
SaaS Usage Information for Requirements Maintenance

Ana Garcia2 and Ana C. R. Paiva1,2
1INESC TEC, Porto, Portugal

2Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal

Keywords: Requirements Engineering, Requirements Evolutions, Software as a Service Lifetime, Usability.

Abstract: The incorrect requirements elicitation, requirements changes and evolution during the project lifetime are
the main causes pointed out for the failure of software projects. The requirements in the context of Software
as a Service are in constant change and evolution which makes even more critical the attention given to
Requirements Engineering (RE). The dynamic context evolution due to new stakeholders needs brings
additional challenges to the RE such as the need to review the prioritization of requirements and manage
their changes related to their baseline. It is important to apply methodologies and techniques for
requirements change management to allow a flexible development of SaaS and to ensure their timely
adaptation to change. However, the existing techniques and solutions can take a long time to be
implemented so that they become ineffective. In this work, a new methodology to manage functional
requirements is proposed. This new methodology is based on collecting and analysis of information about
the usage of the service to extract pages visited, execution traces and functionalities more used. The analysis
performed will allow review the existing requirements, propose recommendations based on quality concerns
and improve service usability with the ultimate goal of increasing the software lifetime.

1 INTRODUCTION

The internet environment where Software as a
Service (SaaS) are located, is more dynamic
complex and unpredictable, exposing them
continuously and, therefore, making them more
susceptible to the high change pace. Also, the quick
evolution of technology, the new politics and laws,
the existing similar competitive services, quality
concerns and the constant change of stakeholders
needs are some factors that determine the SaaS
environment changeability. To face this evolution
and keep answering to the stakeholders needs, it has
to adapt the service concept timely. It may require
the addition of new functionalities or update existing
ones. The functionalities of a service result from the
implementation of functional requirements that can
be defined as actions performed by a system,
without considering its physical constraints (Qureshi
and Perini 2010). Therefore Requirements
Engineering (RE) is of utmost importance to manage
and maintain requirements during SaaS lifetime. In
2009, according to The Chaos report, the number of
software projects well success (projects that were
timely finished and within the budget, with all the

functionalities initially planned implemented) round
only 16% (Dominguez, 2009). The main causes
pointed to the software failures are the incorrect
requirements elicitation, requirements changes and
their evolution during the project lifetime. The
contribution of RE to overcome these problems is
the specification and planning requirements.
Furthermore, it allows evaluating them to identify
inherent risks of their design. Uncontrolled
requirement changes cause negative impacts in
software development, like for example, costs over
budget and a system that is not able to respond to the
needs of its stakeholders (Ibrahim et al., 2009). This
situation can lead to the misuse of the SaaS and
consequently to the loose of the associated profits.

The requirements management allows
maintaining stability and agreement among
stakeholder’s requirements, through the analysis of
change effect and their monitoring during software
lifetime (Ibrahim et al., 2009). So that the RE
supports system answers to the changes in the
dynamic environment caused by changing needs of
their users (Qureshi and Perini, 2010); (Wang et al.,
2010).

Software projects should translate the actual

323Garcia A. and C. R. Paiva A..
SaaS Usage Information for Requirements Maintenance.
DOI: 10.5220/0004898403230330
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 323-330
ISBN: 978-989-758-028-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

needs of stakeholders that vary depending on
personal and cognitive factors as well as the
relationship that they have with the system. This
diversity of needs leads to conflicts of interest
among stakeholder (Attarha and Modiri n.d.). The
RE helps to mitigate those conflicts by creating a
knowledge base built with a set of requirements
accepted by all stakeholders. This baseline is the
starting point to software implementation. However,
it suffers changes along the SaaS lifetime that should
be maintained and managed (Ibrahim et al., 2009).

The currently used maintenance methods for
software requirements involve a lot of effort and
time to be applied. That effort may not be
compatible with the short time required to make
adjustments to the new stakeholders needs. They are
not suitable for projects with a large quantity of
requirements. Also these methodologies do not offer
a way of gathering and manage stakeholder’s
feedback objectively. In short, the existing
methodologies for managing requirements in an
evolutionary context are inflexible and they are not
scalable solutions (Ben Charrada et al., 2012)
(Aasem et al., 2010) (Babar et al., 2011).

The objective of this paper is to contribute for
diminishing the problem mentioned presenting a
methodology for software requirements management
and maintenance which can be applied in an
evolutionary context. This methodology is based on
the collection and analysis of the SaaS usage
information. By studying the behaviour of SaaS
users, we can obtain several metrics that allow us to
give recommendations about how to manage and
maintain some of the functional requirements behind
the SaaS under study. It will allow the software to be
adapted and respond timely to the changing needs of
stakeholders, in order to prolong their lifetime.

This paper is organized as follows. Section I
provides some concepts and information about the
developing project. The literature review is
presented in section II. Section III presents the
methodology developed to manage functional
requirements during software lifetime. This
methodology was successfully applied to two case
studies presented in section IV. Finally section V
describes the conclusions and future work.

2 LITERATURE REVIEW

This section describes and compares existing tools
for capturing information of the usage of web
systems and presents related work regarding
requirements management.

There are several web analytical tools which can
collect information about the usage of a system.
They differ on the information gathered. There are
tools that capture the so called heat maps, i.e.,
graphical coloured representations according the
percentage of mouse clicks in each of the website
area (Clickdensity, 2013), (Crazyegg, 2013),
(Firestats, 2013); page views, which represent the
percentage of website visits (Firestats, 2013),
(Analytics, 2013), (Jawstats, 2013), (Piwik, 2013),
(Counter, 2013), (Tracewatch, 2013), (Web Stat)
(Woopra, 2013); peaks of use, i.e., time period with
the higher number of accesses (Bbclone, 2013),
(Firestats, 2013), (Analytics, 2013), (Jawstats,
2013), (Piwik, 2013), (Woopra, 2013); the origin of
the accesses, i.e., the internet protocol and the
URL/origin from which users get access to the
service being analysed (Bbclone, 2013), (Crazyegg,
2013), (Crazyegg, 2013), (Analytics, 2013),
(Jawstats, 2013), (Counter, 2013), (Tracewatch,
2013), (Web Stat, 2013) (Woopra, 2013); navigation
paths, i.e., is the sequence of users’ interactions with
the SaaS done between an origin and a destination
(Analytics, 2013), (Counter, 2013), (Tracewatch,
2013), (Web Stat) (Woopra, 2013); interaction maps,
i.e., graphical representations of the visitors’ mouse
clicks (Analytics, 2013); use percentage of
functionalities i.e., the percentage of visitors that
have used each one of the website functionalities
(Crazyegg, 2013), (Analytics, 2013), (Piwik, 2013),
(Tracewatch, 2013), (Counter, 2013), (Web Stat,
2013) and (Woopra, 2013); qualitative data of users’
experience i.e., users’ feedback about their website
visit (iPerceptions, 2013); visitors logins i.e.
percentage of users that do website login, and how
many time they spend there (Jawstats, 2013), (Piwik,
2013), (Tracewatch, 2013).

Given the myriad of existing tools, someone
needs to identify the information to be collected for
the purpose and select from the existing toolset the
one (or the ones) that is able to extract the maximum
information required.

Besides the collected information, the choice of
the tool to use can also consider other aspect such as
the installation mode because it is necessary to
ensure data integrity and other questions about
security and data confidentiality.

Before starting the development of a software
system, it is important to identify the requirements
with higher priority in order to develop them first.
However, requirements prioritization is also useful
in software maintenance phases since it is possible
to get change requests that need also to be prioritized
in order to identify the ones that should be

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

324

developed first. There are several approaches for
prioritizing requirements in the literature: Analytical
hierarchical Process (AHP), Cost-Value Approach,
B Tree Prioritize, Cumulative Voting or Hundred
Dollar Test, Numerical Assisments (Grouping),
Ranking, Top Ten Requirements, Planning Game,
Theory W and Fuzzy Logic prioritization (Aasem et
al., 2010). However, these techniques do not support
the negotiation of the different stakeholders’ criteria
for requirements prioritization. Furthermore they are
time consuming for its implementation and they can
only be useful for small projects size (Babar et al.,
2011). It means that these methodologies are not
scalable and there are not suitable to be applied
during the software lifetime (Aasem et al., 2010).

Besides prioritization, it is of utmost importance
to manage change requests. There are methodologies
based on the change impact analysis (Sun and Li,
2011) (Hayat et al., 2010) (Ali et al., 2012). The
main objectives of these methodologies are to
understand which parts of the original software will
be affected by the change proposed and study the
ripple effect to other software components.
According to Benn Charrada et al. 2012 (Ben
Charrada et al., 2012) the analysis of source code
modifications identifies requirements affected by the
change that needs new updates. The author Gao
2011 (Gao, 2011) models software requirements
evolution based on the feedback collected. Inverardi
et al. (Inverardi and Mori, 2011) define self-adaptive
systems as entities that can modify his behaviour
and structure due to the software and his
environment changes. Banerjee (Banerjee, 2011)
present a methodology to manage requirements
focused on errors that occur in the introduction or
updating of the software requirements. Greenwood
et al. (Greenwood et al., 2011) present a tool to
manage the dynamic variability of systems that
suffer adaptive pressures. The authors Souza et al.
(Souza et al., 2012) focus the requirement
management thought the “evolutionary
requirements”.

Most of these methodologies do not have the
flexibility needed to manage large quantities of
dynamic and evolutionary requirements (Aasem et
al., 2010) (Babar et al., 2011). They imply a lot of
time in their application which means that they do
not allow the project team to have timely
information about requirement changes (Ben
Charrada et al., 2012). Moreover these
methodologies do not offer a way of collecting and
manage stakeholders’ feedback timely and
objectively. This information could be helpful to
analyse changes in requirements evolution.

The methodology developed in this paper,
collects usage information about SaaS in order to get
users preferences about the functionalities and
navigation paths. Thereby the collection of usage
information is a way of getting some users feedback
objectively. From the analysis of such information, it
is possible to provide recommendations for
reviewing the priority of the functional requirements
that may be performed in whole or selected SaaS
modules (group of related web pages of the SaaS).

3 METHODOLOGY

This section describes the proposed methodology for
managing software requirements. From the
automatic collection of information about the usage
of a SaaS, the methodology proceeds with the
analysis of such information. From this analysis, it is
possible to propose updates to the software
requirements and, in addition, other proposals may
emerge for improving the usability of the service
under study. Figure 1 shows the methodology
developed.

Figure 1: Requirement Management Methodology.

3.1 Collect Usage Information

The web analytic tools presented in the literature
review can be used for collecting data. In this
particular context, it is useful to collect information
about page views, accessed functionalities,
navigation paths, heat maps, qualitative information
about users’ experience and the origin and
destination of the visits. Regarding navigation paths,
they can be obtained directly through some tools,
such as Google Analytics, but when these tools are
not available, navigation paths may be calculated
during the following phase (Analyses of information
gathered). In this case, origin and destination URLs
must be provided. This information is needed to
calculate other metrics from which information for
helping requirements management will come up.

3.2 Analysis of the Information
Gathered

After collecting the usage information of the service,

SaaS�Usage�Information�for�Requirements�Maintenance

325

the methodology proceeds with the analysis of such
information in order to identify different users
(different roles with different access modes); the
most and least accessed pages; shortest, longest and
most used navigation paths; and to determine which
parts of the website are the most and least accessed,
using heat maps.

It is important to identify different website
visitors according to their different roles and
permissions because they have access to different
subsets of the overall functionality of the service.
One typical example is the administrator that usually
has access to configuration pages not accessible to
other kinds of users. In addition, this information is
useful for calculating the most and least visited
pages of the SaaS when the usage information
collection is done without the web analytic tools
presented in the literature review. These pages are
identified taking into account the total number of
users that can access them and deserve special
attention. In particular, it is possible to propose
updates to the service in order to highlight the most
visited pages, for instance, providing links for them
on the entry page or improving the existing
navigation paths from the entry page of the service
in order to facilitate reaching them. Considering the
related pages with fewer visits they will be evaluated
to analyse the possibility of aggregate them with
others in order to simplify the existing navigation
within the SaaS.

The shortest, longest, most accessed navigation
paths to specific functionalities of the service
deserve also special attention. In particular, it may
justify propose updates to highlight the shortest (or
the most used). The analysis of these particular paths
can be complemented with usability tests to get
users feedback about the navigation experience.

From the analysis of the information in Heat
Maps it is possible to identify the most accessed
website areas. The areas surrounding the most used,
may be useful for highlight SaaS content, i.e., to
locate new functionalities, place marketing
information or to make more visible a specific
navigation path or functionality.

The percentage of page views in conjunction
with Heat Maps and navigation paths is useful to
analyse the usage of each functionality within the
SaaS. The functionalities usage percentage reflects
the importance that the corresponding features have
to the users. Therefore, it can be used to review the
baseline requirements priority for managing the
subsequent responses to change requests. If a
specific functionality has a large number of
accesses, the priority of the respective requirement

may be increased. On the contrary, if the
functionality has a small number of accesses,
meaning that it is not so important for users, its
priority may be decreased. In the context of SaaS
maintenance, change requests related to
functionality with higher priority will be
implemented firstly than those that are classified
with a lower priority.

The following section presents how the
functional requirements can be mapped with the
respective SaaS functionality.

3.3 Map Analysed Information

After the analysis phase, the most and least used
functionalities of the SaaS are identified. Now, it is
time to analyse the related requirements and update
them as needed.

If the map between functionalities and
requirements is not documented, one should do it
now to build a traceability matrix of each SaaS web
pages and functional requirements from the baseline.
Table 1 presents the template of the traceability
matrix used in this phase.

Table 1: Map between functional requirements and SaaS
web pages.

SaaS Web Page Functional
Requirement

URL1 of a SaaS web page RequirementA
…
RequirementN

… RequirementB

…
RequirementM

URLz of a SaaS web page RequirementC
…
RequirementS

4 CASE STUDIES

This section presents the results of application of the
methodology introduced in the previous section in
two real SaaS: SIGARRA, which is service provided
for the Engineering Faculty of Porto (FEUP)
community; Health Insight is a company that
provides a service for the community interested in
nativity which includes a portal where visitors can
search articles and a social network called Rede
Mãe. For confidentiality reasons, the information is
displayed in a generic way without referring to
concrete data.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

326

4.1 SIGARRA (FEUP)

The main objectives established for this case study
are:
 Identify the most and least accessed internal pages

and the functionalities of the service;
 Extract the navigation paths for specific

functionalities;
 Review the prioritization of the baseline functional

requirements from the gathered information;
The service usage information has been collected

by FEUP and logged into a data base file with
records with the form:

<C, C0, I, Io, U, U0, T,>

where C is the date of the interaction, C0 keeps the
time in which the interaction occurred, I is a code
which allows to distinguish users, I0 is the internet
protocol used, U is the URL origin, U0 is the URL
destination, T is the code of the user’s session.

Since SIGARRA is a complex and large service,
the percentage of views per page is low. This
happens because the accesses spread along the
several pages of the service. So, we decided to group
the pages with related functionalities on module in
order to simplify the statistical information.

From this database file it is possible to identify
the most and least accessed web
pages/functionalities and calculate the navigation
paths. This is an example of a situation in which
navigation paths must be calculated because the
approach followed to extract information about the
usage of the service does not provide them.

Given an URL as origin and an URL as
destination, it is possible to calculate the navigation
paths, i.e., the different existing sequences of visited
pages from the origin until reaching the URL
destination. This was calculated through MYSQL
queries. In addition associated with each calculated
path, it was also calculated the number of times such
path was used. Figure 2 and Figure 3 show the
navigation path between Page A (origin) and Page Z
(destination). In these two figures, the boxes
represent different URL pages (e.g., Pages A, B, C,
D, E, E1, E2, E3 and Z). Pages E1, E2 and E3
belong to module E. The arrows represent the
sequence of users’ interactions. Figure 2 shows the
shortest navigation path to from Page A to Page Z
going through pages B and C. Figure 3 shows the
most used navigation paths to Page Z departing from
Page A.

Figure 2: Shorter navigation path to Page Z.

Figure 3: Most used navigation path to Page z.

Table 2 shows part of the map built between
functional requirements and the SaaS web pages. It
only presents the functional requirements studied in
this case study.

Table 2: Map between SaaS web pages and functional
requirements.

SaaS Web Page Functional
Requirement

Page E1 FR100
Page E2 FR102

Page E3
FR103
FR105
FR106

Page X RF104

4.1.1 Results

Regarding the identification of the most and least
accessed web pages and navigation paths, some
improvements were proposed which are described in
the sequel.

Considering the existing different navigation
paths to functionality Z (page Z), we proposed a set
of improvements to each of the intermediate pages
of such paths. Regarding Page C, we concluded that
few of its accesses intend to achieve Page Z. So that
we propose to remove the access to Page Z from
Page C or to aggregate it with another related page.

Regarding the most used path, we noticed that
Page E3 has a high number of accesses so it can be
highlighted to give it more visibility (requirement
RF103 (Page E3)). In order to do that it is proposed
to redesign Page E3.

In Pages E1 and E2, we identified related content
so we propose to aggregate them (requirements
FR100 and RF101).

Page Z, allows accessing to Page X, however
there are no users that perform this specific
navigation path in order to access functionality
described by requirement RF104. In consequence we
suggest giving access to this functionality directly
from Page A. The information obtained from Heat
Maps can be helpful to determine exactly the
website area which has more attention from the SaaS
users. For that reason heat maps support the decision
of where to place it.

Since Page E3 is one of the most accessed, we

SaaS�Usage�Information�for�Requirements�Maintenance

327

reviewed the priorities of hers requirements.
Functional requirements within such page that have
low usage are not very important to their users, so
that, we recommend assigning a lower priority. The
most used requirements have a special importance to
their users, which means that they may get a higher
priority. Table 3 presents the priority revision done
in this particular case.

Summarizing, considering this case study, the
recommendations given by us are: remove the access
to Page Z from Page C or aggregate Page C with
another related page; highlight Page E3 (requirement
RF103) to give it more visibility; aggregate contents
of page E1 and E2 (requirements FR100 and
RF101); give access to functionality within Page X
directly through Page A; increase priority of
requirement FR105; decrease priority of FR106.

Table 3: Revision of requirements priorities.

Requirement Baseline
priority

Revised
priority

FR105 2 5
FR106 4 1

4.2 Health Insight

The main objectives established for the case study
are:
 Identify the most used features of the service;
 Analyse heat maps to identify the most accessed

contents of the website;
 Review and propose changes in functional

requirements based on the information gathered.

Health Insight company collected usage information
of the service through Google Analytics and User
Report. Its operation is based on the emission of
cookies to track user visits and record data to
explore their navigation sessions (Analytics, 2013).
The data gathered includes page views, navigation
paths and interaction maps which can be configured
with a colour graduation. Although Google
Analytics allows to gather the majority of metrics
needed for the goals mentioned, it has some
constrains which are presented in the following
section.

4.2.1 Results

Google Analytics saves sequences of users
interactions. Within each user interaction, the tool
groups, in the same module, the pages with the same
visit flow. The visit flow is defined as the percentage
of users that accesses a page and the percentage of

users that finished his navigation in this specific
page. Thus, unrelated pages could be presented at
the same module which makes path analysis
difficult.

In addition, the interaction map is constructed
based on page views. It does not reflect the number
of mouse clicks. Furthermore, Google Analytics
does not allow monitoring AJAX pages. Considering
all these aspects, we can say that Google Analytics
has somehow restricted the analysis to perform but
there was not possible to use another exploration
tool inside this company.

Besides the restrictions imposed by the
information gathered with Google Analytics, it was
possible to calculate the percentage of page views
and identify the most and least accessed
functionalities. We concluded that Rede Mãe (social
network for people interested in nativity issues) has
a small number of accesses. In fact, the majority of
users access this service to search papers in
Bebepédia (portal of nativity contents) so, in order to
increase the accesses to the least used functionality
(Rede Mãe) we propose to evaluate the possibility of
increasing the integrity between the Rede Mãe
service and Bebepédia. For example, create a bottom
inside Rede Mãe main page to share Bebepédia
contents and highlight the new contents in a
dashboard.

The test of nativity is the most used functionality
of the social network Rede Mãe and because of that
deserve higher priority regarding following change
requests to improve them.

The identification of most used pages can also be
helpful to increase the profits of the company by
using the advertising located near the most accessed
pages.

Summarizing, considering this case study, the
recommendations given by us are: increase the
integrity between the Rede Mãe service and
Bebepédia by creating a bottom inside Rede Mãe to
share Bebepédia contents and highlight the new
contents in a dashboard; increase the priority of the
test of nativity; use advertising located near the most
accessed pages.

5 CONCLUSIONS AND FUTURE
WORK

This paper describes a methodology to
manage/maintain software requirements during the
lifetime of a SaaS. This methodology was
successfully validated in two services provided by

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

328

two different companies. It allows reviewing
requirements, proposing improvements in the
software usability and consequently, extending the
SaaS lifetime.

One advantage of this methodology is the fact
that it is based on real/concrete usage of SaaS
overlapping the problem related to commonly used
approaches based on the diversity and subjectivity of
stakeholders needs.

Considering the prioritization revision criteria, it
is not necessary to compare all the requirements of
the SaaS in study to review the priority of a specific
SaaS module requirement. Thus, it is a scalable
methodology that allows managing a higher number
of dynamic requirements with less effort.

In order to diminish the time needed to apply this
methodology, some steps could be automatized.
Therefore it would be helpful to develop a tool for
collecting information about the usage of the SaaS
and represent it statistically. Also, the analysis of the
collected information could be a computerized task
based on a traceability matrix, which represents the
relation between requirements and functionalities
implemented within web pages.

As future work we intend to complement this
methodology with usability tests and heuristic
evaluation. With these tests, we expect to identify
the main users’ difficulties when it is noticed that to
achieve a specific task that majority of the users opt
for a navigation path that does not correspond to the
shortest one.

REFERENCES

Aasem, M. et al., 2010. Analysis and optimization of
software requirements prioritization techniques.

Ali, H. O., Rozan, M. Z. A. & Sharif, A. M., 2012.
Identifying challenges of change impact analysis for
software projects. 2012 International Conference on
Innovation Management and Technology Research,
pp.407–411. Available at: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=6236428.

Analytics, G.,Visited at May 2013. Google Analytics.
Available at: http://www.google.com/intl/pt-PT_ALL/
analytics/index.html.

Attarha, M. & Modiri, N., Focusing on the Importance and
the Role of Requirement Engineering. , pp.181–184.

Babar, M. I., Rarnzan, M. & Ghayyur, S. A. K., 2011.
Challenges and Future Trends in Software
Requirements Prioritization. , pp.319–324.

Banerjee, A., 2011. Requirement Evolution Management:
A Systematic Approach. 2011 IEEE Computer Society
Annual Symposium on VLSI, pp.150–155. Available
at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=5992497 (Accessed September 5, 2013).

Bbclone, Visited at May 2013. Bbclone. Available at:
http://help.bbclone.de/index.php?n=Main.HomePage.

Ben Charrada, E., Koziolek, A. & Glinz, M., 2012.
Identifying outdated requirements based on source
code changes. 2012 20th IEEE International
Requirements Engineering Conference (RE), pp.61–
70. Available at: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6345840.

Clickdensity, Visited at May 2013. Clickdensity Benefits.
Available at: http://www.clickdensity.com/.

Counter, S., Visited at May 2013. Stat Counter Features.
Available at: http://statcounter.com/?PHPSESSID=
4a7ck7tttvei7ivkd7fidkkm63.

Crazyegg, Visited at May 2013. Here Are The Features
That Make Your Websites Convert More Visitors Into
Revenue. Available at: http://www.crazyegg.com/
#what-you-get.

Dominguez, J., 2009. Chaos report-2009 on it project
failure. Available at: http://www.pmhut.com/the-
chaos-report-2009-on-it-project-failure.

Firestats, Visited at 2013. Firestats. Available at:
http://firestats.cc/.

Gao, T., 2011. A Process Model of Software Evolution
Requirement Based on Feedback. , pp.172–175.

Greenwood, P. et al., 2011. Modelling adaptability and
variability in requirements. 2011 IEEE 19th
International Requirements Engineering Conference,
pp.343–344. Available at: http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=6051667.

Hayat, F. et al., 2010. A methodology to manage the
changing requirements of a software project. 2010
International Conference on Computer Information
Systems and Industrial Management Applications
(CISIM), pp.319–322. Available at: http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnum
ber=5643642.

Ibrahim, N., Kadir, W.M.N.W. & Deris, S., 2009.
Propagating Requirement Change into Software High
Level Designs towards Resilient Software Evolution.
2009 16th Asia-Pacific Software Engineering
Conference, pp.347–354. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5358735 (Accessed July 2, 2013).

Inverardi, P. & Mori, M., 2011. Requirements Models at
Run-time to Support Consistent System Evolutions. ,
pp.1–8.

iPerceptions, Visited at May 2013. iPerceptions. Available
at: http://www.iperceptions.com/.

Jawstats, Visited at May 2013. Jawstats. Available at:
http://www.jawstats.com.

Piwik, Visited at May 2013. Piwik Features. Available at:
http://piwik.org/.

Qureshi, N. a. & Perini, A., 2010a. Requirements
Engineering for Adaptive Service Based Applications.
2010 18th IEEE International Requirements
Engineering Conference, pp.108–111. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5636635 (Accessed March 3, 2013).

Qureshi, N. a. & Perini, A., 2010b. Requirements
Engineering for Adaptive Service Based Applications.

SaaS�Usage�Information�for�Requirements�Maintenance

329

2010 18th IEEE International Requirements
Engineering Conference, pp.108–111. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=5636635 (Accessed July 2, 2013).

Souza, V.E.S., Lapouchnian, A. & Mylopoulos, J., 2012.
(Requirement) evolution requirements for adaptive
systems. 2012 7th International Symposium on
Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pp.155–164. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=6224402.

Stat, W., Visited at May 2013. Web Stat. Available at:
http://www.webstat.com/.

Sun, X. & Li, B., 2011. Using Formal Concept Analysis to
support change analysis. 2011 26th IEEE/ACM
International Conference on Automated Software
Engineering (ASE 2011), pp.641–645. Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=6100146.

Tracewatch, Visited at May 2013. Tracewatch. Available
at: http://www.tracewatch.com/.

Wang, H. et al., 2010. Quantitative Analysis of
Requirements Evolution across Multiple Versions of
an Industrial Software Product. 2010 Asia Pacific
Software Engineering Conference, pp.43–49.
Available at: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5693179 (Accessed
July 2, 2013).

Woopra, Visited at May 2013. Woopra. Available at:
http://www.woopra.com/.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

330

