
Extraction of Classes Through the Application of Formal Concept
Analysis

Decius Pereira, Luis Zárate and Mark Song
Departamento de Ciência da Computação, Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil

Keywords: FCA, Formal Concept Analysis, Object-oriented, Class Hierarchy Engineering.

Abstract: The class hierarchy is one of the most important activities of the object-oriented software development. The
class design and its hierarchy is a difficult task especially when what is sought is an extensive and complex
modeling. Some problems are difficult to understand even when modeled using a methodology. The precise
construction of a class hierarchy requires deep understanding of the problem, a correct identification of
attributes and methods, their similarities, dependencies and specializations. An inaccurate or incomplete
class hierarchy entails manufacturing defects of the software, making it difficult to maintain or make
corrections. The Formal Concept Analysis provides a theory which enables troubleshoot hierarchy of
classes to accomplish the maximum factoring of classes while preserving the relationships of specialization.
This paper presents an approach to the application of Formal Concept Analysis theory in class factoring to
simplify the design stages of new classes. A framework was developed to support experiments.

1 INTRODUCTION

The design and maintenance of a hierarchy is
recognized as a difficult problem (Joshi and Joshi
2009). This difficulty increases with the number of
classes involved and possible evolution of
requirements which may demand the incorporation
of changes in the hierarchical model.

Some problem domains are difficult to
understand even when modeled using a
methodology. The precise construction of a class
hierarchy requires deep understanding of the
problem, a correct identification of attributes and
methods, their similarities, dependencies and
specializations. An inaccurate or incomplete class
hierarchy entails manufacturing defects of the
software, making it difficult to maintain or make
corrections.

Software Engineering has emerged as a
systematic and disciplined approach to software
development (Glinz 2007), establishing a set of
activities to be followed by analysts, designers,
developers and partners. The stage of software
design became more complete and accurate with an
application of universal language, such as UML, and
use of Object-Oriented theory. However, even with
the evolution in the development process occurred in
recent years, it is evident the need to streamline the

design steps.
The correct application of the concepts of object-

oriented enables the reuse of software components,
and the development with higher quality, easier
maintenance, adaptations and extensions.

The Formal Concept Analysis (FCA) (Arévalo,
Ducasse et al 2010) is a field of mathematics
presented in the early 1980s.

The main FCA goal is the classification of
objects based on their attributes. In the FCA
commonly a problem domain is modeled as a cross
table, called Formal Context, where the rows
correspond to objects and the columns to the
attributes.

The FCA theory can be applied to class model
during the object-oriented design resulting in a
deeper review of the model and ensuring the
desirable qualities.

Much of this paper is focused on solving the
problem of factoring classes and generating a new
class hierarchy by maximizing the concept of
inheritance through the application of FCA and a set
of heuristics, whose goal is speeding stages of
software design which is applied to various fields.

The software design in diverse areas of
knowledge such as engineering, natural sciences,
human sciences, and many others, usually requires
technical expertise of the designer, which makes it

275Pereira D., Zárate L. and Song M..
Extraction of Classes Through the Application of Formal Concept Analysis.
DOI: 10.5220/0004892302750282
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 275-282
ISBN: 978-989-758-028-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

more difficult for the designer the task of modeling
the class structure of such systems. This paper
provides guidance for class hierarchy generation for
any type of systems or even the information
generation in a database schema.

This paper is organized as follows: The next
section presents the related work. Section III briefly
describes the theoretical aspects of the theory of
Formal Concept Analysis. Section IV discusses the
proposal that is presented. Section V describes the
experimental results using the framework. Section
VI provides the final conclusions and suggestions
for future work.

2 RELATED WORKS

The class hierarchy and its factoring has been
reported by other authors in various development
scenarios, such as the construction of the hierarchy
of its starting point through objects and
specifications of classes (Arévalo, Ducasse et al
2003); the evolution of the class hierarchy in order
to accommodate new requirements through the
addition of unlimited classes (Godin and Mili 1993)
or by adding limited compatibility with a prior
hierarchy or existing objects (Rapicault and Napoli
2001); reengineering of an existing class hierarchy
from the relationship between classes and their
attributes and methods (Godin and Chau 2000),
using code analysis tools by applying refactoring
(Snelting and Tip 2000) and in reengineering
procedural code in the environment of objects
(Moha, Hacene et al 2008).

In many cases the proposed approach is based on
techniques that produce hierarchies that are not
readily comprehensible for developers who need to
spend a good amount of effort to interpret them.

The Formal Concept Analysis, in contrast,
provides a theoretical framework that can be applied
to the design and maintenance of class hierarchy in
object-oriented environments whose comprehension
is more natural. Several researches have adopted the
Formal Concept Analysis in solving this problem
(Bhatti, Anquetil et al 2012), (Arévalo, Falleri et al
2006), (Huchard, Dicky et al 2000) and (Falleri,
Huchard et al 2008).

In (Bhatti, Anquetil et al 2012) a catalogue of
patterns in concept lattices were generated with the
purpose to allow automating the task of lattice
interpretation helping the designer to concentrate on
the task of reengineering rather than understanding a
complex lattice. It is not aim of (Bhatti, Anquetil et

al 2012) the hierarchization of classes from the
concept lattice generation.

The abstraction of concepts and relationships for
a specific domain were automated by techniques
based on application of FCA in a model-driven
context as proposed by (Arévalo, Falleri et al 2006).
However this work does not address the semantics
of the attributes or simplifies the concept lattice
through their pruning.

In (Huchard, Dicky et al 2000) algorithms were
developed for the building class hierarchies by
different frameworks showing the advantages and
drawbacks of using the Galois lattice and sub-
hierarchy as models of class hierarchies. An
inconvenience of (Huchard, Dicky et al 2000)
consists in the generation of multiple inheritance,
requiring adjustements for languages that have only
single inheritance.

In (Falleri, Huchard et al 2008) was presented a
generic approach implemented in a tool capable of
dealing with any language described by a meta-
model, that helps software architects designing and
improving their class models. This work showed the
Relational Concept Analysis technique (RCA), as an
extension of FCA (Dao, Huchard et al 2004),
(Huchard, Hacene et al 2007). Although (Falleri,
Huchard et al 2008) has contributed a theory capable
to normalize class models based on different
metamodels, it does not address the semantics of the
attributes such as (Arévalo, Falleri et al 2006).

Unlike the surveys previously presented this
paper shows how to simplify the lattice concepts
through heuristic pruning, dealing the semantics of
the class attributes and supports the concept of
multiple inheritance in hierarchies generated.

3 THEORETICAL ANALYSIS OF
FORMAL CONCEPTS

The representation of the FCA enables to obtain the
relationship between the set of objects or instances
of domain from the list of attributes that describe its
characteristics, thus resulting in the Formal Concept
(Nilander and Zárate 2011). In Table 1, called
Formal Context, an example for a hypothetical
domain is presented.

Table 1 represents a structure that defines objects
(rows), the attributes (columns) and their respective
relationship of incidence. A Formal Context (G,M,I)
consists of two sets G and M, and a binary relation I
between these sets. The elements of G are called
objects, while M are called attributes. If an object g

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

276

has a relation I with an attribute m, this ratio is
expressed as gIm ou (g,m)  I. This is interpreted as
the "object g has the attribute m".

Table 1: Context Formal example.

For a set A  G of objects (called extension) is

defined

}I|{:' AgmgMmA 

as the set of attributes common to the objects in A.
In correspondence, the set B  M (called intent)

of attributes is defined

}I(|{:' BgmgGgB 

as the set of attributes common to the objects in B.
Thus, a Formal Concept of a context (G,M,I)
consists of an ordered pair (A,B) where the
following property applies:

A  G, B  M, A' = B e B' = A

In simplified form, the set of objects of formal
concept is called extension and attributes intention.
Each element of the extension has all the intention
and vice versa.

Through Formal Context is possible to generate
the Concept Lattice. The Concept Lattice is a
directed graph whose nodes represent objects or
entities modeled, or just an association of concepts.
Coupled to the nodes are the properties or attributes
of the model and/or methods. The lattice allows the
extraction of concepts in various applications, such
as database design or the class design in an object-
oriented approach. Figure 1 illustrates the Concept
Lattice for Context Formal of Table 1.

Figure 1: Concept Lattice for Context Formal.

In one lattice, if A is a concept above a concept
B, and the two are connected, the concept A can be
considered a more general concept than B and, as

such, loads the common attributes between A and B.
As a consequence, it is true that if B happens, A is
also present, suggesting a binding logic. The lattice
not only describes a hierarchy of concepts, but also
the whole set of binary relations between these
concepts. This causes the visual analysis of the
object which can be obtained by searching in a class
hierarchy.

In Figure 1, each node in the graph is a concept.
If two objects were placed on the same node
(concept), they have the same attributes and are
therefore instances of the same class of objects that
have that attribute set.

FCA thus provides a tool for formal recognition
of groups of elements that share common properties
and methods which reveal implicit and explicit
dependencies, enabling a better understanding of the
concepts.

4 EXTRACTION OF CLASSES
THROUGH THE APPLICATION
OF FCA

When using Formal Concept Analysis for the design
of the class hierarchy, the set of formal objects G is
a set of software artefacts, in other words, classes,
objects or programs variables, which are used as a
starting point in the search by appropriate class
hierarchy.

The set of formal attributes M correspond to
properties of classes or objects. The properties that
are relevant include the attributes (instance
variables) and methods (body and/or the method
signature). In this paper, what is considered as a
starting point is the set of specifications of classes -
G is a set of objects or model entities. It is still only
factoring attributes of classes, whose
implementation is extended to methods.

An important aspect of this work is to minimize
redundancy and to create subclasses via
specializations. Regarding the idea of redundancy
minimization is the factoring of classes reducing
inconsistencies and minimizing future redundancy
code.

For the subclass it is also used a factoring of
classes as a means for identifying the hierarchy by
setting an identification of type and subtype.

To obtain the maximum factoring of classes and
a new hierarchical model this work proposes
executing the following steps iteratively: 1. Mapping
Model Entities for a Context Table; 2. Concept
Lattice Generation; 3. Eliminating Multiple

Extraction�of�Classes�Through�the�Application�of�Formal�Concept�Analysis

277

Inheritance in cases where the target language is not
supported; 4. Removal inconsistent classes and, 5.
Segmenting class where common attributes have
different semantic.

A. Mapping Model Entities for a Context Table

First consider that the software designer has the
option of choosing the entities/objects from the class
model in its original hierarchy or in the same level
hierarchical, without their relationships of
specialization or association. For the entities/objects
from the model chosen the designer lists the
properties that characterize them. For illustration
purposes, due to the space occupied by the figures,
consider that the software designer has selected the
entities/objects from the class model without their
relationships. Since objects are instances of classes,
it may be assumed that the entities found can be
considered as an initial class model (or a set of
concrete classes).

Based on what was previously stated, consider
the mapping of the attributes from the model in a
Context Table. The following example illustrates
this basic idea. Suppose the following specification
of attributes for a set of four concrete classes as
illustrated in Figure 2. The specification could be
interpreted as the exact set of concrete classes that
the hierarchy should contain, in other words, these
classes are the only ones to produce objects in an
application.

Figure 2: Concrete classes.

Ratio Incidence I of the formal context K
represents a formal set of four classes and their
instance variables is presented in Figure 3. Context
is designed as a table - rows and columns, with the
classes identified by whole numbers and variables
by letters.

Figure 3: Formal Context.

B. Concept Lattice Generation

Since the problem is to organize these classes in a
hierarchy, a Concept Lattice is used as a guide for

the design. Each formal concept is interpreted as a
class in the hierarchy and the links between classes
are viewed as relations specialization. In Figure 4 is
presented a Concept Lattice. The labels assigned to
the concepts indicate that an attribute class in
particular should be stated. For example, the
declared attributes a and b are two general classes
that are located immediately below the root of the
class hierarchy. In the class hierarchy, the concept
defined by the bottom node is ignored since it is of
no use, because it does not represent information of
classes.

Figure 4: Concept Lattice for Formal Context of Figure 3.

Figure 5 shows the hierarchy in the form of the
lattice attributes factored corresponding to its
interpretation of Concept Lattice. The four initial
classes remain in the hierarchy but there are fewer
attributes declared in these classes due to factoring
produced by Concept Lattice.

Figure 5: Class Hierarchy from Concept Lattice of Figure 4.

New classes (nodes 5-9) are added because of the
factoring of common attributes. These are empty
classes because instances are created only for the
four initial classes. The nature of the reduction in
labeling of Concept Lattice guarantees that each
attribute appears exactly once in the hierarchy. The
object attributes in the initial concrete classes remain
unchanged. However, some of them are now
inherited by some new classes. Generally all
subclasses are specializations that inherit the
attributes of parent classes without any exception.

From the software designer viewpoint, using this
hierarchy produce the same effect as if the early four

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

278

classes were used. So the hierarchy generated can be
interpreted as a refactoring of the specifications of
the four initial classes.

C. Elimination of Multiple Inheritance

There is a large number of designs that enable
minimize redundancy. The Concept Lattice achieves
this goal by minimizing the number of classes and
multiple inheritances (for target languages that do
not support multiple inheritance).

This is achieved by grouping classes whenever
possible, as illustrated in Figure 6.

Figure 6: Elimination of Multiple Inheritance.

The design class presented in Figure 6, on the
left, factors out the common attributes a and b but is
more complex since it contains four classes, one for
each attribute, capturing the classes 1 and 2 in a
model of multiple inheritance. In contrast, the design
presented on the right of Figure 6 is simpler and
provides the same quality criteria to avoid
redundancy and conformance to specialization in a
model of single inheritance.

The transformation of a model that contains
multiple inheritance in a model that contains single
inheritance consists only on the copy of the
attributes of their classes ascendants in their
descendant classes, where there is the relationship of
multiple inheritance. The ascendants classes thus
cease to exist in the model after completion of
copies, case there is not other binding with other
classes.

D. Removal Inconsistencies

The Concept Lattice is a representation of
similarities among a set of concrete classes. As its
size grows quickly one can think of ignoring some
of its nodes in order to maintain its structure
manageable. Thus a first idea could be the removal
of classes that do not declare any property or
method. These classes commonly called empty
classes could be removed without violating the
quality criteria, in other words, without redundancy
and specialization. In the example of Figure 5, the
empty classes Class5 and Class9 could be omitted.

Although Class3 does not declare any attributes it is
kept because it is a bottom class.

The structure resulting from the removal of all
empty classes is called Galois sub-hierarchy
(Snelting and Tip 2000) and corresponds to the
simplified set of all concepts of attributes and
objects from Concept Lattice. Figure 7 depicts the
new lattice which was pruned.

Figure 7: Concept Lattice resultant of removal empty
classes.

Considering that the programming language
supports multiple inheritance, the resulting new class
model is the structure presented in Figure 8.

Figure 8: Class model resulting after application of
factoring steps.

The class depicted in Figure 8 is the result of
mapping the original classes of Figure 2 in a Context
Table which in turn was converted into a Concept
Lattice and disposed empty classes. However, if the
initial definition of the design was foreseen that one
of the prerequisites was modeling classes without
multiple inheritance support, the resulting class
diagram would be modeled according to Figure 9.

Figure 9: Resulting class model without multiple
inheritance support.

Extraction�of�Classes�Through�the�Application�of�Formal�Concept�Analysis

279

E. Segmenting Class Where Common Attributes
Have Different Semantics

The class attributes defined by the software designer
may have identifying labels identical. However their
properties can be different, making them
semantically distinct. This fact implies that although
they have the same name, they does not share the
same characteristics. In this way they should not be
summarized as a single attribute belonging to a new
generation ancestor class created in the Concept
Lattice.

Figure 10 illustrates two tables which exemplify
the mapping of the attributes from existing classes.
Figure 10, on the left, describes the attributes of each
class, and on the right, the common attributes
highlighted in bold. In this example, it was
considered the class model of Figure 8, which
supports the multiple inheritance concept.

Figure 10: Mapping of the factored class attributes on the
left and common attributes on the right.

Figure 11: Segmentation of common attributes and their
new labels.

In this stage of the factoring process the software
designer must intervene in order to identify the
attributes that have the same label and whose
properties are distinct. This step is semi-automatic.
The result is shown in Figure 11.

The identification of common attributes demands
the labels to be changed, as shown on the right of
Figure 11. It creates segmented classes, as shown on
the left of the same Figure.

A new class model is obtained, where Class2
inherits the renamed attribute b1 belonging to
Class8, and a new class, named Class9, which
contains the renamed attribute b2. Both attributes
have as origin the attribute b, coming from of the
previous class model. Figure 12 presents the new
class hierarchy generated.

Figure 12: New class model resulting from segmentation
of common attributes.

5 EXPERIMENTAL RESULTS

In order to automate the factoring process of an
initial class model, a framework was developed in
order to test the theoretical aspects explained in this
paper. Initially two basic premises were established:
1. The initial class model is described in the UML
standard language; 2. There is an integration with a
tool, such as Conexp (Yevtushenko 2000) or Galicia
(Valtchev, Grosser et al 2003), to interpret the FCA
XMI format.

Figure 13 illustrates the operating steps of the
framework.

Figure 13: FCA Framework for factoring of classes.

The framework works as follows: the reading of
a XMI file obtained by exporting a UML class
diagram is performed. The application of a FCA tool
captures the descriptions translating them into a
Context Table and a Concept Lattice. A sequence of
steps (section 4) is then applied to eliminate the
empty nodes and to treat redundant classes on the
lattice - for example, when it is not desired to have
multiple inheritance in the model.

The examples of Figures 14 to 18 illustrate the
application of the approach to a class model of the
some modules of the Enterprise Resource Planning

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

280

Software of the Regional Council of Pharmacy of
Minas Gerais State – Brazil, named SIGCRF. This
example has been simplified due to the space
occupied by the figures. For illustration purposes the
initial association/specialization relationships
between the classes have been also removed,
however they could be maintained without prejudice
to the framework, as described in section 4.

Step 1: Initial Class Diagram - As illustrated in
Figure 14 the initial class diagram is designed as a
set of concrete classes in the same hierarchical level.
The results obtained for this approach or for the
class model which contains its original hierarchy are
both discussed later. In class model designed of
Figure 14 the number of participating entities are
fifty-nine, among them the classes Student, Teacher,
Monitor, Trainee and Employee, which belong to the
module of Training Center of the company. For
illustration purposes only this module is discussed,
however the final results are presented for the entire
software.

Figure 14: Initial Design of the Class Diagram.

Step 2: Concept Lattice Generation,
Identifying the Inconsistent Classes, Potential
Classes and Multiple Inheritance - After the
conversion of the class diagram to the XMI format,
it is performed the reading of the XMI file by the
FCA Framework. The XMI file is interpreted and
the Concept Lattice is generated. The lattice nodes
are classified by the framework as concrete,
potential or inconsistent classes in the model. The
edges are also classified and can be interpreted as
generalizations, whose relationship between classes
is achieved through single or multiple inheritance as
illustrated in Figure 15.

Figure 15: Concept Lattice Generation.

Step 3: Elimination of Inconsistent Classes -
The inconsistent classes, or empty classes, turn the
understanding of the model more difficult and they
are eliminated by the FCA Framework. The empty
node presented in Figure 15, which represents an
empty class, has been removed from the model and a
new Concept Lattice generated as illustrated by
Figure 16.

Figure 16: Concept Lattice Generation with Multiple and
Simple Inheritance support.

Step 4: Class Segmentation Where Common
Attributes Have Different Semantics – The fourth
step of the FCA Framework consists on identifying
the semantic of the attributes to correctly associate
them into the respective classes. In this stage the
framework makes available to the software designer,
a list of classes and attributes for he/she chooses
what attributes belong to which classes.

The software designer, in the example, identified
that the salary attribute does not make sense for the
Monitor class and thus segmented this attribute into
two new classes, so that a new attribute, whose
suitable name is scholarship, appears in Monitor

Extraction�of�Classes�Through�the�Application�of�Formal�Concept�Analysis

281

class. Figure 17 illustrates what was explained here.

Figure 17: Segmentation of common attributes and their
new labels.

Step 5: Generation of a New Class Diagram -
The last step of the FCA Framework consists in the
generation of a new class model, which results from
the application of the previous steps. If the software
designer has defined that your model supports
multiple inheritance, the resultant class diagram
obtained is presented in the Figure 18, on the left.
Otherwise, if the programming language does not
support multiple inheritance concept, the new class
diagram obtained is presented on the right of the
same figure. In this new model the potential class
Person was created to make it comprehensible, and
some bindings between the classes were removed
due to application of the Framework FCA
iteratively.

Figure 18: New Class Diagram with Multiple Inheritance
support (on the left) and Single Inheritance support (on the
right).

6 CONCLUSIONS AND FUTURE
WORK

The paper presented the theoretical foundation and
an example of the application of FCA in factoring
and minimization of redundant classes in Object-
Oriented Designs.

Using an appropriate framework it is possible to
automate and optimize the design stage of software

while maintaining the characteristics inherent to the
models of object-oriented classes.

The factoring process of classes through the
application of developed framework proved quite
effective related to a better understanding of the
problem, since it results in a reorganization of the
model, approaching the most desirable
characteristics of an object-oriented design.

A suggestion for future work consists in full
automation of classes’ segmentation where common
attributes have different semantics.

REFERENCES

Arévalo G., Ducasse S. et al. Generating a catalog of
unanticipated schemas in class hierarchies using FCA.
Inf. Softw. Technol., 52:1145–1187, November 2010.

Arévalo G., Ducasse S. et al. Understanding classes using
X-Ray views. (ASE 2003), pages 2–18, Oct. 2003.

Arévalo G., Falleri J. et. al.: Building Abstractions in
Class Models: FCA in MDA Models 2006: 503-527.

Dao M., Huchard M. et al. Improving generalization level
in uml models. Springer, pages 336–360, 2004.

Falleri J., Huchard M. et. al. A Generic Approach for
Class Model Normalization. ASE 2008.

Glinz, M.: On Non-Functional Requirements. In: 15th
IEEE Conference (RE 2007), pages 08–26 (2007).

Godin R. and Mili H. Building and maintaining analysis-
level class hierarchies. OOPSLA’93, p 374–410, 1993.

Godin R. and Chau T.T. Comparaison d’algorithmes de
construction de hierarchies de classes. L’Objet,
5(3):311–338, 2000.

Huchard M., Hacene R. et al. Relational concept discovery
in structured datasets. Ann. Math. 9(1-4):32–76, 2007.

Huchard M., Hervé D. et. al. Galois lattice as a framework
to specify building class. ITA 34(6): 511-548 (2000).

Joshi P. and Joshi R. Concept analysis for class cohesion.
In Proceedings CSMR 2009, pages 207–240.

Moha N., Hacene A, et al. Refactorings of design defects
using relational concept analysis. ICFCA’08, pages
279–304. Springer-Verlag, 2008.

Nilander R. and Zárate L. Handling Large Formal
Contexts with support of distributed systems, IIC
2011, p 1-15.

Rapicault P. and Napoli A. Evolution d’une hierarchie de
classes par interclassement. L’Objet, 7(1-2), 2001.

Snelting G. and Tip F. Understanding Class Hierarchies
Using Concept Analysis. ACM, p 540–582, 2000.

Usman B., Anquetil N. et al. A Catalog of Patterns for
Concept Lattice Interpretation in Software
Reengineering. SEKE 2012: 102-12.

Valtchev P., Grosser D. et al. Galicia: an open platform for
lattices. In Aldo de Moor, 11th Conference on
Conceptual Structures, p. 221–254. Aachen, 2003.

Yevtushenko S. System of data analysis “Concept
Explorer”. 7th national conference on Artificial
Intelligence KII-2000, pages 107–134, Russia, 2000.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

282

