaborating for the extension of this framework, re-establishing the dynamism, which was in its first
version, and giving it support for changing the behavior of simple reactive agent. In addition, new features have
been included in the framework. Among them, an agent that is able to monitor the actions of a set of agents,
evaluating them according to the norms and applying appropriate sanctions to these agents, if available. For
illustrate extension, the Vacuum cleaner world was implement using the extended JAMDER 2.0.

1 INTRODUCTION

The agent-oriented development is becoming more
frequent in the industry and academy (Silva and
Castro, 2002). In order to cope with the heterogeneity
in these systems, governance mechanisms are defined
through a set of norms that must be attended by the
entities in the system. Norms promote modifications
in the agent decision processes and they can
influence in the rational behavior and performance
of the agent. In this sense, a thorough understanding
of the impact of norms on the level of individual
agents is critical in order to deal with the dynamic
aspects of normative multi-agent systems (NMAS).

Similarly to JAMDER (Lopes et al., 2011), so many
frameworks assist agent-oriented development.
However, few research efforts have addressed the impact
of norms on individual agent behaviour (Campos, Freire
and Cortés, 2012). In the JAMDER 2.0 framework the
deontic concepts of norms are contemplated, however,
only the case of goal-oriented agents with plans is
considered. Thus, an adequate mechanism to deal with
norms in the other kinds of intelligent agents is missing.
So, this paper is a contribution in order to provide
support to the implementation of the static aspects of
norms in simple reflex agents.

The paper is structured as follows. Section 2

presents the related work. The concepts related to
normative MAS and the JAMDER 2.0 framework
are detailed in Section 3. Section 4 describes the
proposed framework´s extensions. A case study is
showed in Section 5 and, finally, conclusions and
future work are presented in Section 6.

2 RELATED WORK

A set of frameworks and platforms has been developed
to support the development of MAS´s. In general, these
mechanisms are associated with a programming
language for composing entities and provide an
environment for their execution. Following are some of
the most used frameworks for implementing MAS.

JACK (Jack, 2013) is a framework in Java for
development of MAS. It provides high performance,
and an easy way to be extended to support BDI
agents and specifics requirements of applications.
The language used by JACK is built from Java
language and can be used in the development of BDI
agents and their behavior. However, JACK does not
support the modeling of normative concepts neither
the simple reflex agent and its IDE is not freeware.

The development of JAM (Huber, 2013) was
based on a series of theories and frameworks for

497Cruz F., Rocha Jr R., Freire E. and Cortés M..
Norm-based Behavior Modification in Reflex Agents - An Implementation in JAMDER 2.0.
DOI: 10.5220/0004899004970504
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 497-504
ISBN: 978-989-758-027-7
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

agents based on BDI agents. It allows the
implementation of agents that have plans and goals.
However, JAM does not have development tool,
does not allow implementation of agent role,
organization and the normative concepts.

JADE (Jade, 2013) is framework implemented in
Java language that simplifies the development of
MAS through middleware that complies with the
FIPA specifications and with a set of graphical tools
that support debugging. This framework allows the
implementation of typical elements that compose
MAS. However, it does not have support for
normative concepts and simple reflex agent.

How JADE did not support the implementation of
normative concepts, Rocha Júnior, Freire and Cortés
(2013) proposed its extension, called JAMDER 2.0. This
extension was based on modeling language NorMAS-
ML (Freire et al., 2012). Thus, JAMDER 2.0 besides
supporting the modeling of the typical elements of MAS
along with normative concepts. However, JAMDER 2.0
do not support the modeling of the agent architectures
defined by Russell and Norving (2003) considering the
norms for execute their actions.

Normative Jason (Santos Neto, 2012) is an
extension of Jason framework based on AgentSpeak
Normative language). This framework provides the
implementation of normative agents based in BDI
agents which are able to understand, to follow or to
violate the norms contained in the environment.
However, the language is defined on first-order
logic, the focus of norms is the behavior of agents
and not in other entities that compose normative
MAS, and does not have support to exchange roles
between agents neither the simple reflex agent.

Based on the analysis presented and considering
the need of a framework that enables the
implementation of normative simple reflex agent
together with the entities that compose a MAS,
JAMDER 2.0 is highlighted because (i) It has a
platform on JAVA language, (ii) It has support to
distributed system, (iii) It complies with the FIPA
patterns, (iv) It supports the MAS typical entities
and the normative concepts, and (v) It has graphical
interface and plugins for IDEs.

3 BACKGROUND

3.1 Normative Simple Reflex Agent

The agent architecture purely reflex agents should be
able to quickly respond to changes in the
environment by means of its condition-actions rules.
With this, the agent perceives information about the

state of the environment through sensors and based
on rules in the form “if condition then action”, it
selects the most adequate action for the current
perception. The agent performs the selected action
upon the environment through actuators.

This kind of agent may be inserted into an
environment that has a specified set of norms that
restrict their actions. As defined by Figueiredo and
Silva (2011), the norms are intended to restrict the
behavior of agents applying sanctions when they are
violated or fulfilled.

Therefore, the norms of an environment should
not be able to avoid the execution of certain action,
but rather to penalize or reward an agent if the action
taken by it is prohibited or obligated. Therefore, if
the set of norms defined in the environment is not
considered in the condition-action rules, an agent
can be penalized if it performs a prohibited action.

In order to avoid the violation of the simple
reflex agent architecture, Campos, Freire and Cortés
(2012) propose to consider the information about the
set of norms as an extension of the condition-action
rules. It involves the definition of three different
groups of condition-action rules. Each group is
associated with one deontic concept and considers
the sanctions linked to each norm, that is:

 Obligation Rules Group: specifies the rules
related with the actions that must be performed by the
agents. If an event of environment matches with a rule
in this group, it must necessarily be performed by the
agent;

 Prohibition Rules Group: specifies the rules that
are related with the actions that cannot be performed by
the agent. If an event of environment matches with a
rule in this group, the rule will not be executed by the
agent;

 Permission Rules Group: specifies the rules
related with the actions that can be executed. If an
event of environment matches a rule set out of this
group, it may or may not be executed by the agent.

In the architecture were added two new groups in
the agent´s action selection mechanism, corresponding
to the representation of the information about its
obligations and prohibitions. This approach considers
that if an action is obligated, then the agent must
perform that action only if it is not prohibited. If an
action is prohibited, then the agent must perform
another action, different from the prohibited action,
which is permitted and rational. If there is not an action
that is obligated and prohibited, then the agent must
perform a permitted action which is rational, as would
do a well-designed simple reflex agent in an
environment without norms.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

498

3.2 JAMDER 2.0 Framework

JAMDER 2.0 (Rocha Júnior, Freire and Cortés,
2013) is an extension of JAMDER (JADE to MAS-
ML 2.0 Development Resource) (Lopes et al., 2012)
that incorporates the resources offered at modeling
level by the NorMAS-ML language, including,
specifically, the norms and their properties.

The extension process was characterized by the
mapping between concepts of modeling and
implementation in order to identify which elements
of the conceptual metamodel relating to NorMAS-
ML entities were present in JAMDER. Therefore,
the following set of classes was associated with
JAMDER for representing the normative concepts:

 Norm: For representing the norm entity was
created the class jamder.norms.Norm which defines the
following properties: (i) the identifier, (ii) the norm type,
(iii) the restricted entity, (iv) the context, (v) the action,
(vi) and the list of activation constraints.

 NormResource: A norm is set to restrict the
behavior of a given resource (Freire et al., 2012). The
jamder.norms.NormResource class was created to
represent any case of norm resource if it is: (i) a
structural feature; (ii) a behavioral feature; (iii) an
entity; (iv) a relationship or (v) a message;

 NormAction: The actions linked to the norms
were represented by the main class jamder.norms.
NormAction and two sub-classes: jamder.norms.
AtomicAction and jamder.norms.CompositeAction,
which represent the operation system.

 NormConstraint: The jamder.norms.
NormConstraint class was created to represent the
activation constraints with their respective sub-
classes that include each type of constraint:
jamder.norms.Before, jamder.norms.After, jamder.
norms.Between and jamder.norms.IfConditional. It
is directly linked to class jamder.norms.Date
responsible for setting a date.

Some JAMDER classes were modified to include
the properties defined in the language NorMAS-ML.
We describe these changes as follows:

 The list of norms contextNorms was added in the
jamder.Environment and jamder.Organization classes. It
represents norms whose environment or organization is
defined as context.

 The list of norms restrictNorms was added in the
jamder.Environment, jamder.Organization, jamder.
agents.GenericAgent and jamder.roles.AgentRole
classes. It represents norms whose instances of class is a
restricted entity.

 Finally, the following classes representing
instances of duty, right, and axiom, respectively,
jamder.behavioural.Duty, jamder.behavioural.Right

and jamder.structural.Axiom were removed along with
the jamder.behavioural.DutyRightProperty class. It is
necessary because these concepts are considered
semantically equivalent to the deontic concepts of
permission and obligation in norms and are removed
in NorMAS-ML.

With these changes in some JAMDER classes
and the creation of new classes (defined in the
previous subsection), the JAMDER 2.0 framework
allows the modeling properties and relationships of
entities within a normative multi-agent system.

4 EXTENSION OF JAMDER 2.0

In order to restore the dynamics of the tool
JAMDER 2.0 and, establish when a norm would be
active, it has been required some changes in the code
and the addition of some methods, classes and
relationships between classes.

A norm can be active depending on the execution
of a NormAction (Rocha Jr., Freire and Cortés,
2013) then the Action class (which is a
representation of AgentAction) began to relate with
the NormAction class in order to map when a
NormAction linked to an Action is executed.
Whenever an action is executed (as an event),
Action sends a signal to NormAction.

The Property class (Booch et al., 2000) received
the concept of Java Generics (Oracle, 2013) to make
possible comparisons between properties in the
IfCondition class, that inherits from
NormConstraint, whose function is to abstract the
activation conditions of norms (Rocha Júnior, Freire
and Cortés, 2013). For instantiating a Property, it
should use the following structure:

Property<T> propertyName=new
Property<T>();

Where T must inherit from Comparable class
(Oracle, 2013).

The abstract method isTrue() was added in
NormConstraint class. Its function is to enable the
statement of when a constraint is true and thus
enable verification of time when a norm is active.
This method was implemented in the classes:
IfCondition, Before, After and Between that inherit
from NormConstraint (Rocha Júnior, Freire and
Cortés, 2013).

In the Norm Class methods were added:
 setContext (Object) and setRestrict (Object) -

their function is modify the context and the entity
restricted of a norm, generically, without having to
know which instance of them;

Norm-based�Behavior�Modification�in�Reflex�Agents��-�An�Implementation�in�JAMDER�2.0

499

 getContext () and getRestrict () - it returns an
Object that contains the context and the restricted entity
respectively;

 isActive() - which specifies when the norm is
active or not;

 apply() and disapply() - which switching on/off
a norm from their context and restricted entity (apply
and disapply a norm). These methods are important in
sanctions application since a sanction in JAMDER 2.0
is a norm (Rocha Júnior, Freire and Cortés, 2013);

 isApply() - it indicates if a norm has been
applied.

Through the methods setContext(object) and
getContext(Object), the norm knows the restricted
actions that are in its context. On the other hand, the
methods setRestrict(Object) and getRestrict(Object)
indentify the entities restricted by a norm. In
addition, the methods apply() and disapply() briefs
what norms are active and inactive in the
environment. It is fundamental for the agent
behavior modification because the agent need to
know what norms are restricted it. For instance,
when a new norm is added in an organization and
this norm refers to a specified agent, this norm is
added in the organization and in the agent. With this,
the context and the envolved entities know the
norms that restricts them.

Consequently, where a new norm are added in
environment, these methods ensure that the norm list
of the restrict entities will be update.

The NormResourceProperty class that inherits from
NormResource was created in order to supply a
resource of norm linked to a property. Differently from
NormResource, NormResourceProperty carries the
concept of Generics in Java such as Property class.

In the AgentRole and ReflexAgentRole classes,
the method inicialize(), before disabled, has been
revitalized. This was only possible because of
inclusion of deontic concept in Action class, since an
agent role consists of a set of rights (which become
permission) and duties (which become obligation)
and the deontic concepts of a norm replace them
(Freire et al., 2012).

The Action class receives a NormType as an
attribute in order to abstract the deontic concept in a
condition-action rule and allowing the revitalization of
AgentRole and, changing the reflex agent behavior.

Finally the ReflexAgent class receives methods
containsNorm(Action, NormType) and
containsNormDiferent(Action, NormType) that are
responsible to check if there is any active norm (with the
concept of deontic NormType) whose action is linked to
the same or different Action, respectively. The Figure 1
shows the Reflex Agent Class.

Figure 1: Reflex Agent Class.

4.1 Verification of Norms

The solution to behavior modification comes
through the norm verification, present in
ReflexAgent, before the execution of each action.
This check was made on the action() method, from
Action class. Before the execution of each action it
makes the verification shown in pseudo code below:

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

500

if (There is an active obligation norm
related to the action that will be
executed){

Executes the action independently
of its preconditions.

}else{
if ((there is no other active
obligation norm that is not related to
the action that will be executed) and
(there is no an active prohibiting
norm related to the action that will
be executed)){

Executes the action depending
on preconditions.

}
}

Thus, the agent always executes an obligation
action if the obligation norm is active. Otherwise, it
checks if other action, other than that it wants execute,
is required by a norm. If so, it checks if the action is
prohibited. Otherwise, it performs the action if their
preconditions are met. If there is other action obligated
by an active norm, it will be executed when the same
verification above is done when its method action() is
executed.

4.2 Monitoring Agent

In order to evaluate the simple reflex agent behavior
modification, it is necessary somehow to monitor its
behavior. Thus, we created a Monitor abstract class
which inherits from GenericAgents and owning the
method percept (Object, Object). This method is called
by tied agent to the monitor when it (tied agent)
executes an action. Thus it becomes possible to monitor
and modify the behavior of simple reflex agent.

The main function of the monitoring agent is (i) to
evaluate if the tied agent fulfillment or violation of a
norm and (ii) to apply related sanctions when necessary.

The monitoring in a normative system requires
an abstraction for the states of a norm. Then the
literature indicates the use of an Augmented
Transition Networks (ATNs) (Modgil et al., 2009).
An ATN is a graph representing the three states a
norm can take. They are INACTIVE, ACTIVE,
COMPLIANCE-OR-INFRINGEMENT.

In order to incorporate this concept into JAMDER
were created ATN classes and ATNState representing
Augmented Transition Networks and their states
respectively. The second is an enumeration of type
String representing the three states mentioned above.

The Monitor class attributes are a set of agents (to be
monitored) and the ATN which are generated by norms
that restrict these agents whenever an agent is added. The
behavior of the monitoring agent is up to the user. This is

important because the literature often differs a lot about
how and when sanctions are to be applied to the agent to
be monitored (Piunti et al., 2010). The Monitor class
(Figure 2) has the following methods:
 getAgents() - that returns the agents being
monitored by the monitor;
 addAgent(String, GenericAgent) - which is used
to add an agent to be monitored;
 addATN(Norm) - add a ATN by means of a norm.
This method is used in apply() method of the Norm
class. When a norm happens to restrict an agent, a
new ATN is created for monitoring this agent;
 removeATN(String) – remove an ATN through
its key. This method is used in disapply() method of
the Norm class. When a norm fails to restrict an
agent, its ATN is removed;
 getAllAtns() - that returns a Hashtable containing
the ATNs linked to norms that restrict the agents
being monitored;
 punish(Norm) - applying punishment (if it exists)
linked to the norm that receives as the parameter;
 reward(Norm) - applying reward (if it exists)
linked to the norm that receives as the parameter.
 percept(Object, Object) - It is an abstract method
and is a implementation of GoF Observer pattern
(Vlissides et al., 1995). When an action is executed,
the agent sends a signal to its monitoring agent
through this method.

5 CASE STUDY

This section shows the use of the JAMDER
extension for implement the normative vacuum
cleaner world. This case study was used by Campos,
Freire and Cortés (2012) to present their approach.

Considering the normative vacuum cleaner world
with only two rooms, where each room can be clean
or dirty, in our experiments the perceived
information of the environment were represented by
the environmental states. In addition, this world has
norms that restrict the agent's behavior for execute
their activities, and is composed by:

Place - an object that is a graph with two vertices.
Those vertices denote the room: roomA e roomB;

 CleanserOrg - an organization that has the
agent roles: management e cleaner. The first role is
linked to manager agent and the other is linked to
VacuumCleaner;

 ManagerAgent - an agent of monitor type that
use the management paper in the CleanserOrg
organization. Its function is to monitor the Vacuum
Cleaner agent and to modify its behavior as the

Norm-based�Behavior�Modification�in�Reflex�Agents��-�An�Implementation�in�JAMDER�2.0

501

environmental norms. Its actions are
ActionMonitorCyclic and ActionMonitorReflex;

 VacuumCleaner - a normative simple reflex
agent that implements the cleaner paper in
CleanserOrg organization. Its actions are Right, Left,
Suck and NextAction.

The behavior of the ManagerAgent (Figure 3) is
denoted for the actions (i) ActionMonitorCyclic, that is
responsible for applying sanction if the agent has not
executed a prohibited action or an obligated action, and
(ii) ActionMonitorReflex, that is responsible for
applying sanction if the agent has executed a prohibited
action or an obligated action.

The Vacuum cleaner (Figure 4) has the actions
Right, Left, Suck e NextAction. The NextAction is
responsible for perceiving the environment and
controlling the preconditions of the others actions:

 Right - its precondition is true if the vacuum
cleaner is in RoomA and it is clean;

 Left - its precondition is true if the vacuum
cleaner is in RoomB and it is clean;

 Suck - its precondition is true if the RoomA
or RoomB is suck.

 NextAction - it is the agent perception core.
This action constantly checks if the room is dirty and
which room is the agent.

The world has the following norms:
 N1: the vacuum cleaner is required to suck the

roomA from 4:00 to 6:00 a.m.;
 N2: the vacuum cleaner cannot suck the

roomA from 1:00 to 3:00 a.m.;
 N3: if vacuum cleaner fulfills the N1 norm, it

wins 3 points;
 N4: if vacuum cleaner fulfills the N2 norm, it

wins 2 points.
In the beginning of each experiment the normative

vacuum cleaner does not know the world configuration
in terms of dirt. We considered that when the world is
without the presence of norms, the measure of
performance evaluation offers the reward of one point
per each square clean (+1) and penalizes with the loss
of one point per each movement (-1). In the case of the
presence of norms in the world, the measure must be
adapted in order to consider the rewards (+points) and
the penalties (-points), which are consequences of the
agent accepting or rejecting some norm.

Figure 2: Monitoring Agent Class.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

502

Figure 3: ManagerAgent.

Figure 4: VacuumCleaner.

5.1 Experiments

Firstly, the vacuum cleaner is in Normative Vacuum
Cleaner World that only the norm N1 is active.
Table 1 shows the execution of the agent.

Table 1: Running with just the norm N1.

State
Action Score Where

is it?
State

roomA
State

roomB
roomA Dirty dirty suck 1
roomA Clean dirty right 0
roomB Clean clean suck 1
roomA Clean clean suck 4
roomA Clean clean right 3
roomB Clean clean suck 2
roomA Clean clean right 1

The rows one to three describe the behavior of the
agent in a period in which the norm had not been
activated and the agent was governed by the rules in
the Permission Group. The row four of the table
(shaded) illustrates the behavior of the agent when the
norm N1 was activated. It is noticed that the agent was
rewarded with three points per action during the period,
according with the sanctions associated with the norm
of obligation (N3). In rows five to seven, the norm was
expired and the agent behavior was again governed by
the Permission rules.

After, the vacuum cleaner is in Normative Vacuum
Cleaner World that the norms N1 and N2 are active.
Table 2 shows the execution of the agent.

Table 2: Running with norms N1 and N2.

State
Action Score Where

is it?
State

roomA
State

roomB
roomA dirty dirty No_op 2
roomA dirty dirty suck 3
roomA clean dirty right 2
roomB clean clean suck 3
roomB clean clean suck 6
roomB clean clean left 8
roomA clean clean right 7

The rows one and six of the table illustrate the
behavior of the agent when the norm N2 was
activated and N1 was deactivated. It is noticed that
the agent was rewarded with two points per action
during the period, according with the sanctions
associated with the norm of prohibition (N4). The
rows two to four describe the behavior of the agent
in a period in which the norms N1 and N2 had not

Norm-based�Behavior�Modification�in�Reflex�Agents��-�An�Implementation�in�JAMDER�2.0

503

been activated and the agent was governed by the
rules in the Permission Group.

The row five of the table illustrates the behavior
of the agent when the norm N1 was activated and
N2 was deactivated. It is noticed that the agent was
rewarded with three points per action during the
period, according with the sanctions associated with
the norm of obligation (N3). In row seven, the norms
N1 and N2 was expired and the agent behavior was
again governed by the Permission rules.

6 CONCLUSION AND FUTURE
WORK

The influence of the norm concepts related to the
reflex agent architectures is essential in order to
improve the performance of the agents executing in
an environment governed by norms. In this context,
this paper presented the extension of JAMDER 2.0
framework through a mapping between the
characteristics of the approach proposes by Campos,
Freire and Cortés (2012) and JAMDER 2.0. In
addition, the monitoring agent was proposed in order
to support the monitoring of the agents. Finally, a
example based on a Normative Vacuum Clear World
has been used to illustrate the use of the extension of
JAMDER 2.0 framework, demonstrating its
applicability and adequacy for developing normative
simple reflex agent in NMAS.

As future work, it is relevant to consider (i) the
automatic code generation from the normative simple
reflex agent, based on extension of JAMDER 2.0
framework proposed in this work and (ii) the new
extension of JAMDER 2.0 is required for that others
agent architecture proposed by Russell and Norvig
(2003) can understand the environmental norms.

REFERENCES

Booch, G., Jacobson, I., and Rumbaugh, J. (2000). Omg
unified modeling language specification. Object
Management Group ed: Object Management Group,
page 1034.

Campos, G. A., Freire, E. S., and Cortés, M. I. (2012). Norm-
based behavior modification in reflex agents. In:
International Conference on Artificial Intelligence (ICAI).

Figueiredo, K. and da Silva, V. T. (2011). Norm-ml: A
modeling language to model norms. ICAART (2), edited
by J. Filipe and ALN Fred, pages 232–237.

Freire, E. S. S., Cortés, M. I., Gonçalves, E. J. T., and Lopes,
Y. S. (2012). A Modeling Language for Normative Multi-
Agent Systems. 13th International Workshop on Agent-

Oriented Software Engineering (AOSE@AAMAS),
Valencia (Spain).

Huber, M. J.: JAM Agent. Available at: http://
www.marcush.net/IRS (2013).

JACK Agent Language. Available at: http://
www.agentsoftware.com.au/products/jack/ (2013).

Java Agent Development Framework. Available at:
http://jade.tilab.com/ (2013).

Lopes, Y. S., Gonçalves, E. J. T., Cortés, M. I., and Freire, E.
S. S. Extending jade framework to support different
internal architectures of agents. 9th European Workshop
on Multi-agent Systems (EUMAS2011), Maastricht,
Holland.

Modgil, S., Faci, N., Meneguzzi, F., Oren, N., Miles, S.and
Luck, M. (2009). A framework for monitoring agent-
based normative systems. In Proceedings of The 8th
International Conference on Autonomous Agents and
Multiagent Systems-Volume 1, pages 153–160.
International Foundation for Autonomous Agents and
Multiagent Systems.

ORACLE, editor (2013). Generic types. Access date: 18 Oct.
2013.

Piunti, M., Ricci, A., Boissier, O., H¨ ubner, J. F., et al.
(2010). Programming open systems with agents,
environments and organizations. In: WOA 2010 - 11
Workshop nazionale’Dagli Oggetti agli Agenti’.

Rocha Jr., R. M., Freire, E. S. S., and Cortés, M. I. (2013).
Estendendo o Framework JAMDER para Suporte à
Implementação de Sistemas Multi-Agente Normativos.
In: IX Simpósio Brasileiro de Sistemas de Informação
(SBSI), 2013, João Pessoa, Brasil. Anais do IX Simpósio
Brasileiro de Sistemas de Informação (SBSI).

Russell, S. J. and Norvig, P. (2003). Artificial intelligence: A
modern approach; [the intelligent agent book]. 2. ed.
Prentice Hall series in artificial intelligence. Prentice Hall,
Upper Saddle River, NJ.

Santos Neto, B. F.: Uma abordagem deôntica para o
desenvolvimento de agentes normativos autônomos. Tese
de doutorado. Rio de Janeiro: PUC, Departamento de
Informática (2012), Brasil.

Silva, C. T. L. L., Castro, J. F. B. (2002). Modeling
Organizational Architectural Styles in UML: The Tropos
Case. In: WER02 - V Workshop on Requirements
Engineering, 2002, Valencia, Spain.

Vlissides, J., Helm, R., Johnson, R., and Gamma, E.: Design
patterns: Elements of reusable object-oriented software.
Reading: Addison-Wesley (1995).

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

504

