
Service-oriented Platform for Virtual Reality Application Development

Evandro César Freiberger1;2, Ricardo Nakamura1 and Romero Tori1
1PCS/POLI/University of São Paulo, São Paulo-SP, Brazil
2DAI/Federal Institute of Mato Grosso, Cuiabá-MT, Brazil

Keywords: Virtual Reality, Reuse, Interactive Content, Service-oriented Computing.

Abstract: An important contemporary fact is the advent of Web 2.0, mainly characterized by the possibility of content
being produced collaboratively, empowering and enabling the concept of collective intelligence. Another
important feature is the popularity of virtual communities, which allow people around the world to exchange
information and experiences. In order to increase the potential for reuse and sharing of interactive content, this
paper proposes an architectural model for a software platform that enables the online production and execution
of virtual reality applications as well as sharing of interactive content. The remote online environment,
associated with the capacity to represent and store 3D interactive content, enables the sharing and reuse of
such content in the production of virtual reality applications. The paper we present the description of the main
elements of the proposed architectural model and results of the research. The results point to the feasibility of
the proposed model.

1 INTRODUCTION

Web 2.0 has changed the traditional model of
information publishing on the Web to a model of
collaborative information production. Nowadays
people extensively use Web 2.0 applications such as
Wikipedia, YouTube, LinkedIn, MySpace, Twitter,
Facebook and Google Applications to create and
share information. Web 2.0 has changed the way
people consume information and knowledge into a
collaborative approach (Bein et al., 2009).

Virtual reality (VR) is used in the production of
complex virtual environments (VE), using non-trivial
input and output devices to provide users with a
sense of immersion in real-time synthetic worlds. In
the particular case of software development for VR
application, the need for reuse is enhanced by factors
characteristic of this kind of application.

A predominant feature of VR systems is
the dependence on computing resources and
unconventional devices, such as special data input
devices, special viewing equipment, along with the
high computational power, especially with graphic
processing. New techniques have alleviated this
problem through the development of interactions
that exploit gestures and sound commands, as an
alternative control of virtual environments.

In order to reduce dependence on special input

and output devices, computational resources such
as graphic processing and enable the production
of VR applications in a collaborative production
environment, this paper proposes a software platform
that combines the features of Web 2.0 and the
of service-oriented computing model. The goal
is to enable the production, reuse and execution
of VR application elements in a distributed online
environment.

2 BACKGROUND

2.1 Virtual Reality

With the development of VR and the advancement of
computational resources, interactive and immersive
representations become easier to obtain. The
interfaces are more intuitive and break the boundaries
of computer screens, keyboard and mouse, allowing
users to act in a three-dimensional space.

VR is an advanced interface for computer
applications will be considered. It allows the user
to move (navigation) and interact in real-time in
a three-dimensional environment, making use of
multi-sensory devices, to act or feedback (Tori and
Kirner, 2006).

With VE created from the use of VR, humans

196 Freiberger E., Nakamura R. and Tori R..
Service-oriented Platform for Virtual Reality Application Development.
DOI: 10.5220/0004895301960203
In Proceedings of the 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2014), pages 196-203
ISBN: 978-989-758-030-7
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



senses and abilities can be expanded, permitting to
see, hear, feel, drive and travel far beyond the natural
capacity. It creates alternatives for the production
of applications related to entertainment, simulations,
training and education.

2.2 Service-oriented Computing

Service-oriented computing (SOC) involves concepts
originating from a variety of disciplines, such
as distributed computing systems, computer
architectures and middleware, grid computing,
software engineering, programming languages,
database systems, security and knowledge
representation (Papazoglou and Heuvel, 2007).

Currently, the technical solution mostly adopted
for the development of services-oriented computing
is Web Services (Erl, 2009), (Papazoglou et al.,
2008). The strong adoption of Web Services
is a result of its characteristics, among which
we can highlight: platform independence and
programming languages, the possibility of exposing
any application functionality as a service over the
Internet and the use of open standards. According
to Wang and Qian (Wang and Qian, 2005),
implementing distributed computing via the Web
Services technology, has the following advantages:
increases the portability and interoperability of
distributed computing; increases the reusability
and scalability of distributed components; reduces
the complexity of composition and deployment
of components; simplifies management of the
distributed system and facilitates the publication of
the legacy code through distributed service interfaces.

Another important factor for the adoption of Web
Services is the existence of a specification controled
by a consortium which makes it less vulnerable
to particular issues of either implementation
(Papazoglou and Heuvel, 2007).

3 RELATED WORK

To support the objectives of this research, we
conducted a literature review aimed at identifying
software platforms that support the development
of VR applications, with emphasis on the reuse
of software components, in particular using the
services-oriented computing approach.

The authors Zang and Gracanin (Zhang and
Gracanin, 2008), propose a framework to build
applications on a multi-user virtual environment,
integrating content via distributed services. In
addition, they propose the use of stream for

applications feedback transfer to overcome the
performance limitations of Web Services messages.
The overall architecture of the framework is based on
distributed components integrated through services
and execution control based on events.

Shao and McGraw (Shao and McGraw, 2009)
proposed a framework named Service-Oriented
Embedded-Simulation Software (SOESS), which
combines COS and Cloud Computing to produce
military simulation, through the components
composition. The goal of the framework is to
ensure that applications developed from it are
highly interoperable with other applications, systems
and platforms, particularly with legacy software.
The components communicate via Web Services,
ensuring greater interoperability.

The authors Filho et al. (Filho et al., 2011)
propose a platform for development of virtual
environments called Hydra. Hydra is composed
of a set of frameworks and tools with the purpose
of facilitating and accelerating the applications
development. The applications development is
accomplished by means of plugins that allow you to
customize the behavior of particular applications.

The work of Chevaillier et al. (Chevaillier et al.,
2012) is proposed a methodology and a framework to
design semantic VR environments. The development
of VR applications is done through an approach based
on models created with a specialization and extension
of the Unified Modeling Language (UML). This
modeling covers aspects of semantic representation
of VE, such as: domain ontology, the structure of the
environment, the behavior of entities and interactions
between agents and activities.

The vast majority of studies analyzed propose the
reuse of software elements for the development of VR
applications through the incorporation of portions of
specialized code, for example, using API components
or the extent of frameworks. This paper proposes a
model of representation of applications that enables
the production of VR applications with high-level
representation, without the need for coding and
compiling. The difference lies in the ability to provide
such functionality through services. This enables
different technologies (programming language and
execution platform) to be used for the development
of applications production and running environments.

4 ARCHITECTURAL MODEL

In this work, we use the paradigm of service-oriented
computing. This model is capable of being totally
produced and executed in a remote environment. The

Service-oriented�Platform�for�Virtual�Reality�Application�Development

197



specified platform is characterized as a service bus
that provides the capacity to produce and execution
VR applications, in a distributed online environment.

4.1 Subsystems Architecture

The logical view of the platform elements, illustrated
in the Figure 1-B, consists of four subsystems
and their dependency relationships. The following
subsystems are described:

Figure 1: Platform Logical View.

� Virtual World Production Subsystem - has the
functionality to create, update, delete and reuse
elements of VR applications. A VR application

is composed of one virtual world, one or more
scenes, which are composed of virtual objects,
behaviors and appearance characteristics;

� Virtual World Execution Subsystem - provides an
execution context for the applications produced
on the platform. An execution context consists of
user context, input devices, output devices, a VR
application and resources;

� Access Subsystem - gathers the features that
enable access control and authorization for
platform users. Besides the management of
users, the subsystem provides authentication and
verification services of authorizations to other
subsystems of the platform;

� Resource Subsystem - gathers management
features, searches for and rescues resources
used in the production and execution of VR
applications such as: images, sounds, videos, 3D
object models and textures.

As can be seen in Figure 1-B, the production
subsystem uses the services of the access and
resource subsystems. It is also possible to
observe that the execution subsystem uses the
services of the resource, access and production
subsystems. The subsystems were designed with this
distribution of responsibilities to allow deployment in
different servers, with adequate computing resources
according to the characteristics required by each
subsystem.

Figure 1-A illustrates the client-side of the
platform, potentially consisting of several production
environments of VR applications. The client
applications use Web Services to create, seek and
save elements of applications in the repositories of
the platform. Each production environment can use
different representations and models of interaction
with the end user.

Communication between production
environments (client-side) and the platform
(server-side) is performed by means of Web Services,
through which data (entities) that represent resources
(e.g. images, sounds, textures), virtual objects, scenes
or virtual worlds are sent and received.

Figure 1-C illustrates the client-side of the
platform responsible for the interaction and viewing
of the server-side execution. The execution
environments (client-side) capture data and events
from input devices and send them through Web
Services to the execution context of the server-side.

From the definition of subsystems, an
architectural model was produced to be used as
the basis for the subsystems. The goal was to define
an architectural model that could be adopted for

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

198



all subsystems to facilitate the understanding and
implementation of subsystems. The next section
presents the elements of this architectural model.

4.1.1 Subsystems Logical Architecture

Each subsystem consists of three components: a
Service to expose the functionalities of the subsystem,
a Domain that implements the functionalities and
a Repository that stores information related to the
subsystem.

Figure 2: Domain Component Logical Architecture.

Figure 2 highlights the standard architecture
defined for the subsystems Domain component. The
subsystems’ Domain component is divided into three
layers of abstraction; they are:

� Persistence - consists of classes that are
responsible for the persistence and recovery
of entities of the subsystem. This layer is
responsible for the implementation of the
object-relational mapping (MOR) of the entities
defined in the subsystem domain layer, isolating
this action from the rest of the subsystem (Matic
et al., 2004). The persistence layer uses the
architectural pattern of data sources called Table
Data Gateway (Fowler, 2003).

� Domain - consists of two groups of classes,
domain and entity. Domain classes contain the
logic of the subsystem. Entity classes represent
the domain model of the subsystem, using the
paradigm of object orientation. These classes
represent the information and their relationships.
The domain layer uses the architectural pattern
known as Domain Model (Fowler, 2003).

� Facade - represents the subsystem interface,
defined by classes that combine the public
functionality of the subsystem. It aims to
hide the complexity of the subsystem and to

abstract class responsibilities that make up the
subsystem. This layer should be implemented
using the architectural pattern for domain logic
named Service Layer (Fowler, 2003).

The Repository component consists of a
Relational Database Management System (RDBMS)
used for the subsystem’s data persistence. Each
subsystem has its own RDBMS due to the distributed
architecture of the subsystems.

The Service component is formed by the Web
Services that expose the capabilities of the subsystem.
The services of each subsystem can be consumed
by other subsystems of the platform or by external
applications.

4.2 Application Representation

In this study we used the paradigm of object
orientation associated with the paradigm of
service-oriented computing to conceive a platform
to build and run VR applications on a remote
environment. Also proposed a model to represent VR
applications. This model is capable of being totally
produced and executed in a remote environment.

The representation model illustrated in Figure 3,
modeled and implemented through the paradigm of
object-oriented development allows instances of these
objects to be remotely created, edited and persisted
through service interfaces.

On the platform, a VR application consists of a
virtual world (VirtualWorldVO), one or more scenes
(SceneVO), which are composed of virtual objects
(VirtualObject3DVO) and appearance characteristics
(AppearanceVO, MaterialVO and TextureVO). Virtual
worlds, scenes and virtual objects are created and
maintained independent, allowing them to be reused
to compose other scenes and virtual worlds.

Besides the representation of the static elements
that make up the VR applications, elements of
the dynamic characteristics of applications are also
represented the. The behavior of the applications is
represented by the elements related to the association
of inputs (InputVO), events (EventVO) and behaviors
(BehaviorVO). Events can be generated by means
of data entry services (InputEventVO), depending
on time (TimerEventVO) or caused by events that
occur directly with objects in the virtual world
(Object3DEventVO).

Figure 4 shows the production of applications on
the platform. The aim is to discuss the potential for
reuse of the key elements that can compose a VR
application produced on the platform. It is possible
to observe the symbolic representation of four VR

Service-oriented�Platform�for�Virtual�Reality�Application�Development

199



Figure 3: Application Representation Model.

applications produced by the combination of the other
elements present in the repositories of the platform.

In the hierarchical representation model of the
proposed application, reuse can occur at four levels:
1. the Resource element (3D models, images,

sounds, videos) can be reused to define the virtual
objects or scenes, for example, a virtual object
that accesses a file with 3D representations, an
image that is used as texture of a virtual object.
This is illustrated in Figure 4 by the elements R3
and R4;

2. the VirtualObject element that can be reused to
make various scenes. This is illustrated in Figure
4 by Ob2, Ob3 and Ob4 elements;

3. the Scene element may be reused to form different
virtual worlds. This is illustrated in Figure 4 by
S1, S3 and S4 elements;

4. the VirtualWorld member can be reused to write
different applications. This is illustrated in Figure
4 by the VW2 element.
The capability to be reused is not only restricted

Figure 4: Levels of Reuse in Applications Production.

to the structure and appearance characteristics of
the application. The behaviors associated with
VirtualObject, Scene and VirtualWorld elements are
automatically reused, as part of the definition of these
elements.

4.3 Production Subsystem

In this article, the VR applications production
subsystem, consisting of components
such as VirtualObjectProductionManager,
SceneProductionManager,
VirtualWorldProductionManager and
ApplicationProductionManager, has been detailed.
Each component has its own service that exposes
its functionality through service interface. Figure
5 illustrates the main classes of the production
subsystem.

As described in the previous section, each
production subsystem component has a service that
exposes its functionality. Figure 5 illustrates, as
an example, the application production service
named ApplicationProductionService. The
ApplicationProductionService service exposes the
functionality of the ApplicationProductionManager
domain class responsible for the inclusion, change,
deletion and retrieval of ApplicationVO instances of
the applications repository. The ApplicationDAO
class is responsible for object-relational mapping of
ApplicationVO instances.

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

200



Figure 5: Production Subsystem.

5 ARCHITECTURE VALIDATION

A VR applications production environment prototype
was developed, as can be seen in Figures 6, 7, 8 and
9. The development of this software prototype had
two aims: 1) to evaluate the model representation,
editing and reuse of elements of VR applications in
the designed remote environment, and 2) to evaluate
the service interface provided by the VR applications
production subsystem. The production environment
prototype allows to create and edit four elements that
constitute a VR application as well the Application
element itselfas according to the representation model
illustrated in Figure 3.

Figure 6: Prototype of a Production Client - Virtual Object.

Figure 6 illustrates the editing screen of the
VirtualObject element. This element represents the
virtual objects that can be defined into 3D models by
means of reference Resource files, or by definition
of geometric shapes or by composition of more than
one virtual object. In this case study, the virtual
objects were produced by reference to the Resource
element previously inserted in the repositories. Figure
10 shows the inserted virtual objects in the case
study: Bladder-VO, Uterus-VO, LeftOvary-VO and
RightOvary-VO.

Figure 7 illustrates the editing screen of the Scene
element. This element represents the scenes that
are used to compose different virtual worlds. A

Figure 7: Prototype of a Production Client - Scene.

scene element can contain multiple VirtualObject
elements previously inserted in the repositories of the
platform. Besides the virtual objects, ambient light,
directional lights, geometric transformations, events
and respective behaviors are defined. Figure 10 shows
scenes inserted in this case study: Scene01, Scene02,
Scene03, Scene04 and Scene05.

Figure 8: Prototype of a Production Client - Virtual World.

Figure 8 illustrates the editing screen of the
VirtualWorld element. This element represents the
virtual worlds that are used to compose different
applications. A VirtualWorld element can contain
multiple Scene elements previously inserted in the
repositories of the platform. Figure 10 shows
the inserted virtual worlds in this case study:
VirtualWorld01, VirtualWorld02 and VirtualWorld03.

Figure 9 illustrates the editing screen of the
Application element. This element represents the

Service-oriented�Platform�for�Virtual�Reality�Application�Development

201



VR applications produced on the platform. An
Application element must contain a VirtualWorld
element previously inserted in the repositories of the
platform. Figure 10 shows the inserted applications
this case study: Application01, Application02,
Application03 and Application04.

Figure 9: Prototype of a Production Client - Application.

The prototype presented consumes services
provided by the platform subsystems, allowing these
elements to be created, edited or deleted. Different
production environments can be developed to suit
different levels of users. Another important aspect is
that due to the fact that the platform offers services
such as Web services, different implementation
technologies can be used for the development of
production environments. These environments can
be produced in different programming languages and
execution platforms.

Figure 10: Case Study Elements.

Besides the application production prototype, a
prototype for a VR application execution environment
was developed, created through the production
prototype. Figure 11 shows the three screens of
the implementation prototype. The first (top) is the
interface used to locate the application to be run
and the second and third (middle and bottom) shows
the feedback of the execution of the application on

Figure 11: Prototype of a execution client.

the server side. In this first prototype, feedback is
obtained by successive calls to the service which
returns frames that represent the rendering that occurs
on the server.

Once these critical points have been validated, the
design of the platform enters a phase of development
and deployment, where all the functionality of the
subsystems will be implemented for deployment and
delivery of the platform in a production environment.
Aspects of performance and robustness of the
platform will also be considered.

6 CONCLUSIONS

The proposed architectural model using the paradigm
of service-oriented computing allows any application
that is capable of invoking Web Services to
consume the services offered by the platform. The
representation model of VR applications presented
allows instances of virtual objects, scenes, virtual
worlds and applications to be created and edited
remotely via Web Services interface.

The representation of VR applications in an
online environment allows interactive content to be
shared and reused to produce new VR applications.

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

202



Reducing dependence on special features such as
graphic processing, high volume storage devices and
specific input, extends the possibilities of platforms
used as clients. With the holding of the execution
of applications on the server platform, it is possible
to reduce the requirements of these resources on the
client-side. The use of a service-oriented model
allows any computing environment (desktop, Web
or mobile devices) to be used to host applications
consuming the platform service.

The prototyping of the production and execution
subsystems on the server-side, together with
the prototyping of the production and execution
environments on the client-side, made it possible
to assess the viability of the proposal. Despite the
limitations of the prototype, it was possible to verify
the efficiency of the VR applications representation
model and remote services offered by the platform,
allowing the production, storage, reuse and execution
of VR applications in a remote and collaborative
environment.

As future work can be considered the development
of production and execution environments to run
in an Web platform, definition of a iconographic
representation of VR application elements, should
also be treated the performance and robustness
aspects of the platform, expanding the possibilities
of applications representations that require response
low-latency.

ACKNOWLEDGEMENTS

The authors thank CAPES, the Brazilian government
entity dedicated to the training of human resources
and FAPEMAT, Foundation for Research Support
of the State of Mato Grosso, for providing support
towards the viability of the EPUSP/UFMT/IFMT
agreement for the completion of the PhD on which
this work is based.

REFERENCES

Bein, D., Bein, W., and Madiraju, P. (2009). The impact of
cloud computing on web 2.0.

Chevaillier, P., Trinh, T.-H., Barange, M., De Loor,
P., Devillers, F., Soler, J., and Querrec, R.
(2012). Semantic modeling of virtual environments
using MASCARET. In 2012 5th Workshop on
Software Engineering and Architectures for Realtime
Interactive Systems (SEARIS), pages 1–8.

Erl, T. (2009). Soa Princípios de Design de Serviços.
PRENTICE HALL BRASIL.

Filho, R. F. d. A., Teichrieb, V., and Kelner, J. (2011).
Hydra: Virtual environments development platform.
In 2011 XIII Symposium on Virtual Reality (SVR),
pages 102–111.

Fowler, M. (2003). Patterns of enterprise application
architecture. Addison-Wesley, Boston, MA.

Matic, D., Butorac, D., and Kegalj, H. (2004). Data
access architecture in object oriented applications
using design patterns. In Electrotechnical Conference,
2004. MELECON 2004. Proceedings of the 12th IEEE
Mediterranean, volume 2, pages 595–598 Vol.2.

Papazoglou, M. P. and Heuvel, W. J. V. D. (2007). Service
oriented architectures: Approaches, technologies and
research issues. VLDB Journal, 16(3):389–415.

Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann,
F. (2008). Service-oriented computing: A research
roadmap. International Journal of Cooperative
Information Systems, 17(2):223–255.

Shao, G. and McGraw, R. (2009). Service-oriented
simulations for enhancing situation awareness.
In Proceedings of the 2009 Spring Simulation
Multiconference, SpringSim ’09, page 48:1–48:7, San
Diego, California. Society for Computer Simulation
International. ACM ID: 1639859.

Tori, R. and Kirner, C. (2006). Fundamentos de realidade
virtual. In Tori, R., Kirner, C., and Siscoutto,
R., editors, Fundamentos e Tecnologia de Realidade
Virtual e Aumentada, pages 02–21. Editora SBC –
Sociedade Brasileira de Computação, Porto Alegre,
VIII Symposium on Virtual Reality Belém – PA.

Wang, A. J. A. and Qian, K. (2005). Component-Oriented
Programming. Wiley-Interscience, 1 edition.

Zhang, X. and Gracanin, D. (2008).
Service-oriented-architecture based framework
for multi-user virtual environments. In Proceedings
of the 40th Conference on Winter Simulation, WSC
’08, page 1139–1147, Miami, Florida. Winter
Simulation Conference.

Service-oriented�Platform�for�Virtual�Reality�Application�Development

203


