
A Set of Practices for Distributed Pair Programming

Bernardo José da Silva Estácio and Rafael Prikladnicki
Computer Science School, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil

Keywords: Distributed Pair Programming, Extreme Programming, Distributed Software Development.

Abstract: Geographically distributed teams have adopted agile practices as a work strategy. One of these practices is
Distributed Pair Programming (DPP) that consists in two developers working remotely on the same design,
algorithm, or code. In this paper, we describe a set of practices for DPP. In our research we seek to
understand how distributed teams can use and adopt DPP in a more effective way. Based on a systematic
literature review and a field study, we suggest twelve practices that can help both professionals and software
organizations in the practice of DPP.

1 INTRODUCTION

The globalization experienced in recent decades has
caused an impact in different domains, and
consequently, in software development (Herbsleb
and Moitra, 2001). In a competitive market, IT
companies started to distribute their software
development processes, seeking lower labor costs
and better product quality, (Smite et al., 2012).
Therefore, in the late 90s Distributed Software
Development (DSD) was initiated. DSD is
characterized when teams develop software projects
and have it members dispersed across different
buildings, cities, countries or continents (Herbsleb
and Moitra, 2001).

Almost at the same time, in 2001, a group of 17
professionals has written the Agile Manifesto. They
coined the term Agile Software Development and
proposed several agile methods (Beck et al., 2001).
Agile Software Development is an adaptive
approach suitable for environments with volatile
requirements. Agile methods have attracted interests
both from academia and industry (Dyba and
Dingsøyr, 2008). Extreme Programming (XP) is one
of the agile methods most adopted in industry,
having several practices that support software
development activities (Beck, 2000; Dyba and
Dingsøyr, 2008).

Pair Programming (PP) is an agile practice that is
part of the XP method. In this practice, two
developers cooperate to develop software using the
same computer (Mcdowell et al., 2002). In PP, one
developer, called the “Driver”, is responsible to

develop the code, controlling the mouse and the
keyboard. The other developer, the “Observer”,
reviews the code at the same time. Previous studies
showed that PP is a practice with good results such
as: better code quality (less defects), and a better
collaboration between the team members (Müller,
2007; Vanhanen et al., 2007).

Recent literature reported that the adoption of
agile practices with distributed teams could be
successfully adapted (Phalnikar et al., 2009). In this
context, the concept of Distributed Pair
Programming (DPP) has emerged (Baheti et al.,
2002). In DPP, two developers remotely collaborate
to develop software using tools that allow screen
sharing and communication using audio, video, etc.

The adoption of agile practices in distributed
team can introduce challenges. PP, for instance,
needs a face-to-face communication and
collaboration in the same physical environment
(Abbattista et al., 2008). Previous research has
already acknowledged that conventional agile
practices need to be adjusted in globally distributed
environments to address the challenges in these
settings (e.g, Paasivara et al., 2009; Abbattista et al.,
2008; Shrivastava et al., 2010). For this reason, we
propose a set of practices for DPP to facilitate the
adoption and use of this practice and better support
distributed teams that use agile practices such as PP.

This paper is organized as follows: Section 2
presents some background concepts regarding DPP.
Section 3 describes our research methodology. In
Section 4 we present details about the SLR executed.
In the Section 5 we present the details about the field

331José da Silva Estácio B. and Prikladnicki R..
A Set of Practices for Distributed Pair Programming.
DOI: 10.5220/0004898503310338
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 331-338
ISBN: 978-989-758-028-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

study executed. We present the set of practices in
Section 6. In Section 7 we present the final remarks,
including limitations, and future work.

2 BACKGROUND AND RELATED
WORK

2.1 Distributed Agile Development

The trend to adopt DSD by organizations is
sometimes followed by the use of agile practices.
This is motivated by projects that require faster
development with volatile requirements, keeping the
high quality (Shrivastava et al., 2010).

Agile methods have many benefits when
combined with distributed teams. Some studies
reported that practices like Continuous Integration
helps to solve issues related to distributed
configuration management. Sprint reviews can be
used to improve external communication and share
project information (Shrivastava et al., 2010).
Paasivara et al (2009) say that the use of agile
methods improved communication, collaboration
and motivation of the team in distributed
environments.

But the combination of DSD and agile methods
has some challenges. Agile teams rely on intense
face to face communication, both with the team and
the customer (Shrivastava et al., 2010). The project
documentation, different working hour and several
agile practices like retrospective, stand up meeting,
pair programming and others need to be adapted for
the adoption of agile methods be combined with
distributed teams (Shrivastava et al., 2010).

2.2 Distributed Pair Programming

Pair programming is one of the primary practices of
the XP agile method. As the name suggests, is a
programming practice that involves two developers
working at the same computer collaboratively
(Mcdowell et al., 2002). A developer behaves as
driver and develops the code, controlling the
keyboard and mouse. Another developer behaves as
observer or navigator and is responsible for
reviewing the code at the same time, prevent and
identify logical and syntactical errors in the code.
The both roles can be switched (Mcdowell et al.,
2002).

Besides the collaboration, communication is one
of the requirements of pair programming. Both
developers should be in constant contact to discuss

possible solutions and code errors (Mcdowell et al.,
2002). Several benefits of the practice of pair
programming are reported, such as: increased
productivity, increased product quality due to the
high number of defects found in the review of the
pairs (Müller, 2007), increasing collaboration and
team communication and improvement of working
condition (confidence and motivation) (Vanhanen et
al., 2007).

Distributed Pair Programming (DPP) is when
two developers are distributed and practice PP.
Some studies have investigates the effects of the
DPP. Baheti (2002) reported that the benefits of PP
are the same DPP, such as productivity and code
quality. Another benefit of DPP is that due to its
characteristics, it helps to promote the work and
communication within distributed teams (Baheti et
al, 2002).

In industry, Rosen et al. (2010) conducted a case
study of a pilot project in two branches of a German
company. They reported positive effects in
communication (a more integration of the
developers using DPP sessions, discussing
developing issues and suggesting solutions),
knowledge transfer (support the feedback and
teaching of novice developers) and code quality (less
defects). As negative effects were cited: distraction,
lack of fulfilment of the role of DPP (both driver and
observer) and conflict of goals among the developers
during the session of DPP.

DPP also proved to be a practice that generates
benefits in teaching programming. Positive effects
were found related to learning and code quality
(Zacharis, 2011). In an experiment conducted by
Hanks (2005) students who used DPP had performed
as well as students who were co-located with pairs,
with similar grades.

3 RESEARCH METHODOLOGY

To develop a set of practices for DPP, we have
followed a two-phase research methodology. The
first phase was a literature review on DSD and Agile
Methods. We then executed a Systematic Literature
Review (SLR) about PP and DPP. The second phase
involved a field study (FS) in order to evaluate the
practices identified in the first phase.

3.1 Phase 1: Literature Review

In the literature review, we first did an initial ad hoc
review about DSD and Agile Software
Development. We analysed some of the existing

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

332

agile software developments practices and found
few studies about DPP. For this reason, we planned
and executed a SLR about PP and DPP. The goal
was to look for more empirical evidence about the
topic, including benefits, challenges, and practices.
In addition, we were interested in finding empirical
evidences of the usage of PP practices in the context
of distributed teams.

Thus, the systematic review was guided by three
research questions: (i) What is known about the use
of pair programming and distributed pair
programming? (ii) In which situations pair
programming works? (iii) In which situations
distributed pair programming works? The result of
the SLR was a preliminary set of practices for DPP.

The systematic review was executed between
March and November of 2012. We followed
Kitchenham et al. (2007) recommendations to
perform a SLR. In order to search for relevant
literature, we defined the search string as "pair
programming" OR "pair-programming". This
definition was based on the SLR executed by Salleh
et al. (2011) and a meta-analysis performed by Dyba
et al. (2009). In total, the search returned 391 papers,
of which 147 were considered potentially relevant
based on the title and the abstract. We then read all
the 147 papers, and selected 95 for a deeper reading
and analysis and quality assessment. Inclusion
criteria were: papers written in English, with
empirical results and evidence about PP and DPP in
the context of software development. The review
process was conducted in pair to avoid bias. The
results were organized in CiteULike.

We classified the papers into three categories: (i)
Education: DPP and PP as a pedagogical tool for
teaching programming, 36 papers; (ii) Practice: PP
and DPP as a software development practice, 40
papers; and (iii) Tools, Models, Frameworks: studies
that describe models, frameworks and tools to
support PP and DPP), 19 papers. Most of the studies
we found are related to PP (only 22 papers were
related to DPP). In addition, there are few papers
describing case studies about the adoption of DPP in
industry. Most of studies about DPP were
concentrated in tool proposals.

3.2 Phase 2: Field Study

Based on the preliminary set of practices, we
planned a field study with software development
professionals in industry in order evaluate the
practices found in the literature. We used a guide for
semi-structured interviews with open-ended
questions. The interviews were conducted between

November of 2012 and January of 2013.
We executed a field study following the

recommendations proposed by Oates (2006). We did
content and face analysis with a senior researcher in
agile methodologies. Based on his feedback, we
improved the data collection instrument. After this
step, we executed a pre-test in order to know the
average time for each interview, and how clear the
questions were. For data analysis we use content
analysis.

The field study involved ten software projects
from eight different companies. All projects used
DPP. Table 1 summarizes the projects analysed. We
conducted interviews with 14 professionals who
were selected based on their experience with
software development projects and DPP. The
questionnaire (Table 2) was developed in themes
such as variables (code quality, productivity, etc),
DPP aspects (infrastructure, tools, etc.), benefits,
challenges and opinion (suggestions).

Table 1: Summary of project analysed.

Org. Proj. N. Countries involved Language

A 1 4 Brazil, India, USA English

A 2 2 Brazil, India, USA English

B 3 1 Brazil, India,
Russia and China

English

B 4 1 Brazil, India, China English

C 5 1 Brazil Portuguese

D 6 1 USA English

E 7 1 Macedonia, South
Africa

English

F 8 1 Brazil, USA English

G 9 1 Poland, UK Polish

H 10 1 Brazil Portuguese

The subjects had an average of 8.2 years

experience in software development. As for
experience with DSD, the average is 3.7 years. All
respondents had experience with PP, with an
average of 3.8 years, and an average of 2 years of
experience with DPP (6 months was the minimum
DPP experience reported). The project teams used
different languages to communicate: 7 projects have
used English, two Portuguese, and one project used
Polish.

A�Set�of�Practices�for�Distributed�Pair�Programming

333

Table 2: Questionnaire applied in the field study.

Theme Question

Variables

What kind of effect DPP brought to code
quality? Why?

What kind of effect DPP brought to the
team productivity and communication?

Why?
What kind of effect did DPP brought to
the difference of knowledge between the

pairs? Why?
 Is there any other variable affected by the
use of DPP? Which variables and what are

the effects observed?

DPP
aspects

Is there any company guideline for using
DPP?

What infrastructure and methods have
been used with DPP?

What tools are used for DDP? Is there any
specific development tool for DPP?

 Is there a facilitator or leader (coach) to
support this practice in the company?
Is there any criterion established for

arranging the pairs in DPP?
Who is responsible for choosing the pairs?

The difference of knowledge and
experience between the pairs is/was a

problem? Why?

Benefits

Regarding the knowledge transfer between
the pairs, were there benefits from the use

of DPP? Which?
Regarding the task execution time, were

there benefits from the use of DPP?
Which?

In your opinion, regarding the motivation
of the developers, were there benefits

from the use of DPP? Which?
Have you seen other benefits from the use

of DPP? Which?

Challenges

In your opinion, what were the
communication challenges found in DPP

and how were they solved??
In your opinion, what were the

collaboration challenges found in DPP and
how were they solved?

What other challenges were identified in
DPP? And how were they solved?

Opinion

Based on your experience, how do
you compare the distributed development

performed with and without the use of
DPP?

From your experience with projects
using DPP, which would be your

suggestions to complement the DPP
environment and the practice?

4 A SET OF PRACTICES FOR
DPP

Practice is the actual application or use of an idea,
belief, or method, as opposed to theories relating to
it (Oxford, 2010). We organized the set of practices,
following four steps: (i) Based on the SLR results
(literature), we propose a set of preliminary practices
for DPP, also trying to understand if the
recommended PP practices are applicable for DPP;
(ii) Assess if the practices identified in the SLR
(literature) are corroborated by the practices
identified in the field study (industry); (iii) List the
practices obtained only from the SLR (literature);
(iv) List the practices obtained only from the field
study (industry). The twelve practices are presented
in Table 3.

Table 3: Practice and source.

Practice Source
1. Use a guideline for DPP adoption SLR
2. Conduct a meeting alignment before DPP
sessions

SLR

3. Train the team on PP and DPP SLR
4. Adopt a specific infrastructure SLR, FS
5. Young professionals should form pairs
both for easy and complex tasks

SLR (PP),
FS

6. Identify a DPP leader within the team SLR, FS
7. Define and use a specific tool for DPP SLR, FS
8. Plan frequent meetings SLR, FS
9. Provide feedback during DPP sessions FS
10. Plan short DPP sessions with frequent
breaks

FS

11.Plan a pilot project before adopting DPP FS
12. The driver must narrate actions during
the sessions

FS

Five of the practices were found both in the field

study and SLR. One practice is a PP practice that
could be adapted for DPP. Four practices were
identified in the field study and three practices were
identified in the literature SLR.

4.1 P1: Use a Guideline for DPP
Adoption

We identified this practice in our systematic
literature review. According to Canfora et al. (2006),
the use of a guideline (behavioural protocol) for
DPP can facilitate the understanding of the practice.
This guideline should have details about frequency
of switch between the pairs, activities of each paper
(Driver and Observer), pair training criteria, type of

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

334

tasks which recommends the use of PP, rules for
using the infrastructure and other aspects.

The use of this guideline is recommended in the
adoption phase of DPP, mainly when the team has
no experience with PP before. The guide could help
the developers to know how to perform each role.
For young developers it is important to clearly
distinguish between the Observer and the Driver,
because in distributed settings people tend to work
asynchronously on different tasks instead of as pairs
in the same task. For this reason they need to know
how to behave in this context (Canfora et al., 2006).

4.2 P2: Conduct a Meeting Alignment
Before DPP Sessions

In the literature, Rosen et al. (2010) reported that
sometimes the pairs have conflicts in terms of goals
to achieve, and this is a challenge for DPP. To
minimize this challenge, frequent short meetings can
be conducted, so the pairs can align the goals that
will be discussed in the session. The meeting
alignment avoids discussions during the session that
do not add to the goal of the task executed in pairs.

4.3 P3: Train the Team on PP and DPP

The literature also reported that besides a guideline,
it is important to have an adequate training to better
understand the practices and responsibilities of each
role (Canfora et al., 2006). As an example, Rosen et
al (2010) reported as a challenge the failure to
correctly execute the roles of DPP (driver and
observer). The authors also reported as a practice the
proper training of the team on PP and DPP
(especially those who have never had experience
with PP), in order to had more technical knowledge
about the practice.

4.4 P4: Adopt a Specific Infrastructure

This practice refers to the need to have a
infrastructure to support DPP. In the literature,
Bevan et al. (2002) reported the importance of
having a specific room for the team. This would
allow to identify the proper infrastructure and
equipments for the teams, and not to disrupt other
team members who are not practicing DPP.

In the field study, some respondents reported that
the use of large TVs and monitors also help to create
a sense of physical proximity between the pairs.
Other infrastructure aspect related was the Internet
link. One of the respondents from project 3 said:

"The Internet connection in India was not good
and it had a delay when we were at a DPP session.
At certain times, the developer narrated what he was
doing, but the mouse cursor or keyboard had not
performed that action. "

This is what the respondent from project 7 said
about the use of a webcam:

"In DPP we cannot know what the observer is
doing, sometimes the developer seemed disperse.
Thus, I believe it is very important to use the
webcam to try to keep the focus of the DPP."

4.5 P5: Young Professionals Should
Form Pairs Both for Easy and
Complex Tasks

This practice is related to the formation of the pairs.
Dyba et al. (2009) found that the difference of
experience between the developers generates
different types of results. The authors reported that
the use of two senior professionals is recommended
only in cases where the task has a very high critical
level. The less experienced professionals (young, or
junior) must always pair in order to ensure
knowledge sharing. In previous studies, code quality
has improved when the coding activity was executed
in pairs formed by young and more experience
professionals.

Some projects analysed in the field study
indicated that the criterion to form the pairs was the
experience of the developers. When a young
developer started in the team, he already attended
pair programming sessions. This is illustrated by a
quote from a respondent from project 3:

"One of the main challenges that we noticed was
the difference of knowledge regarding the business.
Then, the pairs were formed by a developer with a
lot of knowledge in the business with another
developer new to the team, in the learning process."

Other respondent from project 6 said:
"The criterion to form the pairs is the level of

experience, because this enables greater knowledge
sharing between the team members. In addition, the
task does not belong to only one pair or group."

4.6 P6: Identify a DPP Leader within
the Team

This practice refers to the presence of a DPP leader
(coach) in the team. In the literature, Hannay et al.
(2010) reported that the practice helps avoiding
impediments between the pairs and supports the
developers to ask their questions about the practice.
The presence of a DPP leader who acted as a Coach

A�Set�of�Practices�for�Distributed�Pair�Programming

335

was identified in the field study as a practice that
helps in resolving technical questions and conflicts.
Furthermore, the DPP leader was responsible for the
formation of the pairs. A respondent from project 6
said:

"I perform this role; I answer all questions of the
team members regarding the DPP practice and
promote it in the organization. Sometimes, we
promote training on DPP adoption and constantly
encourage feedback from employees. The leader role
has stimulated the adoption of the practice among
the team members and has helps with the challenges
that we have observed. "

4.7 P7: Define and Use a Specific Tool
for DPP

In the literature, Canfora et al. (2006) says that the
main problem in DPP is the lack of an appropriate
tool to support the practice. He suggested that a tool
for DPP must be integrated with a configuration
system management strategy. Rosen et al. (2010)
reported that a specific tool for DPP facilitates the
use of a single developer environment, without the
need to toggle between windows, increasing the
agility. The author also states that a specific tool that
shares the video screen helps in reducing distraction
among developers. In our field study, people
interviewed reported the use of several tools, as
illustrated by the quote of the respondent from
project 1:

“We try to use several tools for DPP, but none of
them was stable enough to be used in the project. So
we opted for common chat software, but I believe
that it is not ideal; I believe that a tool that is
integrated with our development tools can help more
in terms of productivity of the team.”

In six of the projects (4, 5, 6, 7, 9, 10) the
respondents reported the use of Skype for DPP. Two
of them (6, 7) used Skype with Tmux. Two projects
used Skype and VNC (1, 8) and one project used
Microsoft Communicator (3). One project (2)
reported to use a specific DPP tool, called Saros,
which is a plugin of Eclipse IDE (Salinger et al,
2010).

4.8 P8: Plan Frequent Meetings

The literature reported that the distribution between
the pairs tends to decrease the level of conversation
within the team; as a consequence, there is a lack of
a common knowledge and understanding of the
project (Canfora et al., 2006). Canfora et al. (2006)
also says that team meetings can be scheduled

during all phases of the project, especially at the
beginning. In the field study, Respondents also
confirmed the adoption of this practice, by
conducting technical meetings and design sessions
before the DPP sessions, in addition to the daily
meetings proposed in the Scrum method (Schwaber,
1995).

4.9 P9: Provide Feedback during DPP
Sessions

In the field study, the need for feedback during each
session was reported as an important source of
identifying challenges and improvements for the
practice of DPP. During the interviews, the
respondents said that it is important to ask basic
questions to stimulate feedback such as: "What is
your opinion about the DPP session?"; "What can
be improved in the DPP environment?";"Which
strategies can be adopted to improve the DPP
session?"

Feedback is an important principle of the XP
method and other agile methods and practices. For
this reason, it is important to stimulate feedback
during the DPP sessions, and not only at the end. If
the team have a DPP leader, he can encourage others
team members to share their experiences and
feedback.

4.10 P10: Use Short DPP Sessions with
Frequent Breaks

Most of the respondents in the field study reported
that DPP is a practice that requires more effort from
the team. To minimize this, a practice that was
recommended is the use of short sessions with
frequent breaks. The result of using this practice is
to reduce the effort, and help to keep the focus in the
task. One strategy mentioned was the use of time
management techniques, such as the Pomodoro
Technique (Nöteberg, 2009). The respondent from
project 3 said:

"DPP takes more effort than PP and collocated
development; it requires more focus and less
distraction. Collaboration is more intense. I believe
that with shorter sessions, this challenge can be
reduced."

4.11 P11: Plan a Pilot Project before
Adopting DPP

In the field study the respondents indicated that
before the adoption of DPP is important to
understand the details of the environment. In the

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

336

field study, some of the respondents reported that it
is important to plan and execute a pilot project using
DPP before the practice is implemented. The pilot
project has the goal of identifying challenges and
planning strategies to improve the DPP environment,
as well as helping employees to become familiar
with the practice.

4.12 P12: The Driver Must Narrate
Actions During the DPP Sessions

Another practice that was identified in the field
study is regarding the role of the driver. The
respondents said that during the DPP session the
driver must constantly narrate his actions in the
code. The adoption of this practice involves the
reduction of periods of silence that are harmful to
DPP. Another benefit is the monitoring of the
observer, which is also stimulated to seek
communication during the session. The respondent
from project 2 said:

"One of the challenges we had with DPP is when
another developer was in silence during the session.
This type of behavior affects the practice, so when
we identified it, we encourage the conversation.
DPP is a practice that works well with a strong
communication.

5 FINAL REMARKS

In a recent study, Paasivara et al. (2009) reported
that the use of agile practices is part of a strategy
that companies use in order to minimize the
challenges face by distributed teams. DPP is an agile
practice that consists in a variation of PP with
distributed teams (Baheti et al., 2002). Previous
study has found that DPP have benefits for
distributed teams such as communication and
knowledge transfer, but also has challenges such as
distractions, the need for specific infrastructure, and
conflict of goals between the pairs during a DPP
session (Rosen et al., 2010).

The main motivation for the development of this
research was at the same time the lack of studies
about the use of DPP in industry and the opportunity
to better understand how DPP could help companies
facing DSD challenges. Based on the evidence of
existing literature and a field study, the set of
practices proposed in this paper has the purpose of
helping software development organizations to adopt
or improve the use of DPP in order to increase the
chance to succeed with this practice. In addition, it is

an attempt to contribute to the adoption of agile
practices in the context of DSD.

5.1 Limitations and Future Work

As any other empirical study, this study also has
limitations. Regarding the systematic literature
review, the studies selected were all collected from
online libraries. We chose these libraries based on
past experiences of other researchers in conducting
SLR. The bias of the researchers during the analysis
of the papers was minimized by a peer-review
recommended by Kitchenham et al. (2007).
Regarding the field study, one limitation is related to
the number of companies studied, limiting the
generalization of the results.

As future work, we plan to evaluate the set of
practices in industry and continue to evaluate and
refine the proposed practices, and also identifying
new practices to be adopted by distributed agile
teams.

ACKNOWLEDGMENTS

We are thankful to all the respondents who have
kindly accepted our invitation and contributed to this
research. We would like to thank one of the
companies for having sponsored this research under
the Brazilian Law 8.248/91. This research is also
part of the agreement between ThoughtWorks and
PUCRS. We also thank CNPq (309000/2012-2).

REFERENCES

Abbattista, F.; Calefato, F.; Gendarmi, D.; Lanubile, F.
2008. Incorporating social software into distributed
agile development environments. In: Automated
Software Engineering - Workshops, ASE Workshops,
pp. 46,51, 15-16. IEEE: L’Aquila, Italy.

Baheti, P.; Gehringer, E.; Stotts, D. 2002. Exploring the
efficacy of distributed pair programming. In: Extreme
Programming and Agile Methods—XP Agile Universe,
pp.387-410. Springer: Chicago, USA.

Beck, K. 2000. Extreme Programming Explained:
Embrace Change. New York. Addison Wesley, 2nd
edition.

Beck, K.; et al. 2001. Manifesto for Agile Software
Development. Accessed in: www.agilemanifesto.org.

Bevan, J.; Werner, L.; McDowell, C. 2002. Guidelines for
the use of pair programming in a freshman
programming class. In: Conference on Software
Engineering Education and Training, pp.100-107,
IEEE: Ottawa, Canada.

A�Set�of�Practices�for�Distributed�Pair�Programming

337

Canfora,G.; Cimitle, A.; Visaggio, C.;DiLucca, G. 2006.
How distribution affects the success of pair
programming. In: International Journal of Software
Engineering and Knowledge Engineering, pp. 293 -
313. World scientific.

Dyba, T.; Arisholm, E.; Sjoberg, D.I.K.; Hannay, J.E.;
Shull, F. 2009. The effectiveness of pair
programming: A meta-analysis. Information Software
and Technology, vol. 51-7, pp. 1110-1122. Elsevier.

Dyba, T.; Dingsøyr, T. 2008. Empirical studies of agile
software development: A systematic review.
Information Software Technology, vol. 50-10, Ago-
2008, pp. 833-859. Elsevier.

Hanks, B.,”Student performance in CS1 with distributed
pair programming”. 2005. In: Proc. of the Special
Interest Group on Computer Science Education, pp.
316-320. ACM: Saint Louis, USA.

Hannay, J.; Arisholm, E.; Engvik, H.; Sjoberg, D, 2010.
Effects of personality on pair programming.
Transactions on Software Engineering, vol. 36-1, Fev-
, pp.61–80. IEEE.

Herbsleb, J.; Moitra, D. 2001. Global Software
Development. IEEE Software, vol. 16-2, Mar- Abr
2001, pp. 16-20. IEEE.

Kitchenham, B; Charters, S. 2007. Guidelines for
performing Systematic Literature Reviews in Software
Engineering. Technical Report, p. 57. Keele
University and Durham University.

Mcdowell, C.; Werner, L.;Bulock,H. ; Fernald, J, 2002.
The effects of pair-programming on performance in an
introductory programming course. In: Technical
symposium on Computer science education, pp. 38–
42. ACM: Cincinnati, USA.

Müller, M, 2007. Do programmer pairs make different
mistakes than solo programmers?. Evaluation and
Assessment in Software Engineering, vol.80-9, Set-
2007, p.1460–1471. Elsevier.

Nöteberg, S. 2009. Pomodoro Technique Illustrated: The
Easy Way to Do More in Less Time. Raleigh.
Pragmatic Programmers.

Oates, B. J, 2006. Researching information systems and
computing. London. Sage.

Oxford American Dicitionary, 2010. Oxford. Oxford
University Press, 3rd edition.

Paasivaara, M.; Durasiewicz, S.; Lassenius, C, 2009.
Using Scrum in Distributed Agile Development: A
Multiple Case Study. In: International Conference on
Global Software Engineering, pp. 195-204. IEEE:
Limerick, Ireland.

Phalnikar, R.; Deshpande, V. S.; Joshi, S. D., 2009.
Applying Agile Principles for Distributed Software
Development. In: International Conference on
Advanced Computer Control, pp.535-539, IEEE:
Singapore.

Rosen, E.; Salinger, S.; Oezbek, C, 2010. Project Kick-off
with Distributed Pair Programming. In: Workshop of
Psychology of Programming Interest Group. Madrid,
Spain, 15p.

Salleh, N.; Mendes, E.; Grundy, J., 2011. Empirical
studies of pair programming for CS/SE teaching in

higher education: A systematic literature review. In:
Transactions on Software Engineering, vol.37-4, Jul-
Ago. 2011, p. 509–525. IEEE.

Schwaber, K, 1995. The Scrum Development Process. In:
Conference on object oriented programming systems,
languages and applications (OOPSLA), 1995, pp.
117-134. Springer: Austin, USA.

Shrivastava, S; Date, H, 2010. Distributed agile software
development: a review. Journal of Computer Science
and Engineering, vol 1-1, May 2010. KIISE.

Smite, D. ;Wohlin, C .; Galvina, Z. ; Prikladnicki, R,
2012. An Empirically Based Terminology and
Taxonomy for Global Software. Engineering.
Empirical Software Engineering: An International
Journal. Springer.

Salinger, S.; Oezbek, C.; Beecher, K.; Schenk, J., 2010.
Saros: an eclipse plug-in for distributed party
programming. In: Proceedings of the ICSE Workshop
on Cooperative and Human Aspects of Software
Engineering (CHASE '10). ACM: Cape Town, South
Africa.

Vanhanen, J.; Lassenius, C.; Mantyla, M.V, 2007. Issues
and Tactics when Adopting Pair Programming: A
Longitudinal Case Study. In: Software Engineering
Advances, pp. 25-31. IEEE: Cap Esterel, France.

Zacharis, N, 2011. Measuring the effects of virtual pair
programming in an introductory programming java
course. IEEE Transactions on Education, vol. 54-,
Fev-2011, pp. 168–170.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

338

