
Evaluating the Effort for Modularizing Multiple-Domain
Frameworks Towards Framework Product Lines with

Aspect-oriented Programming and Model-driven Development

Victor Hugo Santiago C. Pinto1, Rafael S. Durelli2, André L. Oliveira2 and Valter V. de Camargo1
1Advanced Research Group on Software Engineering (AdvanSE)- Computing Department,

Federal University of São Carlos, Washington Luís highway - km 235, 13.565-905, São Carlos, SP, Brazil
2Institute of Mathematical and Computer Sciences, University of São Paulo, São Carlos, SP, Brazil

Keywords: Multiple-Domain Frameworks, Framework Product Lines, Framework Modularization.

Abstract: Multiple-Domain Frameworks (MDFs) are frameworks that unconsciously involve variabilities from several
domains and present two main problems: i) useless variabilities in the final releases and ii) architectural
inflexibility. One alternative for solving this problem is to convert them into Framework Product Lines
(FPL). FPL is a product line whose members are frameworks rather than complete applications. The most
important characteristic of FPLs is the possibility of creating members (frameworks) holding just the
desired variabilities. However, the process of converting an MDF into an FPL is very time-consuming and
the choice for the most suitable technique may improve significantly the productivity. The main focus of
this paper is an experiment that evaluates two techniques that are usually considered for dealing with
features: model-driven development and aspect-oriented programming. Our experiment was conducted
comparing the effort in converting an MDF called GRENJ into an FPL called GRENJ-FPL The results
showed significant differences regarding the time spent and the occurrence of errors using both techniques.

1 INTRODUCTION

Frameworks are reuse infrastructures that aim to
make the development of applications more
productive by reusing both design and source-code
from specific domains. The reuse process of a
framework is known as instantiation, which consists
in selecting variabilities to address application
requirements (Johnson, 1991; Gamma et al., 1995).
Regardless of the way a framework is instantiated,
all of its variabilities are usually carried along with
the application code in the final release. That is,
irrespective whether we are developing a small or a
huge application, the same set of features will be in
the final release (Batory et al., 2000).

Frameworks are widely adopted when they offer
a vast set of variabilities that cover as many domain
requirements as possible. Consequently, during
evolution processes, it is natural the inclusion of new
variabilities aiming to attend clients from new
domains. However, when the evolutions are not
properly managed and designed, certain added
variabilities may go beyond the borders of the
original conceived domain, i.e., the new variabilities

can belong to a domain/subdomain different from
that one originally covered by the framework. When
this happens, the framework becomes so broad that
supports the development of applications in different
domains; or at least in domains not previously
thought (Batory et al., 2000; Oliveira et al., 2012).
This brings many consequences, but the most
evident one is that applications will include in their
final release a lot of variabilities from other
domains, which will never be useful. We call this
kind of frameworks “Multiple-Domain
Frameworks” (MDF), because they provide a wide
set of variabilities for more than one
domain/subdomain (Codenie et al., 1997). This kind
of framework present problems for Framework
Engineers (FE) and Application Engineers (AE). For
AEs, it is necessary to select variabilities from a too
vast set; what may decrease their productivity. For
FEs, besides the maintenance become very complex,
the MDF architectural inflexibility prevent them to
compose smaller and more constrained frameworks.

Framework Product Line (FPL) is a Software
Product Line (Clements and Northrop, 2001) whose
composition of features does not result in

60
Hugo Santiago C. Pinto V., S. Durelli R., Oliveira A. and V. de Camargo V..
Evaluating the Effort for Modularizing Multiple-Domain Frameworks Towards Framework Product Lines with Aspect-oriented Programming and
Model-driven Development.
DOI: 10.5220/0004894900600070
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 60-70
ISBN: 978-989-758-028-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

conventional applications, but in frameworks. So,
the members of an FPL are frameworks that still
need to be instantiated to create or to support the
development of final applications. There are two
main goals behind the idea of FPLs: i) allowing a
more productive development of different
frameworks that share a common set of reusable
assets and ii) allowing the composition of
frameworks that contain just the variabilities likely
to be used in its domain, that is, preventing the
creation of frameworks with useless variabilities
(Batory et al., 2000; Kästner et al., 2009). As the
main problem of MDFs is one of the main goals of
FPLs (goal ii) we recognize that FPLs is a promising
alternative for solving the problems of MDFs, that
is, the conversion of an MDF into an FPL can solve
the aforementioned problems.

However, the process of converting an MDF into
an FPL is a time consuming and error-prone process
involving several activities. During this process one
important decision is regarding the technique which
must be employed during the conversion process
(Zanon et al., 2010). The productivity along this
process as well as the quality of the resulting MDF
is highly dependent on the technique used. Aspect-
Oriented Programming (AOP) (Kiczales et al., 1997;
Kiczales et al., 2001) and Model-Driven
Development (MDD) are two promising
technologies that are widely employed to deal with
features in software product lines (Mezini and
Ostermann, 2004; Trujillo et al., 2007; Voelter and
Groher, 2007; Gottardi et al., 2013).

In this paper we present an experiment that
compares the effort of converting an MDF into an
FPL using AOP with AspectJ (Kiczales et al., 2001)
and MDD with Acceleo Templates (Obeo, 2013).
The MDF used in the experiment was GRENJ
(Durelli et al., 2010), which is a framework
originally conceived to support the business-
transaction management domain. GRENJ is an MDF
because it involves three subdomains, so
applications that belong to one of those subdomains
and that were developed with the support of this
framework, carry with them a lot of variabilities
which will never be used. We analyzed the time
spent to modularize its subdomains and the problems
found in the derived members from the FPL
obtained.

Therefore, the main contributions of this paper
are: i) providing directions for those who needs to
decide which technology (AOP or MDD) is the most
suitable for converting MDFs into FPLs. ii)
revisiting the concept of FPL and MDF iii) provide a
quick overview of the process for converting an

MDF into an FPL.
In Section 2, the typical characteristics of the

MDFs are discussed. In Section 3, the FPL concept
is revisited and the main steps of our conversion
process are briefly described. In Section 4, the
structure of our experimental study and the results
are presented, in which the GRENJ subdomains
were modularized in order to obtain FPLs. In
Section 5, we present the related work and finally in
Section 6 the conclusions and future perspectives.

2 MULTIPLE-DOMAIN
FRAMEWORKS

Multiple-Domain Frameworks (MDFs) is a term we
have used to designate frameworks whose
boundaries go beyond just one domain, that is, they
provide variabilities to support the development of
several domains of the applications.

Conventional frameworks become MDFs when
they are submitted to a non-controlled and
unmanaged evolution process. As a consequence,
their architecture becomes inflexible avoiding the
composition of frameworks targeted to the domain
of applications. Since MDFs cover more than one
domain, applications that are developed with their
support involves in their final release variabilities
that will never be used by these applications.

So, one inherent problem of MDFs is the
presence of useless variabilities in specific sets of
applications, that is, variabilities that are not likely
to be used in the future (Batory et al., 2000). As a
result, MDFs present problems for Application
Engineers (AEs) and Framework Engineers (FEs).
AEs need to live together with a vast set of
variabilities and parts of them are useless to some
specific domains, impacting negatively on their
productivity. FEs do not manage to build smaller
framework versions thanks to the architectural
inflexibility.

These characteristics of the MDFs are common
and real difficulties. For instance, if an application is
developed using the Hibernate (JBoss-Community,
2013), the final release will include the object code
of both the application and the whole framework,
regardless of the amount of variabilities that is used.

Based on available documentation about
Hibernate (Bauer and King, 2004; JBoss-
Community, 2013), we identified that although there
were parts separately available, such as: ORM
(Object/Relational Mapping), Shards, Search, Tools,
Validator, Matamodel Generator e OGM

Evaluating�the�Effort�for�Modularizing�Multiple-Domain�Frameworks�Towards�Framework�Product�Lines�with
Aspect-oriented�Programming�and�Model-driven�Development

61

(Object/Grid Mapper), there are other modules
provided together with the core and are not always
used in applications. These modules have
variabilities to address certain technical subdomains
regarding to platform of the applications.

For instance, “Envers” is highly common in SaaS
(Software as a Service) in which the software
deployment model allows the users to access a
specific application or module that is hosted by the
vendor as needed. Another example is “OSGi” that
is designed for highly dynamics applications and
thus they need to be frequently modified. In these
applications, the components must be installed,
deactivated, and uninstalled during runtime, without
requiring a system restart. Furthermore, this
framework supports the development in several
databases, so it has many dialects and kinds of
transactions and sessions.

In general, the whole framework is kept along
with the application, even if few variabilities are
actually used. However, since there is the possibility
of using the other non-used variabilities when the
application evolves, this is not recognized as a
problem, because this is a framework characteristic.

On the other hand, in cases as Hibernate, there
are variabilities not likely to be used in certain sets
of applications. To clarify this idea, when we type
for a period, it is possible select a variability of
Hibernate from the list that is showed. Regardless of
the domain or complexity of the application that we
are developing, the same set of variabilities is
presented and, as aforementioned, there are specific
variabilities covered by Hibernate to address
different application domains.

3 FRAMEWORK PRODUCT
LINES

A “Framework Product Line” is a kind of Software
Product Line whose members are frameworks rather
than concrete and functional applications. Thus, the
features composition in FPLs results in frameworks
that still need to be instantiated or coupled to
concrete applications to work properly (Zhang and
Jacobsen, 2004; Camargo and Masiero, 2008;
Batory et al., 2000; Oliveira et al., 2011).

Figure 1 illustrates the main idea of an FPL. In
the part (a), there is a feature model which
represents an FPL. In the part (b) there are
framework members generated from the FPL. In the
part (c), we can see the applications that were
developed with framework members support.

In the part (a), the common part is called Core and
the other features stand for the subdomains S1, S2
and S3. The reason for creating this FPL is to allow
the reuse of the Core, since there are common
variabilities that may be used in both subdomains; if
this is not the case, the ideal would be three entirely
independent frameworks. In the case of this FPL, the
subdomains are disjoint, i.e., although there is a
common set of variabilities, there are specific
variabilities to address only one of them. In that
way, the three members from this FPL are possible
to be built, as illustrated in the part (b). For instance,
there is a set of applications which can be developed
and evolved with a framework containing only the
features Core and S1 without the remaining
variabilities, as it is shown in the part (c).

In this paper, we consider only FPLs with
coarse-grained features, i.e., features in subdomain
level. Thus, their variabilities are associated with
subdomains or separated in a common part forming
the feature Core. However, an FPL can also be
developed in order to obtain fine-grained features. In
this case, it will have a more flexible architecture,
because with the variabilities separated into a greater
set of features and combinations among them, it is
possible to compose members more targeted and
constrained to the applications requirements.

Figure 1: Framework Product Line.

Regardless of the granularity of the features, an
FPL should be modularized in a way that does not
allow the composition of frameworks with features
that will never be used for certain sets of
applications. We believe that the most common
situation is the generation of large frameworks from
FPLs with coarse-grained features. However, if
necessary, someone can build FPLs with a larger
number of fine-grained features for the provision of
various frameworks with slightly different
characteristics.

One important point to be highlighted is that in
an FPL with fine-grained features, when applications
evolve, they may ask for features that do not exist in

b) Derived Frameworks

c) Applications

S2

Core

S1

Core

S3

framework 1 framework 2 framework 3

App1
modules

App2
modules

App3
modules

App4
modules

App5
modules

App6
modules

App1 App2 App3 App4 App5 App6

framework 1 framework 1 framework 2 framework 2 framework 3 framework 3

S1 S2 S3

Core

Core

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

62

the restricted version of the framework. Thus, it is
important to have an “on-demand feature selection
and composition” strategy. Therefore, there must be
a mechanism for searching new features in the FPL,
checking them out and composing them to the
framework. This is important, but it is out of the
scope of this paper.

The main motivation for an FPL with coarse-
grained features is to identify if a framework
comprehends more than one subdomain, that is,
when using it to develop applications that are
specific to the framework subdomain. A set of
features may not be used during instantiation;
nonetheless, since they belong to the same
subdomain of the developed application, they are
likely to be used in the future. As the granularity of
the FPL features is coarse, one may create wider
frameworks. This means that applications can evolve
without having to seek features that are not in the
framework. The number of features that are carried
along with the application is much higher, though; it
is a trade-off.

3.1 Conversion Process

To transform MDF into FPL, we developed a
conversion process that requires several activities. In
this paper, we briefly describe only the relevant
details of the process in the context of our
experimental study.

First of all, it is important to identify the
subdomains covered by MDF. A way to perform this
task is to consider all available information about the
framework, such as documentation, previous
knowledge and developed applications with its
support. For instance, GRENJ was developed based
on a pattern language called GRN (Braga et al.,
1999) and applications developed with its support
involve rental, trade and maintenance transactions of
business resources. In that way, we consider as
subdomains: Rental, Trade and Maintenance.

Secondly, we suggest creating a feature model
(Kang, 1990) to represent the subdomains. For this,
it is necessary to make proper decisions based on
domain knowledge to define the properties and
relationship among features.

In case of GRENJ, it is important to note that this
framework was developed to address applications in
a constrained domain, i.e., small businesses as video
store, etc. Then, we identified that applications from
Rental subdomain can evolve and use the
variabilities from Trade and vice-versa. Thus, Rental
and Trade can stay together, but separated from
Maintenance. Applications from Rental subdomain

do not need to use the variabilities from
Maintenance subdomain. However, the applications
from Trade subdomain can evolve adding
Maintenance. In that way, we established “or”
relationships among features and we also defined an
“excludes” constraint between Rental and
Maintenance (Barreiros and Moreira, 2011). Figure
2 shows the feature model for GRENJ framework.
Note that, besides the features to represent each
subdomain, there is a feature called Core because
there are common variabilities among the
subdomains.

Figure 2: Features model for GRENJ.

Afterwards, we need to identify the modular
units that collaborate with the implementation of
each feature. Regarding to this issue, it is important
to know the framework architecture in order to
identify which pieces of code must be modularized
to obtain an FPL. After this identification, a proper
technique must be selected to modularize the
features and obtain an FPL that is flexible in
architectural terms.

4 EXPERIMENT

This section describes an experiment that compares
the effort to convert an MDF into an FPL using two
techniques: Aspect-Oriented Programming (AOP)
using AspectJ (Kiczales et al., 2001) and Model-
Driven Development (MDD) using Acceleo (Obeo,
2013). We have chosen AOP because it is the most
well-known technique for modularizing crosscutting
concerns and AspectJ language because is the most
disseminated AOP language. Concerning MDD, we
have chosen Acceleo because it allows associating
pieces of code with their respective features and
generating source-code from models. The MDF used
as our case study was GRENJ.

The aim of the experiment is to assist domain
engineers in choosing the most suitable technology
to be used when converting an MDF into an FPL. It
is important to highlight that the experiment does
not aim neither to evaluate the conversion process
nor to show that an FPL is better or worse than an
MDF. As the time spent to conduct the conversion
is so important as the quality of the obtained FPL,
we also take into account the number of errors in

Core

MaintenanceTrade

excludes

Evaluating�the�Effort�for�Modularizing�Multiple-Domain�Frameworks�Towards�Framework�Product�Lines�with
Aspect-oriented�Programming�and�Model-driven�Development

63

members derived from the FPL.
As previously discussed, the process to convert

an MDF requires three high-level activities.
Considering the complexity in performing these
activities, we have decided to evaluate just the third
activity. Thus, we had previously identified the
MDF subdomains and provided the final feature
model to the subjects. This feature model is the same
illustrated in Figure 2.

4.1 Planning

The experiment was planned mainly to answer the
following research questions: RQ1: “Is the
productivity different when using AOP or MDD
to convert an MDF into an FPL?”, and RQ2: “Is
there difference in terms of structural and
inconsistence errors when using AOP or MDD?”

To answer the first question, we gathered and
assessed the time spent to make the conversion. It is
important to notice that the total time spent includes
the time to handle errors found in the resultant FPLs’
members. Similarly, to answer the second question,
we analyzed a form that the subjects had filled
informing the errors they had found. The planning
phase was divided in six parts that are described in
the next subsections.

4.1.1 Context Selection

The experiment was conducted involving graduate
students in Computer Science and it was performed
in a laboratory at the university.

4.1.2 Hypothesis Formulation

The RQ1 was formalized as follows: Null
hypothesis, H0: There is no difference between the
AOP and MDD in terms of time spent to obtain an
FPL from an MDF, that is, the techniques are
equivalent.

Alternative hypothesis, H1: There is difference
between the AOP and MDD in terms of time to
obtain an FPL. Thus, the techniques are not
equivalent. Hypotheses for the RQ1 can be
formalized by equations 1 and 2:

H0: μAOP = μMDD (1)
H1: μAOP ≠ μMDD (2)

Similarly, the RQ2 was also formalized in two
hypothesis, as follows: Null hypothesis, H0: There is
no significant difference between the AOP and
MDD in terms of errors found in the outcome FPLs’
members. Thus, the techniques are equivalent.
Alternative hypothesis, H1: There is difference

between AOP and MDD in terms of errors found in
the outcomes FPLs’ members. Thus, the techniques
are not equivalent. Similarly, the hypotheses for the
RQ2 can be formalized by equations 3 and 4:

H0: μAOP = μMDD (3)

H1: μAOP ≠ μMDD (4)

4.1.3 Variable Selection

The dependent variables are: (i) the “time spent to
restructure an MDF into an FPL” and (ii) the
“number of errors found in the outcome FPL
members”. The independent variables are: (i) FPL:
The subjects were asked to create two FPLs from the
given MDF. The only difference between the
resultant FPLs was the employed techniques, i.e.,
either AOP or MDD; (ii) Trade and Rental
subdomains from GRENJ.

4.1.4 Selection of Subjects

Subjects were selected according to convenience
sampling (Wohlin et al., 2000). Fourteen students
from the Computer Science post-graduate program
participated in the experiment. The scope of their
attendance was the “Topics in Software
Engineering" course.

4.1.5 Experiment Design

The experiment followed the general design
principle of grouping the subjects in homogeneous
blocks (Wohlin et al., 2000). Thus, it was possible to
avoid a direct impact of the experience level in the
treatment outcomes of the restructuring technique
factor, increasing the accuracy of the experiment.

In order to divide the subjects in balanced
groups, we firstly asked them to fill out a
Categorization Form with questions about their
experience level in themes related to the experiment
– this was the self-avaliation. Later, we asked them
to solve some experiment-related exercises to check
their solutions against the self-evaluation to verify if
what they had said about themselves was really true.
So, based on these data we divided them in two
blocks of seven subjects. These groups were
submitted to a pilot experiment, and based on the
data gathered from the pilot we rearranged the
groups again for the real experiment.

The Categorization Form included questions
regarding to the knowledge about: Java, AspectJ,
Acceleo, Developer Level, GRENJ, GRN and
Eclipse IDE. Figure 3 describes the results of the
application of this form in a grouped bar graph. This

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

64

graph illustrates the levels of experience of all
subjects as well as the average level of them, i.e., the
rectangles overlapped with labels. These levels were
gathered to quantify the weight between the degrees
of knowledge of each subject, e.g., scales 1 through
3 wherein: 1 (one) represents that the subject has
basic level, 2 (two) represents that the subject has
medium level, and 3 (three) represents that the
subject has high level of experience. Based on these
data, the subjects were separated into two balanced
groups, considering the Categorization Form,
exercises and data collected from pilot experiment.
The subjects S1 to S7 belong to group 1 and the
subjects S8 to S14 are from group 2.

Figure 3: Experience level of all subjects.

Table 1: Experiment Design.

 Phase Group 1 Group 2

Training

1st Phase
Development Techniques: AOP and

MDD

2ndPhase
Restructuring of the GRENJ towards

FPL using AOP and MDD

Pilot

1st Phase

MDD AOP

*Modularizing the

Trade Subdomain
*Modularizing the
Rental Subdomain

2ndPhase

AOP MDD

*Modularizing the

Rental Subdomain

*Modularizing the

Trade Subdomain

Real
Experiment

1st Phase

MDD AOP

Modularizing the

Trade Subdomain

Modularizing the

Rental Subdomain

2ndPhase

AOP MDD

Modularizing the

Rental Subdomain

Modularizing the

Trade Subdomain

Table 1 shows the experiment configuration.
During the Training, every subject was introduced to
both AOP, using AspectJ, and MDD, using Acceleo
templates. Afterwards, they were taught on how to
use these technologies to modularize the Trade and
Rental subdomains of the GRENJ into features of
the target FPL. Notice that the subjects had not

converted the whole GRENJ, just two of its
domains. However, we claim that this was enough to
evaluate the given technologies.

As can be seen in Table 1, the steps Pilot and
Real Experiment have the following activities:
“Modularizing the Trade Subdomain” and
“Modularizing the Rental Subdomain”, using either
MDD or AOP. The result of each modularization is
a "partial FPL" that allows generating some
members. These members contain just the
variabilities related to the modularized subdomain,
avoiding the presence of variabilities that belong to
others domains. For instance, the modularization of
the Rental subdomain results in a partial FPL that
allows generating a framework without the features
of the Trade and Maintenance subdomains. In order
to test FPL members, we provided a workspace with
ready applications to use the members. Thus, the
subjects added the member to the applications and
then, they executed the test case.

The activities in the pilot and in the real
experiment had the same descriptions. They were
not exactly the same because this would threaten the
validity of the obtained data in the real experiment.
Thus, for each activity of the subdomains
restructuration, we provided different versions of the
Trade and Rental subdomains. To indicate this
difference, in the activities of the pilot experiment
there is “*”, meaning a different version of the
subdomains used in the real experiment.

The size and complexity in modularizing both
subdomains were equivalent. For instance, the
modularization of both Trade and Rental
subdomains required the modularization of 6 full
classes and 17 methods scattered over 7 classes.
That is, the activity “Modularizing the Trade
Subdomain” in the pilot required that 17 methods
scattered over 7 classes and 6 whole classes should
be modularized. This activity, in the real experiment,
required the same effort, but with others methods
and classes. The same is valid for the modularization
of the Rental subdomain.

4.1.6 Instrumentation

To assist the subjects in the conversion process, we
provided them with a document which shows the
mapping between classes and features of the
GRENJ, simulating as if they had already done these
activities previously. Therefore, it was
straightforward for the subjects to identify which
classes collaborate with the implementation of the
features. Table 2 illustrates part of this mapping
document.

The lines represent the features and the columns
represent the MDF classes. Each cell marked with

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Java (OOP)

AspectJ (AOP)
Acceleo (VSC)

Developer Level
GRENJ

GRN

Eclipse IDE

1.29 1.86 1.14 1.71 1.14 1.43 1.71 1.71 1.71 1.29 1.14 1.43 1.57 1.29

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

Evaluating�the�Effort�for�Modularizing�Multiple-Domain�Frameworks�Towards�Framework�Product�Lines�with
Aspect-oriented�Programming�and�Model-driven�Development

65

“X” indicates that class collaborates with the
implementation of that feature. For instance,
AbstractCalculator is a class that contributes to the
implementation of the Core feature and
BasicDelivery contributes to the Trade feature.
Furthermore, we also had inserted comments in the
source code of the classes to indicate which pieces
of code were related to the features. In addition, we
also provided the class documentation and a guide
with the steps that must be followed during the
conversion process.

Table 2: Mapping between Classes and Features of the
GRENJ.

A
bs

tr
ac

tC
al

cu
la

to
r

B
as

ic
D

el
iv

er
y

B
as

ic
M

ai
nt

en
an

ce

B
as

ic
N

eg
ot

ia
ti

on

B
as

ic
Pu

rc
ha

se

B
as

ic
S

al
e

B
us

in
es

sR
es

ou
rc

eQ
uo

ta
ti

on

B
us

in
es

sR
es

ou
rc

eT
ra

ns
ac

tio
n

C
as

h

C
as

hO
nD

el
iv

er
y

Classes
Features

Core X X X X X X
Trade X X X
Rental

Maintenance X

Thus, with the feature model and the mapping
document at hand, the subjects were asked to obtain
two FPLs, each one with a different modularization
technique, but equivalent in terms of functionally,
complexity and composition alternatives.

4.2 Operation

Once the experiment had been defined and planned,
it was performed according to the following steps:
preparation, operation, and validation of the
collected data.

4.2.1 Preparation

At this stage, the students got committed with the
experiment and they were made aware its purpose.
Thus, they accepted the terms regarding the
confidentiality of the provided data, which would be
only used for academic purposes, and their freedom
to withdraw, by signing a Consent Form. In addition
to this form, other objects were provided as follows:
 Characterization Form: Questionnaire in which

the participants assessed their knowledge about
on the technologies and concepts used in the
experiment;

 Support Material: Roadmap describing the steps
to restructure the Trade and Rental subdomains

of the GRENJ;
 Data Collection Form: Document containing

empty spaces to be filled by the participants to
record the start and finishing time of each
activity during the experiment.
In order to avoid interference between the time

spent in learning AOP and MDD techniques, a 24
hours training, divided into six daily meetings of
four-hours, was planned and provided to all
participants. Thus, everybody was able to perform
the activities proposed in the experiment.

The platform adopted to perform the experiment
consisted of Java as implementation language,
AspectJ as aspect-oriented language, Acceleo
templates as a tool to create the rules of source code
generation and the Eclipse IDE as development
environment.

4.3 Data Analysis

This section presents our findings. The analysis is
divided into two points: (i) descriptive statistics and
(ii) hypotheses testing.

4.3.1 Descriptive Statistics

Herein we provide descriptive statistics of the
experiment data. The data collected during the
experiment are depicted in Table 3: (i) the time
employed for each subject for restructuring the
GRENJ into two FPLs, using both MDD and AOP
and (ii); the types and number of problems found in
the resultant FPL members.

Before applying statistical methods, we verified
the quality of the input data (Wohlin et al., 2000).
Incorrect data sets can be obtained due to
systemantic errors or the presence of outliers, which
are data values that are much higher or much lower
than expected when compared with the remaining
data. Therefore, we used box plot (Wohlin et al.,
2000) as a way to identify outliers. Figure 4 shows
the box plot based on time spent by all subjects.

As result, we identified just one subject, the
“S11”. Thus, we did not consider the data collected
from this subject in the average time and in the
average of the number of problems foud. It is also
important to note that although the time consumed
is unbalanced, the subjects were separated in a
balanced way, as described earlier.

Table 3 shows that for most subjects, AOP
technique spent more time to restructure the GRENJ
subdomains than the MDD, i.e., aproximately 53%
against 47%. This result is due to the fact that, in the
AOP, the subjects obtained more errors regarding

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

66

the inconsistency and structure, 9 out of 13 subjects
considered specifically, concluded the restructuring
with more time. On the other hand, when the
subjects used MDD, they performed it with less
errors. Furthermore, in Table 3 it is possible
visualize two kinds of problems that we have found
in the FPL members: inconsistency and structure. It
is evident by observing this table that the MDD
technique guided all subjects to make less problems
than the AOP, i.e., 25% against 75% for
inconsistency and the same for structure,
respectively. By observing Table 3 we can remark
that the MDD, using templates conducts the
developer to make a design with less problems than
the AOP technique.

Figure 4: Box plot for the time spent by the subjects.

Table 3: Gathered Data.

 Problems Total number
of problems Time (min) Inconsistency Structure

G S MDD AOP MDD AOP MDD AOP
Total
MDD

Total
AOP

1

S1 26 24 0 5 0 0 0 5

S2 24 23 1 2 0 0 1 2
S3 12 19 0 0 0 2 0 2
S4 27 37 0 1 1 3 1 4
S5 28 29 0 0 0 0 1 0
S6 24 40 0 0 0 1 0 1
S7 19 23 0 0 0 0 0 0

2

S8 25 13 1 0 2 0 3 0
S9 12 15 0 1 0 1 0 2
S10 21 19 1 1 0 2 1 3
°S11 41 47 0 4 0 0 0 4
S12 26 32 0 0 0 2 0 2
S13 30 35 1 1 0 1 1 2
S14 31 34 0 1 1 0 1 1
Avg. 23.46 26.38 0.31 0.92 0.31 0.92
% 47% 53% 25% 75% 25% 75%

4.3.2 Hypotheses Testing

Hypothesis Testing - Time: Since some statistical
tests only apply if the population follows a normal
distribution, before choosing a statistical test we
examined whether our gathered data departs from

linearity. Therefore, we have used Shapiro-Wilk test
on the gathered time; this is shown on third and
fourth column in Table 3 (group by Time(min)).
These data represent the time that all subjects spent
to devise an FPL by using both MDD and AOP. For
these data the p-value is 0.8107, considering an α =
0.05. As a consequence, we do not reject the
hypothesis that the data are from a normally
distributed population, as can be seen in the Q-Q
plot which is plotted in Figure 5 (left side). In this
plot we also showed the results without the presence
of the outlier.

Afterwards, we have applied Paired T-Test in
these data. In order to carry out the test with the data
the following were calculated: d = {2, 1, -7, -10, -1, -
16, -4, 12, -3, 2, -6, -5, -3}, Sd = 6.726336 and t0= -
1.5669. The number of degrees of freedom is f=n-
1=13-1=12, and the confidence interval are -
6.987761 to 1.141607. According to Student’s t
Table, it can be seen that t 0.025,9 = 2.16037. As for
t0 < t 0.025,9 it is impossible to reject the null
hypothesis with a two-sided test at the 0.05 level.
Therefore, statistically, we may assume that the time
needed to modularize an MDF into an FPL by using
both AOP and MDD are approximately equal.

Figure 5: Normality test.

Hypothesis Testing - Problems: Similarly, we
used Shapiro-Wilk test on both ninth and tenth
column. These data represent the amount of
problems that were found in the resultant FPL, by
using both the AOP and MDD. Therefore, for these
data the p-value is 0.001026, considering α = 0.05.
As p-value is less than alpha level we rejected the
hypothesis that the data are from a normally
distributed population. It is fairly evident by
observing the Figure 5 (right side) that the problems
lie nearly in a straight line, but not exactly,
indicating that the problems may not be i.i.d normal.
Thus, we used a non-parametric test, the Wilcoxon
signed-rank test. The signed rank of these data are
s/r = {-10, -2, -5.5, -8.5, -2, 8.5, -5.5, -5.5, -2}. As
result we got a p-value = 0.06549227, once p-value
is greater than 0.05, we can conclude that there is
not considerable difference between the means of

AOP

1
5

 2
0

2
5

3
0

 3
5

4
0

4
5

0

 1

 2

3

 4

 5

-2 -1 0 1 2 -2 -1 0 1 2

Normal Theorical Quantiles Normal Theorical Quantiles

N
o

rm
a

l D
a

ta
 Q

u
a

n
til

e
s

N
o

rm
a

l D
a

ta
 Q

u
a

n
til

e
s

Evaluating�the�Effort�for�Modularizing�Multiple-Domain�Frameworks�Towards�Framework�Product�Lines�with
Aspect-oriented�Programming�and�Model-driven�Development

67

the two treatments, considering the Wilcoxon
signed-rank test. Thus, we were not able to reject H0,
even though the number of errors obtained with
MDD were lesser (9 against 24, without outlier) than
errors obtained with AOP.

4.4 Threats to Validity

4.4.1 Internal Validity

 Experience Level of Participants: One can argue
that the heterogeneous knowledge of the subjects
could have affected the collected data. To
mitigate this threat, we divided the participants
into two-balanced blocks considering the
experience level and we rebalanced the groups
considering the preliminary results. During the
training, the subjects were trained on how to use
the AspectJ and Acceleo to restructure
frameworks in order to obtain FPLs;

 Productivity under evaluation: One can argue
that the results were influenced because the
subjects often tend to think they are being
evaluated by experiment results. In order to
mitigate this, we explained to the subjects that no
one was being evaluated and their participation
was considered anonymous;

 Facilities used during the study: different
computers and installations could affect the
recorded timings. However, the subjects used the
same hardware configuration and operating
system.

4.4.2 Validity by Construction

 Hypothesis expectations: the subjects already
knew the researchers, in which reflects one of our
hypotheses. This issue could affect the collected data
and cause the experiment to be less impartial. In
order to keep impartiality, we enforced that the
participants had to keep a steady pace during the
whole study.

4.4.3 External Validity

 Interaction between configuration and
treatment: it is possible that the exercises performed
in the experiment are not accurate for every
framework development for real world applications.
Only two FPLs were developed and they had the
same complexity. To mitigate this threat, the
exercises were designed considering framework
domains based on the real world.

4.4.4 Conclusion Validity

 Measure reliability: it refers to the metrics used
to measure the development effort. To mitigate
this threat we have used only the time spent,
which was captured in forms filled by the
subjects;

 Low statistic power: the ability of a statistic test
in reveals reliable data. To mitigate we applied
two tests: T-Tests to statistically analyze the time
spent to develop an FPL and Wilcoxon on
signed-rank test to statistically analyze the
number of problems found in the outcome FPL.

5 RELATED WORK

The most related work to ours is presented by
(Batory and Shepherd, 2011), introducing the
concept of Product Line of Software Product Line
(SPL2). The idea is to provide simpler specifications
and prevent the generated applications from
considering unnecessary features in product lines,
which core is extensive. Thus, it is demonstrated
that, from the analysis of the derived applications
from a product line, some applications require only
part of the core. Therefore, features can be
dissociated from the core, generating a greater
number of features, as well as a probably higher
number of combinations with the new features of the
line. This way, it is possible to generate applications
that only contain the essential features. MDFs are
fully considered by applications as an "indivisible
core". They do not provide experiments comparing
possible technologies to modularize the core of an
SPL. In our paper, we present a solution for
frameworks, but not for SPL. The solution avoids
unnecessary features in applications and improves
the architectural flexibility and the framework reuse.

Another approach was proposed by (Xu and
Butler, 2006). The researchers presented a
methodology for restructuring of frameworks in
cascade. They consider that a framework can be
specified by a set of models and, through these, a set
of modularizations may be sequentially applied. The
modularization starts in the feature model, then in
the use case model and, after that, in the
architectural model till it achieves the source code.
In order to preserve the framework behavior after
each change, trace maps should be used among the
models. As a result of the process, decision records
regarding the transformations are analysed in order
to document and to completely restructure the
framework, with improvements in terms of

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

68

modularity, which reflect more effective levels of
maintenance. Considering their methodology, trace
maps can assist the modularization of MDFs in
FPLs. Their work presents just a strategy, but does
not concern about modularization criteria and an
empirical study comparing technologies that can be
applied in the modularization process.

6 CONCLUSIONS

The main focus of this work was to investigate the
impact AOP and MDD impose when converting a
MDF into a FPL. Although FPL principles are
technology and language independent, the process of
converting an MDF into a FPL is influenced by the
technology used. So, we concentrated on the i) the
time employed to convert an MDF into an FPL and
ii) the number of errors found in the resultant FPL
members.

Thus, it must be emphasized that the time spent
to make restructuration is not so important as the
quality of FPL obtained. A package containing the
tools, materials and more details about the
experiment steps is available at http://
www2.dc.ufscar.br/~victor.santiago/exp.zip.

The main findings of our experiment showed
that, in terms of productivity, there is no much
difference of using AOP or MDD. However, the
number of inconsistency and structural errors of the
resulting FPL members were significantly
influenced, that is, AOP got 50% more errors than
MDD. So, taking into consideration all the
limitations of our experiment, we conclude that
MDD with Acceleo templates is a better option.

An FPL provides a flexible architecture that
enables the creation of members that have a subset
of the features. These members are frameworks
completely aligned with the domain of these
applications, so they need to be instantiated in order
to obtain concrete applications. When converting
MDFs into FPLs, one can achieve greater flexibility
in the composition of features, which provide
smaller frameworks and also better productivity
levels by reducing errors in the instantiation process.
The flexibility of composing features of an FPL
enables to address the specific demands of
applications.

Considering the concepts presented, one of the
future perspectives of our work is to explore the
possibility of developing an SPL from an FPL that
was obtained from an application framework,
including the classes that instantiate it and, then,
compose and test the applications derived from this

line. Besides, we also intend to explore the synergy
between the concept of Software Ecosystems
(SECOS) (Jansen and Cusumano, 2012) and FPL.
This seems to be a very promising research field,
since an FPL may consist of several developers on a
distributed and open-source platform, that is, a
collaborative network.

One current limitation FPLs is the lack of a
comprehensive tool that supports the conversion
process. With a complete tool, it would also be
possible to investigate the impact of new features in
the architecture of an FPL, by analysing the
interferences they can cause in the existing ones. It
is also believed that the creation of a plugin to
visualize the mapping between features and classes
can assist FEs in the conversion process, by showing
which classes implement a particular feature and
which are affected in case a feature is selected.

Another interesting tool which could be
developed is one that could enable the creation of
FPL members at various abstraction levels. Firstly,
the FPL Engineer could create members with the
features of a given domain and, then, if necessary,
they would select a more specific set of features
from this subdomain.

ACKNOWLEDGEMENTS

The authors would like to thank CNPq (Process
560241/2010-0) and Fapesp (Process 2011/04064-8)
for financial support.

REFERENCES

Barreiros, J., Moreira, A., 2011. Soft Constraints in
Feature Models. In Proceedings of the 6th
International Conference on Software Engineering
Advances. ICSEA, pp. 136-141.

Batory, D., Cardone, R., Smaragdakis, Y., 2000. Object
Oriented Frameworks and Product Lines. In 1st
Software Product Lines Conference. SPLC1, pp. 227-
247.

Batory, D., Shepherd, C. T., 2011. Product Lines of
Product Lines. Technical Report, University of Texas,
Department of Computer Science.

Bauer, C., King, G., 2004. Hibernate in Action (In Action
series), Manning Publications Co.. Greenwich, CT,
2nd edition.

Braga, R. T. V., Germano, F. S. R., Masiero, P. C., 1999.
A Pattern Language for Business Resource
Management. In Proceedings of the 6th Pattern
Language of Programs Conference, pp. 1-33.

Camargo, V. V., Masiero P. C., 2008. An approach to

Evaluating�the�Effort�for�Modularizing�Multiple-Domain�Frameworks�Towards�Framework�Product�Lines�with
Aspect-oriented�Programming�and�Model-driven�Development

69

design crosscutting framework families. In
Proceedings of the 2008 AOSD workshop on Aspects,
components, and patterns for infrastructure software,
pp. 1-6.

Clements, P., Northrop, L., 2001. Software Product Lines:
Practices and Patterns, Addison-Wesley Professional,
Boston, 3rd edition.

Codenie, W., Hondt, K., Steyaert, P., Vercammen, A.,
1997. From Custom Applications to Domain-Specific
Frameworks. Communications of the ACM, 40(10).

Durelli, V. H. S., Durelli, R. S., Braga, R. T. V., Borges,
S. S., 2010. A Domain Specific Language for
Lessening the Effort Needed to Instantiate
Applications Using GRENJ Framework. In:
Information Systems Brazilian Symposium, pp. 31-40.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995.
Design patterns: Elements of reusable object-oriented
software. Addison Wesley.

Gottardi, T., Durelli, R., López, O., Camargo, V. V., 2013.
Model-based reuse for crosscutting frameworks:
assessing reuse and maintenance effort. In Journal of
Software Engineering Research and Development, v.
1, p. 4-34.

Jansen, S., Cusumano, M., 2012. Defining Software
Ecosystems: A Survey of Software Platforms and
Business Network Governance. In Proceedings of the
4th Workshop on Software Ecosystems. IWSECO, pp.
41-58.

JBoss-Community, 2013. Hibernate http://
www.hibernate.org.

Johnson, R. E., 1991. Reusing Object-Oriented Design.
University of Illinois, Technical Report.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E,
Peterson, A. S., 1990. Feature Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report.

Kästner, C., Apel, S., Rahman, S. S. ur, Rosenmüller, M.,
Batory, D., Saake, G., 2009. On the impact of the
optional feature problem: analysis and case studies. In
Proceedings of the 13th International Software
Product Line Conference. SPLC, pp. 181-190.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J., Irving, J., 1997. Aspect
Oriented Programming. In: Proceedings of the
European Conference on Object-Oriented
Programming. ECOOP.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., Griswold, W. G., 2001. An overview of AspectJ. In
Object-Oriented Programming. Springer Berlin
Heidelberg. ECOOP, pp. 327-353.

Mezini, M., Ostermann, K., 2004. Variability management
with feature-oriented programming and aspects. In:
Proceedings of the 12th ACM SIGSOFT twelfth
international symposium on Foundations of software
engineering. SIGSOFT/FSE, pp. 127-136.

Obeo, 2013. "Acceleo" http://www.eclipse.org/acceleo/.
Oliveira, A. L., Ferrari, F. C., Penteado, R. A. D.,

Camargo, V. V., 2012. Investigating Framework
Product Lines. In: Proceedings of the 27th Annual
ACM Symposium on Applied Computing, pp. 1177-
1182.

Trujillo, S., Batory, D., Diaz, O., 2007. Feature Oriented
Model Driven Development: A Case Study for
Portlets. In Proceedings of the 29th international
conference on Software Engineering, ICSE, pp. 44-53.

Voelter, M., Groher, I., 2007. Product Line
Implementation using Aspect-Oriented and Model-
Driven Software Development. In 11th International
Software Product Line Conference. SPLC, pp. 233-
242.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C.,
Regnell, B., Wesslén, A., 2000. Experimentation in
software engineering: an introduction. Kluwer
Academic Publishers, Norwell.

Xu, L., Butler, G., 2006. Cascaded Refactoring for
Framework Development and Evolution. In
Proceedings of the Australian Software Engineering
Conference. ASWEC, pp. 319-330.

Zanon, I. B., Camargo, V. V., Penteado, R. A. D., 2010.
Reestructuring an Application Framework with a
Persistence Crosscutting Framework. In INFOCOMP
Journal of Computer Science, pp. 9-16.

Zhang, C., Jacobsen, H., 2004. Resolving feature
convolution in middleware systems. In Proceedings of
the 19th Annual ACM SIGPLAN OOPSL Conference,
pp. 188-205.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

70

