
SOA-CoM: Building a Correct by Design Service Oriented
Architectural Style

Supporting Structural and Non-functional Properties

Imen Graja, Imen Loulou and Ahmed Hadj Kacem
ReDCAD Laboratory, Department of Computer Science, University of Sfax, B.P. 1088, 3018 Sfax, Tunisia

Keywords: Correct by Design, Service-oriented Architectural Style, Communication Schemas, Formal Specification.

Abstract: As a piece of software continues to evolve, it inevitably becomes more complicated and harder to understand,
maintain, reuse, evolve and improve. Software architecture has emerged as a solution to these issues particu-
larly for complex systems. Having a correct software architecture is critical to the success of the design and the
development of a system. In order to design a correct software architecture the concept of architectural styles
is used. In this paper, we propose SOA-CoM, a formal approach for the correct modeling of service oriented
architectural styles. We specify a set of communication schemas that define SOA structural and interaction
properties. These schemas are modeled as UML graphs. In order to reuse them and to build the style, we
define composition rules that can be applied to them. A software architect can then extend the designed style
with non-functional properties (NFP) using extension rules. To ensure design correctness, we specify these
communication schemas using the formal language ASL (ArchWare Style Language). All specifications are
implemented and checked using the ASL Toolkit.

1 INTRODUCTION

The ever-changing nature of business requires that
software systems continue to constantly evolve. As
a software system changes, its design can be ana-
lyzed from an architectural style perspective to serve
as a basis for static system analysis. An architectural
style is an approach that simplifies software design
and reuse by capturing and exploiting system design
knowledge (Monroe et al., 1997). Traditionally, the
primary focus of reuse research has been on the reuse
of software entities, such as objects or components.
In most cases, the reuse was at the code-level, even
though these are not the only entities that can be suc-
cessfully reused. Furthermore, there have been sig-
nificant improvements in reuse technology and meth-
ods at more abstract levels. At this level of abstrac-
tion, key issues include the definition of a methodol-
ogy to design architectural styles that support design
fragments for reuse-driven implementation.

Defining a new style, however, is not an easy task.
In particular, software architects may not be skilled
enough to build correct styles. So the question that
arises is: How can we ensure that the designed style
is correct? To answer this question we require new
foundations that enable architects to reason about and

plan based on reuse-driven and correct by design de-
velopment at an abstract level.

We are interested in a service-oriented architec-
ture that becomes increasingly popular for complex
and dynamic distributed web applications. The build-
ing of a software solution based on SOA typically re-
quires combining existing services using techniques
like choreography and orchestration.

This paper aims to define a formal approach that
supports the correct modeling of SOA styles. This
approach includes all relevant mechanisms of ser-
vice publication, discovery, connectivity and compo-
sition and provides a modeling solution based on a set
of communication schemas that we propose. These
schemas integrate structural and interaction properties
of SOA. By defining these schemas our approach not
only provides the opportunity for reuse at an abstract
level but also provides a formal guarantee of correct-
ness of representing service-based styles. We also
elaborate composition rules that have to be applied to
these schemas to build the desired architectural style.
The communication schemas and the designed style
are specified formally in ASL (ArchWare Architec-
ture Style Language) (Leymonerie, 2004). ASL is a
formal language that allows style formalization, de-
fines families of architectural elements and expresses

172 Graja I., Loulou I. and Hadj Kacem A..
SOA-CoM: Building a Correct by Design Service Oriented Architectural Style - Supporting Structural and Non-functional Properties.
DOI: 10.5220/0004889001720179
In Proceedings of the 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2014), pages 172-179
ISBN: 978-989-758-030-7
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

related constraints related to their structure and be-
havior.

The rest of this paper is organized as follows.
We survey related work in section 2. Section 3
provides a general overview on the SO architectural
styles. Sections 4, 5 and 6 present our SOA-CoM
approach. They describe our methodology to de-
sign correct SOA styles and extend them with non-
functional properties. In section 7, we present a
travel reservation system case study to illustrate our
methodology. Then in section 8 we prove the consis-
tency of these specifications. Finally, section 9 con-
cludes our work and discusses future works.

2 RELATED WORK

The work presented in this paper focuses on the gen-
eral research area of architectural styles and the mod-
eling of SOA styles in particular.

Shaw and Garlan in (Shaw and Garlan, 1996)
define software architectural styles as a vocabulary
of the type of components and connectors, and a set
of constraints on how they can be combined. Fur-
ther, they codify structural, behavioral, interaction,
and composition guidelines that are likely to result in
software systems with desired properties. We base
our work on these same concepts and aim to define
an architectural style modeling approach that allows
software architects to work at a much more abstract
level.

There are several architectural styles; the pipe and
filter, client-server, peer-to-peer, publish/subscribe
and service-oriented architecture.

One of the benefits of SOA is that it improves
reusability in a distributed environment with indepen-
dent services. Thus, the main components of SOAs
are services that provide operations (software func-
tionalities) to their consumers. In order to publish ser-
vices and to allow these consumers to access to them,
a service registry must be used.

A lot of works have been published in the
area of the modeling and validation of SOA ap-
plications (IBM, 2005) and, SOA Meta-Model
based on the UML profile and Pattern-Oriented SOA
model (Baresi et al., 2006; Wada et al., 2011; Amir
and Zeid, 2004; Sanz and Marcos, 2012). However,
all these models are not abstracted as an architectural
style. Although, Tang et al (Tang et al., 2010) for-
mally define Enterprise SOA style model which is a
special type of SOA for enterprise.

The proposal of Baresi in (Baresi et al., 2006)
defines the SOA style as graph transformation sys-
tems from the abstract business level style to the SOA

specific-style. Nevertheless, these approaches are es-
pecially interested in service discovery mechanism
and they do not focus on service composition (chore-
ography and orchestration).

In the same context, Wada et al (Wada et al., 2011)
describe a solution based on UML profile which con-
siders only non-functional aspects while Amir and
Zeid in (Amir and Zeid, 2004) define a SOA mod-
eling approach that considers functional and non-
functional aspects. Moreover, Lopez-Sanz and Mar-
cos in (Sanz and Marcos, 2012) define a framework
called ArchiMeDes that follows the MDA approach
for the specification of software architectures using
the concepts behind SOA. These works center their
attention in the definition of the architectural model
and they do not support service discovery mechanism.
In (Zhao et al., 2010) Zhao et al define SOA archi-
tectural styles based on graph grammars but, this ap-
proach considers only the concept of service compo-
sition.

Other works that focus on correct modeling by
design of architectural styles like P/S-CoM (Loulou
et al., 2010). This work is interested in formal mod-
eling of event-based style using the communication
schemas coded in Z notation. Once the style is ob-
tained the behavioral properties can be added like
presented in (Krichen et al., 2012). This work pro-
poses P/S-CoM+ approach as an extension of the P/S-
CoM with behavioral properties. We are inspired by
these approaches to define a correct modeling of SOA
styles.

To conclude our literature review, we can say that
there is a need to complement these contributions
by taking into account the service compositional as-
pect, dynamic service discovery and correct model-
ing by design. The approaches mentioned above are
interesting and helpful in defining and achieving our
goal. We develop a visual and formal approach which
aims to help an architect design correct SOA architec-
tural styles based on a set of reusable communication
schemas and composition rules. The designed style
can later be extended using extension rules with non-
functional properties.

In general we are not in an ad-hoc solution that
represents an arbitrary solution where the architect
will be free in its design. However, our methodol-
ogy guides the architect to have as a result an SOA
style. Such approach cannot be considered as an ar-
bitrary solution. In particular our solution ensures the
correctness and the reliability of the designed style
using the composition rules and the proved commu-
nication schemas that integrate the SOA properties.
This makes our work considered as correct-by design
approach.

SOA-CoM:�Building�a�Correct�by�Design�Service�Oriented�Architectural�Style�-�Supporting�Structural�and�Non-functional
Properties

173

3 SERVICE-ORIENTED
ARCHITECTURAL STYLE

Service-oriented architectures are an important kind
of dynamic architectures (Baresi et al., 2006). The
service is their central concept. It supports different
roles depending on the functionality given by the sys-
tem. Moreover, depending on the atomicity of the ser-
vice, it can be classified as a simple service (atomic
service) or a composite one.

There are two types of service composition ap-
proaches. One approach is the choreography and the
second one is the orchestration that defines one ser-
vice which assumes the coordination role named ”Or-
chestrator”.

Additionally, services need user invocation to in-
teract with each other or to modify their behav-
ior (Sanz et al., 2008). To that end, the business pro-
cess must be initiated by the user which can be an
application front-end, a web portal or another service.
For this reason, our approach contains a component
representing the user of the application. This compo-
nent can have the role of a consumer or consumer and
provider in the same time.

Since service consumers can invoke services di-
rectly or through an intermediary. We define a bro-
ker that can be used as an intermediary between con-
sumers and their services. This component performs
tasks needed to convert the data format, route mes-
sages and save data as a buffer (Endrei et al., 2004).
This broker (resp. network of brokers) can build
distributed applications that require asynchronous,
multi-cast interaction like publish-subscribe mod-
els (Cugola and Nitto, 2008) in SOA.

Services communicate and interact with each
other through an asymmetric connection based on re-
quest/reply message exchanges. So, we choose to rep-
resent this connector by a straight line (using UML
connector) used for call-return style. However, we
give for the composition link a dependency notation
between required and provided interface that was rep-
resented by a lollipop notation (UML1).

To make services accessible to users; they must
be published, then searched in registries. Compo-
nents and service discovery can interact in either a
pull or push mode. In (Zisman et al., 2008), the au-
thor supports a proactive runtime service discovery
using pull and push modes. On the one hand, the reg-
istry can be passive and allow only service publica-
tion thus requiring the consumer to support pull run-
time service discovery. On the other hand, the registry
can be active so the client can be notified when a re-
quired service is published (Cugola and Nitto, 2008).
In both cases, the register can allow both active and

passive discovery (pull and push). As we have al-
ready mentioned, interactions between components
and service discovery are specified for architectures
that can use a centralized or a distributed registry. In
this context, there are various approaches that have
been defined concerning service publishing and dis-
covery model. In (Verma et al., 2005; Yulin et al.,
2010) the authors describe a peer-to-peer network of
UDDI registries like MWSDI that was built by the
Meteor-S project. However, other approaches pre-
sented in (Cugola and Nitto, 2008; Baresi and Miraz,
2006) support a distributed service registries using a
publish/subscribe network. Hence, we determine that
the distributed service discovery can follow either a
peer-to-peer topology or a publish/subscribe one.

4 A METHODOLOGY TO
DESIGN A CORRECT SOA
STYLE

In this section, we define a set of reusable and sim-
ple communication schemas that integrate structural
and interaction properties of SOA. They can be com-
posed to have as a result a correct service-oriented
architecture style. Next, this style can be extended
by non-functional properties using extension rules.
These steps are represented in fig.1. In order to ensure
the correctness of the designed style, some properties
have to be defined.

Figure 1: The steps for designing a SOA style.

4.1 Structural and Interaction
Properties

The communication schemas represent the basic
blocks that can be composed to build correct SOA
styles. They integrate structural aspects and the prop-
erties of interaction between the components. These
properties are defined as follows: 1)The service must
be published in a registry service, after being created.
2)The client discovers the desired service through
a registry service. 3)The client receives and saves
the description of the relevant service. 4)The com-
munication with the service discovery is established

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

174

through the push and/or the pull mode. 5)The dis-
tributed service discovery can follow either a peer-to-
peer or publish/subscribe topology. 6)Services can
be composed using orchestration or choreography.
7)With the central composition, all the communica-
tions between services must be through an orchestra-
tor. 8)The distributed composition is based on P2P
style that can be classified into three sub-styles: a
static, mobile or hybrid (Dillon et al., 2007) 9)The
communication between services must be triggered
by the consumer. 10)The consumer communicates
directly or through a broker with services. 11)The
broker utilizes a callback or publish/subscribe inter-
action mechanisms. 12)The broker-based communi-
cation can be through a single broker or through a dis-
tributed number of brokers. 13)The interconnection
topology of the distributed brokers can be peer-to-
peer or hierarchical. 14)In hierarchical structure, the
communication between brokers can be facilitated by
their parents broker where sub-brokers are controlled
by the parent broker. 15)SOA supports bidirectional
communication between services. 16)The consumer
can interact with more than one component.

4.2 Non-functional Properties

Most of the existing works deal with the modeling of
functional aspects and a few of them consider non-
functional requirements in their proposals. In order
to induce certain desired properties that can be func-
tional or non-functional (Sterritt and Cahill, 2008), ar-
chitectural styles place certain constraints. However,
each instance of a software family will have similar
constraints but different non-functional requirements.
Therefore after designing a style, it can be refined
simply by adding non-functional properties (NFPs).

The semantic of messages transmission and mes-
sage processing can be specified for each connec-
tor (Wada et al., 2006) through three properties. The
first property is the synchrony semantic of message
transmissions between the source and its destination
that can be: synchronous or asynchronous. The sec-
ond property is the assurance level of message de-
livery where three different semantics are defined: at
most once, at least once or exactly once. Finally, to
specify how to order messages, we extend the style
with the following policies: FIFO, LIFO, highest pri-
ority first or earliest deadline first.

These properties- synchrony, the assurance level
of message delivery and how to order messages- are
deductible from the experimentations and from our
research in the related works. They can be integrated
in the designed style using extension rules that were
defined later.

4.3 Generic Communication Schemas

We elaborate a reusable set of proved communication
schemas which are used to integrate structural and in-
teraction properties of SOA. They facilitate the task of
the architect because they can be used for reuse and
they ensure the compliance with these properties.

The communication schemas are characterized ac-
cording to different phases: the publication phase, the
discovery phase, the invocation phase and the compo-
sition phase.

To define our proposal, a service is described with
a node that contains a stereotype≪Service≫ and
three labels: Role, Type and Var (Variable: service
instances). First, the label Role can be either ”Prov”
(Provider) that denotes a set of operation being exe-
cuted to achieve the system functionality, or ”Orch-
est” (Orchestrator) which represents the process re-
sponsible for service composition.

In addition, a service discovery, a com-
posed service and a broker are represented with
nodes that contain respectively the stereotype
≪ServiceDiscovery≫, ≪ServiceComp≫ and
≪Broker≫ and two labels: Type and Var. A
service discovery can also be found in a distributed
environment but in this case, it is described with a
stereotype≪DistServiceDiscovery≫ and with tree
labels: Type, Var and Topology that can be either P2P
or P/S.

Further, a component that represents the ap-
plication user can be specified with a stereotype
≪Component≫ and three labels: Role, Type and Var.
In this case, two possible roles were identified: Con-
sumer (Cons) and Provider/Consumer (PrCons).

Each component contains two types of ports: the
find and publish port that are defined to the central-
ized or a distributed service discovery and, the pro-
vided and required port that are described for other
components.

In order to characterize communication schemas,
we model interactions between components accord-
ing to each phase in the next section.

4.3.1 The Publication Phase

In the publication phase, we define interactions be-
tween services and a service discovery through the
push mode. In this case, the service is the initia-
tor of the communication. It can have the provider
role, the orchestrator role or it can be a composed ser-
vice. In addition, these services can publish their in-
formation to a centralized service discovery or a dis-
tributed one through the push mode from services to
the service discovery. We define six communication

SOA-CoM:�Building�a�Correct�by�Design�Service�Oriented�Architectural�Style�-�Supporting�Structural�and�Non-functional
Properties

175

schemas, three of them with centralized service dis-
covery named Repub S and the others with the dis-
tributed one named ReDpub D. For example, fig.2
represents the communication schema between a ser-
vice that has the role Prov and a single service discov-
ery.

Figure 2: The communication schema Repub S.

4.3.2 The Discovery Phase

In the discovery part, we define two communication
links between components: pull and push. First, we
can establish the push mode between the service dis-
covery and components (like the service that has the
role Prov or Orchest, the composed service, and com-
ponent that has the role Cons or PrCons). In this
case, the set of communication schemas is named
Re pushC. Likewise, the same mode of communi-
cation is used between these previous components
and the distributed service discovery. Here, the set
of communication schemas is named ReDpushC. In
fact, with the push mode, the initiator of the com-
munication is the centralized service discovery or
the distributed one. In addition, we can attribute
the pull mode between the service discovery and the
above components that play the role of the initiator
of the communication. Consequently, we have de-
fined two sets of communication schemas. The first
set is named Repull C with a centralized service
discovery and the second one is named ReDpull C
with a distributed service discovery. Finally, be-
tween the above elements we can consider these two
links ”pull and push” involving one communication
schema. To illustrate, a communication schema from
the set Repull pushC with a composed service and
with a service discovery using the pull and push
mode is depicted in fig.3. Moreover, we develop
a set of schemas with a distributed register named
ReD pull pushC. Thus, we declare fifteen commu-
nication schemas with centralized service discovery
and fifteen others with distributed one.

Figure 3: The communication schema Repull pushC.

4.3.3 The Invocation Phase

In this part, we take into consideration the fact that
the communication between users and services can

be done directly or through a broker. Services (that
have the role Prov, Orchest or that can be a composite
service) communicate with their users (Components
that can have the role Cons or PrCons) through a con-
nection based on bidirectional message exchanges. In
this context, we define nine communication schemas
with direct invocation and ten others with brokered
one. Thus we characterize, in the fig.4, an example
of a communication schema of direct invocation with
a consumer and with a service orchestrator named
Li Dir CS. In this set, the requestor is the consumer
(resp. PrCons). But when this latter is the provider of
information then we elaborate another set of commu-
nication schemas named LiDir SC.

Figure 4: The communication schema LiDir CS.

Fig.5 illustrates an example of communication
schema LiInd CB using a Broker and a consumer.
The difference between the set LiInd CB and the set
Li Ind BC is that the broker in the first example rep-
resents the requester of information. However, in the
second one, it represents the provider of information.

Figure 5: The communication schema LiInd CB.

4.3.4 The Composition Phase

As we have previously stated that there are two dif-
ferent types of composition. For each type, we define
their corresponding communication schemas. In the
context of an orchestration, we define five communi-
cation schemas which represent the interactions be-
tween a service orchestrator and other services (ser-
vice that has the role Prov, another orchestrator or
a composed service). When the requester is an or-
chestrator, then the set of communication schemas is
named OrchestSOC. However, when the orchestrator
represents the provider of information, then the set of
schemas is named OrchestCSO. Fig6 illustrates an
example of communication schema from the set Or-
chestSOC that shows the interaction between an or-
chestrator and a service which has the role ”Prov”.

Figure 6: The communication schema OrchestCSO.

In the context of a choreography, we presented
only two communication schemas named ChorSCS

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

176

that contain a composition link between a composed
service and either a service having the role Prov or an-
other composed service. Fig.7 represents an example
of a ChorSCS with a service provider.

Figure 7: The communication schema ChorSCS.

Each of these communication schemas is formally
specified using ASL (ArchWare Architecture Style
Language) which allows the definition of architectural
styles. As illustration, we represent the Repull C
specification.

Re_pull_C is style where {
constructors{
Re_pull_C is constructor(consumer: Alias,

discovery : Alias,c : set[Component],
d: Component, pullrc: Connector);{

d is discovery;i is consumer;
iterate c by i : consumer do {

new pllrc;
attach i˜RE1˜input to
pullrc#last˜comp_conn_port˜output;
........}}}

constraints {
only_Cons_SP_SO_SC is constraint {..},
only_pull_connector is constraint {..}}}}}

The ASL language has the ability to specify structural
and behavioral constraints. So all the properties are
defined in the ”constraint” part in the ASL code. Fi-
nally, to design a correct SOA style and to have a for-
mal specification of the designed style, we must de-
fine some composition rules.

5 COMPOSITION RULES

Based on communication schemas, we construct the
global designed style by applying some composition
rules. These rules ensure the correctness of the de-
fined properties and help the architect to instantiate
and to compose the selected schemas to have as a re-
sult the designed style. This style meets the require-
ments of the user and respects the correctness of SOA
properties.

◦ Adding schema: in this step, the architect
chooses the adequate communication schemas
that meet their needs. For each node, the archi-
tect can modify the instantiable labels like Type,
Var (variable) and the Topology that can be either
P2P or P/S with a distributed service discovery. In
addition, he must rename the pull and push mode

used with keeping the prefix Pull or Push depend-
ing on the mode. For example, the link ”Pull” can
have the name ”PullCD”.

◦ Merge nodes: In order to be merged, two nodes
must have the same type and role. They must also
communicate in the same manner with other com-
ponents. In particular, the nodes that contain the
stereotype≪DistServiceDiscovery≫ must have
the same topology. In other words, giving two
communication schemas, we can merge their con-
sumers (resp. PrCons) and their services which
have the role Prov (resp. Orchest) only if they
have the same role and type. But, if they are Bork-
ers or ServicesDiscovery they must have only the
same type to be merged. In the same way, we
can apply this rule on distributed service discov-
ery if they have the same type and the same topol-
ogy. In all these cases, it was necessary to make
sure that nodes which are connected to the same
type of component will be merged only if they
interact with the same types of links. To illus-
trate, in fig.8 we apply the rule Mergenodes on
the service discovery nodes from communication
schemas Repull C and Repub S.

Figure 8: Graph obtained by composition of two communi-
cation schemas.

6 EXTENSION RULES

Once the style is designed progressively, the architect
can extend it by adding non-functional properties. As
a result, a new style can be formed by adding these
properties to an existing style. This section makes our
methodology to design a correct style more extensible
and facilitates reuse. Then, a style can be described
relative to its parent by applying one or more exten-
sion rules.

◦ Synchrony Ext: this rule extends one connector
in the style with the synchrony property.

◦ DeliveryAssurance Ext: Each connector also
can be extended with delivery assurance seman-
tic by applying this rule.

◦ OrderingPolicy Ext: During a communication
between two components, a queue is used for stor-
ing messages in storage. So by applying this rule,
we specify the connector’s ordering technique.

SOA-CoM:�Building�a�Correct�by�Design�Service�Oriented�Architectural�Style�-�Supporting�Structural�and�Non-functional
Properties

177

7 CASE STUDY

To illustrate our work, we use a simple travel reser-
vation system as represented in fig.9. This system in-
volves four different participants: client wishes to use
the travel agency service that in turn, contacts hotels,
to perform its work. In fact, the hotel service is re-
sponsible for reserving the available rooms. Finally,
the last participant is the register that contains all ser-
vice descriptions. In this example, the travel agency is
a composed service and we choose to define a register
as a centralized service discovery.

Figure 9: The travel reservation system.

According to our methodology, in order to design
a correct SOA style, we start by applying the first
composition rule named Addingschema. This rule
allows the architect to choose and to instantiate all
necessary schemas according to each phase.

◦ Publication Phase: In this phase, two communica-
tion schemas are chosen from Repub S. The first
one is represented with a composed service and
the second one is picked with a service that has
the role Prov. These schemas integrate the first
and the fourth property.

◦ Discovery Phase: from Repull C, two schemas
are selected. One of them is represented with a
consumer and the other one is picked with a com-
posed service. In this phase, we promote the sec-
ond and the third property.

◦ Invocation Phase: the architect chooses only the
direct communication between the user (client)
and the travel agency service. So, he instan-
tiates the communication schema, from the set
Li Dir CS, with a consumer and a composed ser-
vice. This schema integrates the ninth and the six-
teenth property.

◦ Composition Phase: the eighth and the fifteenth
property was depicted in the following added
schemas. The service choreography is repre-
sented by the schema ChorSCS using the hotel
as an atomic service and the travel agency as a
composite service.

Next, we apply the Mergenodes rule as explained
previously. In the ASL code we were just calling
each communication schema constructor used in the
previous step. Then, we define, in the constructor pa-
rameters, the necessary values. Finally, we obtain our
global style represented in fig.10 and its associated
code ASL.

Figure 10: Graph obtained by composition of communica-
tion schemas.

To summarize, we provide to the architect the pos-
sibility to build a correct by design SOA styles that
were generated by applying our methodology based
on both semantic and visual representation. This style
integrates structural and interaction properties. Next,
to extend it with non-functional properties, we ap-
ply the extension rules. For example, the architect
can specify the synchrony semantic of message trans-
missions between the client and the service ”Travel
agency” that can be in an asynchronous way. And it
can specify the at least once as delivery assurance se-
mantic with applying the SynchExt and DeliveryAs-
suranceExt rules.

8 ANALYZING
ARCHITECTURAL STYLE

The supported analysis includes checking the consis-
tency (Mateescu and Oquendo, 2006). In Archware,
The analysis covers the description and verification
of properties using the Archware Architecture Anal-
ysis Language (AAL). It enables automated verifica-
tion by model checking or theorem proving.

8.1 Checking the Consistency

A schema specification is consistent if at least one
model exists. This instance must be conform to the
schema that means it must satisfy its constraints. So
this consistency can be checked simply using the
property verification tool which is the Analyzer. To
do so, it must ensure that all properties are verified.
Otherwise, an error message is sent to the designer.
So, if an instance of the schema is found, we say that
the schema is consistent. But if no instance can be
found the schema cannot be satisfied by any other
model. According to this analysis, all schema spec-
ifications are consistent. While consistency checking
formally establishes the existence of initial model for
each schema specification, in most cases this is not
as strong a check as we would like. We also need
to show that all the composition rule specifications

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

178

preserve consistency. In order to accomplish that, we
need to check certain properties of a model after the
composition of schema instances.

9 CONCLUSION

In this paper we presented a formal approach for cor-
rect modeling of SOA styles named SOA-CoM. Our
aim was to define a formal methodology based on a
reusable set of communication schemas and compo-
sition rules that can be applied to generate the global
architectural style. These schemas include all struc-
tural and interaction properties of an SOA. Then, we
formally designed the NFPs of the SOA which can
be integrated into the architectural style based on
the extension rules. To ensure the style correctness,
we specified the semantics of these schemas using
the formal language ASL. As the style was designed
based on the applied composition rules, the specifica-
tion of this style will be built progressively in ASL. As
an extension to our work, we can add other NFPs ac-
cording to the user need in order to complement our
approach. Then, our ongoing work will extend our
SOA-CoM approach by reasoning about foundations
regarding architectural evolution.

REFERENCES

Amir, R. and Zeid, A. (2004). A uml profile for service
oriented architectures. InOOPSLA Companion, pages
192–193. ACM.

Baresi, L., Heckel, R., Th”one, S., and Varr’o, D. (2006).
Style-based modeling and refinement of service-
oriented architectures.Software and System Model-
ing, 5(2):187–207.

Baresi, L. and Miraz, M. (2006). A distributed approach for
the federation of heterogeneous registries. InICSOC,
pages 240–251.

Cugola, G. and Nitto, E. D. (2008). On adopting content-
based routing in service-oriented architectures.Infor-
mation & Software Technology, 50:22–35.

Dillon, T. S., Wu, C., and Chang, E. (2007). Reference ar-
chitectural styles for service-oriented computing. In
Proceedings of the 2007 IFIP international confer-
ence on Network and parallel computing, NPC’07,
pages 543–555, Berlin, Heidelberg. Springer-Verlag.

Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P.,
Krogdahl, P., Luo, M., and Newling, T. (2004).Pat-
terns: service-oriented architecture and web services.
IBM Corp. Riverton, NJ, USA.

IBM (2005). Ibm’s soa foundation an architectural intro-
duction and overview. Version 1.0.

Krichen, I., Loulou, I., Dhouib, H., and Kacem, A. H.
(2012). P/s-com+: A formal approach to design cor-
rect publish/subscribe architectural styles. In Perseil,

I., Breitman, K., and Pouzet, M., editors,ICECCS,
pages 179–188. IEEE Computer Society.

Leymonerie, F. (December 2004).ASL language and tools
for architectural styles. PhD thesis, University of
Savoie.

Loulou, I., Jmail, M., Drira, K., and Hadj Kacem, A.
(March 2010). P/s-com : Building correct by de-
sign publish/subscribe architectural styles with safe
reconfiguration. Journal of Systems and Software,
83(3):412-428.

Mateescu, R. and Oquendo, F. (2006). Pi-aal: an ar-
chitecture analysis language for formally specifying
and verifying structural and behavioural properties of
software architectures.SIGSOFT Softw. Eng. Notes,
31(2):1–19.

Monroe, R. T., Kompanek, A., Melton, R., and Garlan, D.
(1997). Architectural styles, design patterns, and ob-
jects.Software, IEEE, 14(1):43–52.

Sanz, M. L., Acuña, C. J., Cuesta, C. E., and Marcos, E.
(2008). Defining service-oriented software architec-
ture models for a mda-based development process at
the pim level. InWICSA, pages 309–312.

Sanz, M. L. and Marcos, E. (2012). Archimedes: A model-
driven framework for the specification of service-
oriented architectures.Inf. Syst., 37(3):257–268.

Shaw, M. and Garlan, D. (1996).Software architecture.
Perspectives on an emerging discipline. Prentice Hall
Publishing.

Tang, L., Dong, J., Peng, T., and Tsai, W.-T. (2010).
Modeling enterprise service-oriented architectural
styles.Service Oriented Computing and Applications,
4(2):81–107.

Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Ound-
hakar, S., and Miller, J. (2005). Meteor-s wsdi: A
scalable p2p infrastructure of registries for semantic
publication and discovery of web services.Informa-
tion Technology and Management, 6(1):17–39.

Wada, H., Suzuki, J., and Oba, K. (2006). Modeling non-
functional aspects in service oriented architecture. In
Proceedings of the 2006 IEEE International Confer-
ence on Service Computing, pages 222–229, Chicago,
IL.

Wada, H., Suzuki, J., and Oba, K. (2011). Leveraging early
aspects in end-to-end model driven development for
non-functional properties in service oriented architec-
ture. J. Database Manag., 22(2):93–123.

Yulin, N., Huayou, S., Weiping, L., and Zhong, C. (2010).
Pdus: P2p-based distributed uddi service discovery
approach.Service Sciences, International Conference
on, 0:3–8.

Zhao, Y., Zhao, B., Liu, M., Hu, C., and Ma, D. (2010).
Towards a graph grammar based verification approach
for runtime constrained evolution of service-oriented
architectures. InSOSE, pages 159–164. IEEE.

Zisman, A., Dooley, J., and Spanoudakis, G. (2008). Proac-
tive runtime service discovery.IEEE International
Conference on Services Computing (July 2008), pages
237–245.

SOA-CoM:�Building�a�Correct�by�Design�Service�Oriented�Architectural�Style�-�Supporting�Structural�and�Non-functional
Properties

179

