
Flexible Business-oriented Service Interfaces in Information Systems

Michal Žemlička1;2 and Jaroslav Král2;3
1Department of Software Engineering, Faculty of Information Technology, Czech Technical University in Prague,

Praha, Czech Republic
2Network and Labs Management Center, Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic

3Department of Computer Systems and Communications, Faculty of Informatics, Masaryk University, Brno, Czech Republic

Keywords: Flexible User-driven Integration, Architectural Services, Large Software System in SME, User-oriented
Service interfaces, Flexible SOA.

Abstract: Information systems supporting flexible business in small-to-medium enterprises must be easily modifiable
under the supervision of their users. The users (business people) must take active part in agile system devel-
opment and maintenance. The systems must be able to integrate large legacy systems and to communicate
with the systems of independent business partners. Business processes need not be executed by a single ERP.
We discuss a variant of SOA able to meet these requirements. The discussed SOA uses communication pro-
tocols based on problem-oriented languages. We propose a concept of organizational (architectural) services
generalizing the concept of connectors and routers. The power and usefulness of the proposal is demonstrated
on the examples of service composition, business-oriented interfaces, agile business processes, portals, and
gateways. The proposal is based on experience from practical SOA projects.

1 INTRODUCTION

Information systems are permanently becoming more
complex. They must support agile business processes,
must have a proper architecture, and cannot be de-
veloped and maintained using classic software engi-
neering attitudes (Royce, 1970; Yourdon, 1988; Som-
merville, 2010). The crucial reasons are:

� Large information systems cannot be developed
and maintained within reasonable costs and dead-
lines if a single-step process is used. The system
must enable agile changes of business processes
and agile maintenance.

� System users must often take part in the sys-
tem supervision, development, and maintenance.
They must therefore understand the communica-
tion among system components.

� It is necessary to integrate large legacy systems
and third-party products to reduce expenses, meet
terms, and to preserve business knowledge.

We will show that the requirements can be met
if the developed systems have the following key fea-
tures:

1. The systems have a service-oriented architecture

with coarse-grained components having coarse-
grained business-oriented interfaces.

2. The services are connected by a virtual commu-
nication network of active elements being again
services. We call them architectural services and
the systems using them confederations (Král and
Žemlička, 2013).

The concept reflects the needs of small-to-medium
business. We will discuss the structure, features, and
implementation principles of some architectural ser-
vice types that have proven their quality in practice.
We will summarize the reasons why confederation is
a very powerful generally applicable concept.

Structure of the paper: Section 2 gives an
overview of the critical issues faced by current busi-
ness information systems. Section 3 deals with archi-
tecture patterns solving the issues. The last section
summarizes the results and gives recommendations.

2 BUSINESS-ORIENTATION AND
INTEGRATION

A proper architecture enables almost independent de-
velopment of system components. It is not the only

164 Žemlička M. and Král J..
Flexible Business-oriented Service Interfaces in Information Systems.
DOI: 10.5220/0004888901640171
In Proceedings of the 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2014), pages 164-171
ISBN: 978-989-758-030-7
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



advantage. Below proposed architectures:

� allow easy integration and replacement of legacy
systems and third party products,

� simplify insourcing and outsourcing,

� cheapen, fasten, and uprate the development,

� enable agile business processes and agile develop-
ment,

� make the system development and maintenance
more efficient; users could take part in system
development, maintenance, and operation; some
task can be solved by users alone.

2.1 Small-to-medium Business

Small or medium-sized enterprises and organizations
(SME) form a significant part of contemporary econ-
omy. SME must do their business processes (BP) in a
globalized market and global social environment. BP
of SME must promptly react on the dynamic changes
in business environment.

The dynamics of the business processes in SME
requires almost always a direct active participation of
business people and managers. They must have the
possibility to utilize their business knowledge, experi-
ence, abilities, and skills. Smaller companies usually
do not have enough IT people having necessary busi-
ness knowledge. There can be budget issues. Last but
not least, the business culture in SME is different from
the culture in big companies (Robbes et al., 2013).

It follows that the modification of the processes
must be cheap and transparent for business people.
It also means that legacy systems and open software
must be often used.

Business processes in SME are usually open. It
is, they often cross company borders. Some parts of
the processes must then be done by independent orga-
nizations using classic business procedures based on
the rules and documents of commercial cooperation.
Business partners can be changed dynamically. It is
then desirable to allow direct cooperation between in-
formation systems of the business partners.

The information systems of cooperating business
partners behave like (composite) SOA services using
a document-oriented communication. We point out
that the documents are for us coarse-grained pieces of
communication well understandable by users. They
can eventually have the form of documents in the
sense of electronic data interchange (EDI) if appro-
priate. XML-based formats are often preferred now.

The SOA uses organization services acting as
wrappers, routers, gateways, orchestrators, and user
interface. The message paths can be influenced by

business process owners. The individual ERP can
use for the steps of the processes the same approach.

2.2 Business-oriented Systems

Human aspects are crucial for the formulation of the
aims and requirement specifications of information
systems as well as their development and use. Infor-
mation systems influence real world processes. These
aspects are especially important in the case of infor-
mation systems supporting business processes.

The dynamic character of modern economy im-
plies that the business processes ought to be agile, i.e.,
easily modifiable by users. The business partners
can be changed dynamically. It, together with the
growing complexity of software, implies that the sys-
tem must be able to integrate/use existing large legacy
applications and to utilize already existing informal
personal knowledge and social business contacts. It
avoids risky business process restructuring.

Taken together the communication should have
the form of an exchange of legible messages and
the system as a whole has a specific service-oriented
architecture (confederation). It uses coarse-grained
business-oriented communication between coarse-
grained software components.

The documents used for service to service com-
munication inside an information system and between
information systems should be intuitively understood
by users. It can be digital variants of the (business)
documents. Their form can be agreed by communi-
cating parties. The standards like EDI can be used but
there are reasons why EDI has not been generally ac-
cepted. The transparency of communication and the
agile choice of business partners are otherwise hard to
achieve. It allows agile on-line modifications of busi-
ness processes. It is necessary to support agile choice
of message addressees – of business partners.

We will discuss technologies enabling encapsula-
tion of software artifacts using proxy services solv-
ing the above mentioned requirements. The technolo-
gies further enable easy implementation of general-
ized capabilities of Business Process Model and No-
tation (BPMN, (Object Management Group, 2011)) –
understandability, openness, gateways, etc.

The proposed solutions are good to support busi-
ness processes in back office as they use business-
oriented interfaces. It solves issues from (Boyd et al.,
2012a; Boyd et al., 2012b).

Flexible�Business-oriented�Service�Interfaces�in�Information�Systems

165



3 SOFTWARE
CONFEDERATIONS

Software confederations are service oriented systems
with loosely coupled coarse-grained services being in
principle of three types:

1. Business Application Services: encapsulated
business applications and business systems sup-
porting basic software operations (example: ac-
counting service);

2. Architectural Services: allowing creation and
changes of the architecture of the built system
(example: proxy/generalized application wrapper
implemented as a service – front-end gate; see be-
low);

3. SLA Services: organizational business services at
the SLA level (e.g., identity management imple-
mented as a service) where service requester must
wait for the response of service provider, i.e. the
services communicate synchronously.

3.1 Basic Service Types

We will describe service types most frequently used
in confederative systems. The descriptions take into
account both development and maintenance point of
view.

3.1.1 Business Application Service

Confederations have a two-tier structure. The basic
tier is the collection of services providing basic busi-
ness capabilities. A typical variant of such services
is a properly wrapped business application or even
entire information systems of business partners. The
wrapped entities usually have a legacy interface sup-
porting a direct communication with users and with
other applications (Fig. 1).

�A

g
6
?

partner services

A
AKA
AU
6
? �

���
��

Primary
gate

Legacy
interface

APPLICATION

a) built-in primary gate

�A

g
6
?

partner services

A
AKA
AU
6
? �

���
��

Primary
gate

Legacy interface

APPLICATION

b) primary gate wrapping
legacy interface

Figure 1: (Business) application service with primary gate
and legacy interface.

The services must be by definition capable to take
part in peer-to-peer communication. It is preferable to
implement this capability using a component called
primary gate (Fig. 1). Primary gate can eventually
utilize (a part of) the legacy interface (Fig. 1b).

The communication with partner services pro-
vided by the primary gate is as a rule due many rea-
sons fine grained and remote procedure call oriented.
We have, however, seen that the interfaces should
be (like their real-world counterparts) document and
user knowledge domain oriented. We therefore need
a tool able to transform these different communica-
tion protocols. It can be achieved using a specific
organizational service type called front-end gates de-
scribed below, see also Fig. 2. These services pro-
vide the capability of adapters (compare (Newcomer
and Lomow, 2005; Krafzig et al., 2004; Reynolds and
Antony, 2010). Their construction as services signifi-
cantly increases system variability and flexibility.

Application services can communicate using in-
telligent coarse-grained communication protocols.
The communication is provided by network of orga-
nizational (architectural) services forming the second
tier of the system.

The use (integration) of existing applications sim-
plifies and shortens the development and reduces the
risk that the newly developed system will not do what
is required. On the other hand there is a risk that the
application can be changed by a third party or that it
cannot be used for other reasons.

In such a case it is possible to replace it by an-
other properly encapsulated application. The replac-
ing application can be newly developed. If business-
oriented service interfaces are used, it is likely that
change propagation can stop at the front-end gates.
If the interface changes are not requested or needed
by the partners, the business-oriented service inter-
face available for them usually need not change.

This service interface stability significantly im-
proves stability of the system and simplifies and de-
composes system maintenance.

Throughout this paper the communication is men-
tioned generally (typically without restriction of type
or means). If necessary, the restrictions are included
into the figures.

3.1.2 Basic Architectural Services

Architectural services are organizational services that
can be viewed as a generalization of connectors in the
sense of (Mikic-Rakic and Medvidovic, 2002). Long
term experience with the use of architectural services
in manufacturing control systems (Král et al., 1987;
Král et al., 1979) and elsewhere, see, e.g., systems

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

166



produced by ICOS Praha and logistics systems pro-
duced by ICZ, proved the usefulness of the concept.
We currently study applicability of our approach in
e-government using virtual filling rooms.

The transition from classic connectors to architec-
tural services looks conceptually simple: it is just an
implementation of the connector as a service (CaaS).
The issue is that the communication with the connec-
tor as a service must be sometimes asynchronous and
must use multipoint protocols. It may imply limita-
tions for the use of synchronous communication pro-
tocols. Our experience from practical and educational
projects shows that mastering this paradigm is often
very tough. Some people doubt that such an approach
can work – although the cases of its successful appli-
cation (industrial projects inclusive) were described
many years ago, see e.g. (Král and Žemlička, 2004;
Král et al., 1979). In comparison to classic connec-
tors CaaS have the following advantages:

1. higher independence of protocols enabling vari-
ous use policies;

2. better opportunities to interconnect almost inde-
pendent components;

3. possibility of agile supervision of system opera-
tion by users and managers;

4. new incremental development methods and espe-
cially agile variants of maintenance.

We present here architectural service types we have
already used or that support especially interesting ca-
pabilities. Connectors as services play in confeder-
ations the role of the Petri net ”places” used in par-
allel automata models (Petri, 1962; Jensen, 1997).
It could be an issue for the developers used to use
object-oriented paradigm. There are many situations
(like broadcasting or message composition) where the
asynchronous communication is necessary.

Front-end Gate

Front-end gates are special services translating in-
terface from the form requested for the integration
(matching partner needs) to the form supported by
the application service primary gate and vice versa.
It is possible to use techniques originally developed
for transducers or compilers ((Aho and Ullman, 1973;
Grune and Jacobs, 2008; Žemlička, 2006)). XSLT
(W3 Consortium, 1999) can be applied in the case of
quite simple transformations of XML-based message
formats. Front-end gates can be equipped by capabil-
ities enabling business process owners to redirect the
communication and to log it (Fig. 2). For the sake
of simplicity these capabilities are not shown in most
figures.

admin

HHjH
HY

�A

g
�� ��� �log

�
���

�	

partner services

A
AKA
AU

6
? �
���
��

Front-end gate

6

?
Primary gate

APPLICATION

Problem-(user-)oriented interface

Application-oriented interface

Figure 2: Application service and its front-end gate.

Front-end gate in Fig. 2 wraps the application ser-
vice to hide peculiarities of application service inter-
face. It is a very powerful implementation of Par-
nas’s recommendation on information hiding (Parnas,
1979).

An application service can be easily replaced by
another one. It greatly simplifies the integration of
legacy systems, third-party products, and open source
artifacts and also almost independent development of
the services.

The transparency of log records is preferable for
the business management and for solving business is-
sues and enhancement of business intelligence. So the
proposal enables the implementation of all the capa-
bilities mentioned in Section 2. The capabilities are
generally applicable. The pattern from Fig. 2 offers
further interesting generalizations, see e.g. Fig. 3.

partner services
(e.g. operation functions)

A
A

�
�

partner services
(e.g. management functions)

A
A

�
�

Front-end gate 1 Front-end gate 2

HH
H
HYH
HHHj ��

�
�*�

����
Primary gate

APPLICATION

Figure 3: Application service and with multiple front-end
gates.

The communication between partners and a front-
end gate can be supported by other means than the
communication between the front-end gate and the
supported service if necessary. The front-end gates
can serve also as service connectors for various com-
munication means or as middleware gateways. The
basic principles of the concept of FEG was introduced
in (Král and Žemlička, 2002). The wrapper in (Erl,
2009) has similar but less general abilities.

Flexible�Business-oriented�Service�Interfaces�in�Information�Systems

167



Portal
For a significant group of users the access point to the
system is provided by a special service called portal.
It helps the users to specify what they need and how
to tell it to the system. It also presents the users the
reactions of the system.

In more detail: The portal usually presents the
user an overview of available activities. If the user
selects one of them, the portal should lead him/her
through the specification of necessary and optional
parameters. The portal then gives the collected re-
quest to the services that are assigned and able to pro-
cess such requests. If the request is incomplete or im-
precise, the portal should lead the user through the ad-
ditional requirements. In some cases it is reasonable
to pass the non-standard request to individual process-
ing (emergency, rare cases).

From the more technical point of view a portal is
a service providing usually web-based user interface
allowing users to check all their service requests and
responses. From the system side it is a service sending
and receiving messages with various access rights.

Client
portal

-� Intranet
portal

-�SYSTEM
KERNEL

6
?

Business process
management portal

Figure 4: Example of a system with multiple portals.

It is often reasonable to equip confederative infor-
mation system with multiple portals. Typically there
will be specific portals for employees (intranet) and
for customers (extranet) and there can be various spe-
cial portals for special user groups (e.g. process own-
ers).

It is also possible to encapsulate various portals
into composed ones. The composed ones can dele-
gate handling of particular user interfaces to particular
portal services and handle only integration of the user
interface into a single access point (Fig. 5). Data and
computation intensive interfaces should be provided
by specialized portals. The separation of concerns re-
duces demand on their throughput and simplifies their
development, maintenance, and use.

From the maintenance point of view the separa-
tion of complicated user interface agendas into sep-
arate services significantly simplifies the localization
of errors and their correction.

The solution is logically similar to portlets (OA-
SIS, 2008). The encapsulation of subportals into spe-
cial services allows a better load balancing and a
higher overall throughput.

�A

g
-�

Unified
access
portal

�
��

@
@R

�
�	

@
@I

Basic
agenda
portal

-�

Special
agenda
portal

-�

Service
network

(system
kernel)

Figure 5: Grouped multiple portals.

3.1.3 Advanced Architectural Services

Head of Composite Service
Larger systems tend to an integration of logically
closed smaller parts. Such integrations are usually
layered or hierarchical. Real-world services tend to be
integrated hierarchically, for systems supporting them
we decided to use also hierarchical integration.

We call logically closed groups of services that
can behave as logically single service composite ser-
vices. The group is equipped by a special service rep-
resenting the group and providing communication of
the group with ”the rest of the world”. All the com-
munication of any of the services in the group to and
from any service outside the group must go through
this service. This policy can be weakened (modified)
easily if necessary. We call this service head of com-
posite service. It can be again equipped by front-end
gates to match the needs of various partner service
groups (Fig. 6).

Interface for
partner group 1

Interface for
partner group 2

Front-end
gate 1

Front-end
gate 2HH ��Head of

composite
service

�� HH
Service 1

HH

Service 2

��Service 3

Figure 6: Composite service with head and front-end gates.

The group encapsulation simplifies error localiza-
tion and system testing. The most important advan-
tage is that the services in Fig. 6 can be again indepen-
dent systems like ERP systems of business partners
wrapped by their own architectural services. The ar-
chitectural services are therefore a very powerful tool
of the information systems integration. The organi-
zational services together with other services form a
network. The organizational services there play the
role of routers.

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

168



Datastore
In structured analysis and design (Yourdon, 1988) the
systems are composed from processes and data stores.
The data acquisition and modification is done by pro-
cesses, the data accumulation and persistence by data
stores. There is a limitation that the data can get into
and from data store only using some process.

If we want to integrate subsystems built using this
methodology, or if we need to apply batch processing,
we should equip our system with services playing the
role of data stores. They substantially differ from the
classic data store in maintenance and security aspects.
The data stores could be also equipped with tools en-
abling batch as well as on-line (interactive) process-
ing. The data stores could be used to integrate batch
and interactive subsystems together (Fig. 7).

The use of batch subsystems can substantially
simplify maintenance and stabilize the system.

Interactive subsystem

Record-oriented communication6
?

Datastore service

Collection-oriented communication6
?

Batch subsystem

Figure 7: Composition of batch and interactive part of a
system.

General Architectural Service
An architectural service can have various communi-
cation partners using various languages and protocols,
a local store, supervision capabilities, and a logging
ability – see Fig. 8. Architectural services described
above are specialized cases of the general one.

�A

g
admin

-� Console -�

Inputs

@@RAAU ?��� ��	
General

architectural
service

��	 ��� ?AAU @@R
Outputs

��1��)

�� ��� �store

PPq�� ��� �log

Figure 8: Generalized architectural service.

General architectural service is a very powerful
generalization of the concept of connector (Taylor
et al., 2009; Mikic-Rakic and Medvidovic, 2002; Bu-
res and Plasil, 2004). It can use coarse-grained pro-
tocols, supervise and redirect messages, and powerful
logging. The logs can be used by users in various situ-
ations. Examples are: business intelligence enhance-
ments, system optimization, or business court trials.

General architectural services can further use var-
ious middleware, various message formats, and var-
ious (dynamic) possibly multipoint communication
protocols.

Process Manager

Business process management can be supported by a
special service – business process manager service or
process manager for short – that controls execution of
the business process and allows a responsible person
(business process owner) to supervise and optionally
modify the run of the business process.

As information system can support business pro-
cesses of various types, it is reasonable to have mul-
tiple business process manager types. During a busi-
ness process enactment it is possible to select a proper
business process definition template that fits best the
character of the business process as well as the abili-
ties and skills of its owner.

It is crucial for emergency situations whether the
process owner understands the used process definition
and whether the process interface does not compli-
cate the situation too much. The process owners must
be able to use proper supervision tools. The process
owners must understand the business process itself
(they should be domain experts).

Encapsulation of business process supervi-
sion/control/development into dedicated services
simplifies their agile definition, modification, and
enhancement by users. It is a more flexible concept
than the one recommended in (Erl, 2009, Chap. 8).

The business orientation of service interfaces is
advantageous for the description of business pro-
cesses in problem domain oriented languages. Under-
standable description of individual steps can directly
correspond to the service requests. It can be useful
for system design as well as for potential system de-
bugging – many of the activities could be in such case
easily consulted with domain experts what simplifies
debugging at the problem domain level.

Screen Prototype

Screen prototype is a service of a slightly different na-
ture. It is able to send and receive messages. The
received messages are recorded and displayed to the
user. The user reacts on them (either by process-
ing/performing some activities or by writing an an-
swer).

Screen (mock up) prototype is useful especially in
the following cases:

1. It can be used to simulate the communication part-
ners of a just developed service – it can mimic (or
even replace) its communication partners.

Flexible�Business-oriented�Service�Interfaces�in�Information�Systems

169



2. It can serve as a ”manual” version of failed ser-
vices.

3. It can enable manual processing of rare service
requests.

4. It simplifies the integration, use, and management
of batch applications.

Any standard client of our communication system
(Fig. 9) can serve as a screen prototype. Otherwise it
could be enhanced by supporting tools (Fig. 10) avail-
able to operator(s).

Partner
service(s)

-� Messaging
client

-�

�A

g
Operator

screen prototype

Figure 9: Simple screen prototype.

Partner
service(s)

-� Messaging
client

-�

�A

g
Operator

-� Legacy
application

screen prototype

Figure 10: Screen prototype with application support.

Combined Use of Front-end Gate and Screen
Prototype
If a service interface allow frequent as well as rare or
unexpected requests, it is reasonable to combine ad-
vantages of front-end gate allowing efficient process-
ing of frequent requests whereas the ones that could
not be processed by the front-end gate are left for
manual processing using a screen prototype and a di-
rect interface of the application service (Fig. 11). It
could be reasonable to let a human operator eventu-
ally handle some service requests that could be pro-
cessed using the front-end gate. An example is the
situation when standard processing could fail or lead
to unwanted results. It could, for example, happen
when some hot business information is available to
the operator and is not encoded in the system.

Partner
services

-� Proxy
�����	

Screen
prototype

@@R@@I Front-end
gate -�

-�

Application
service

legacy interface

primary gate

Figure 11: Application service with front-end gate and
screen prototype support.

4 CONCLUSIONS

We have discussed a specific architecture – business-
oriented software confederations – having very in-
teresting and desirable properties for system devel-
opment, use, and modification. It enables, if used
properly, that both the development and maintenance
could be based on almost identical principles and
techniques. It further enables an easy involvement of
managers and end-users (business people).

The architecture of software confederations en-
ables gradual (incremental) integration and activation
of services and agile modification of their collabora-
tion. Such a development enables application of cru-
cial elements of agile development of very large sys-
tems. It enables agility in the large with emphasis on
the incremental variant of the development.

From the maintenance point of view the most im-
portant technical properties are:

� simple error or failure localization;

� the changes in different components of the sys-
tem can be done using principally different tools
and attitudes (changes in communication proto-
cols, the use of logs);

� powerful information hiding in the sense of Par-
nas (Parnas, 1979).

The main business advantages are:

� Many operations can be effectively done by busi-
ness people.

� The maintenance process is cheaper, more flexi-
ble, and can be felt as a continuation of system
development.

� Collaboration between developers and business
people is smooth.

A potential disadvantage could be the fact that our
recommendations are not always in full agreement
with current standards and design patterns from the
service orientation and web service domain. One
of the reasons is that the message formats should
promptly reflect current user needs whereas changes
of standards requires usually years. We know from
our pedagogical activities and industrial projects that
for people trained in object-oriented attitude it is com-
plicated if not impossible to accept the proposal.

It is open how to combine optimally synchronous
(call) and asynchronous (message passing) commu-
nication protocols. There are open security prob-
lems and the use of principles of confederations based
on the virtual filling rooms being in fact generalized
mailboxes accepting forms.

Our long-time experience with confederations in
practical projects has shown that the confederations

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

170



are as a rule very well maintainable and reliable.
Some of our confederations were used for decades.
They were, however, very easy modified to match
changing needs. Confederations could be very useful
in the framework of SOA ecosystems (OASIS, 2012).
It is open how they can be used in the frameworks like
ITIL, COBIT, or ISO 20000.

REFERENCES

Aho, A. V. and Ullman, J. D. (1973). The Theory of Parsing,
Translation and Compiling, volume II.: Compiling.
Prentice-Hall, Englewood Cliffs, N.J.

Boyd, A., Pucciarelli, J., and Webster, M. (2012a).
It’s worse than you think: Poor document pro-
cesses lead to significant business risk. [Online:]
http://mds.ricoh.com/files/knowledge center/IDC
Risk WP Ricoh Eng.pdf.

Boyd, A., Pucciarelli, J., and Webster, M. (2012b). Organi-
zational blind spot: The role of document-driven busi-
ness processes in driving top-line growth. [Online:]
http://mds.ricoh.com/files/knowledge center/IDC
Revenue WP Ricoh FINAL.pdf.

Bures, T. and Plasil, F. (2004). Communication style driven
connector configurations. In Ramamoorthy, C. V.,
Lee, R., and Lee, K. W., editors, Software Engineering
Research and Applications, volume 3026 of Lecture
Notes in Computer Science, pages 102–116. Springer.

Erl, T. (2009). SOA Design Patterns. The Prentice Hall
Service-oriented Computing Series From Thomas Erl.
Prentice Hall Pearson Education.

Grune, D. and Jacobs, C. J. H. (2008). Parsing Tech-
niques. Monograps in Computer Science. Springer,
New York, USA, second edition.

Jensen, K. (1997). Coloured Petri Nets. Basic Concepts,
Analysis Methods and Practical Use. Monographs
in Theoretical Computer Science. Springer, 2nd cor-
rected printing edition.

Krafzig, D., Slama, D., and Blanke, K. (2004). Enter-
prise SOA: Service-Oriented Architecture Best Prac-
tices. Prentice Hall Ptr.

Král, J., Demner, J., and Kostečka, V. (1979). Synchroniza-
tion primitives for mass service like control software.
Polytechnica 7 (IV,1), pages 11–21. also in Proceed-
ings of IFIP-IFAC 3rd SOCOCO Conference, Praha,
1979.

Král, J., Černý, J., and Dvořák, P. (1987). Technology of
FMS control software development. In Menga, G. and
Kempe, V., editors, Proceedings of the Workshop on
Information in Manufacturing Automation, Dresden.

Král, J. and Žemlička, M. (2002). Component types in soft-
ware conferations. In Hamza, M. H., editor, Applied
Informatics, pages 125–130, Anaheim. ACTA Press.

Král, J. and Žemlička, M. (2004). Service orientation and
the quality indicators for software services. In Trappl,
R., editor, Cybernetics and Systems, volume 2, pages
434–439, Vienna, Austria. Austrian Society for Cy-
bernetic Studies.

Král, J. and Žemlička, M. (2013). Support of service sys-
tems by advanced SOA. In Lytras, M., Ruan, D., Ten-
nyson, R., Ordonez De Pablos, P., Garcı́a Penalvo,
F., and Rusu, L., editors, Information Systems, E-
learning, and Knowledge Management Research, vol-
ume 278 of Communications in Computer and Infor-
mation Science, pages 78–88. Springer.

Mikic-Rakic, M. and Medvidovic, N. (2002). Architecture-
level support for software component deployment in
resource constrained environments. In Proceedings
of the IFIP/ACM Working Conference on Component
Deployment, pages 31–50, London, UK. Springer-
Verlag.

Newcomer, E. and Lomow, G. (2005). Understanding SOA
with Web services. Addison-Wesley, Upper Saddle
River, NJ.

OASIS (2008). Web services for remote portlets specifi-
cation v2.0. http://docs.oasis-open.org/wsrp/v2/wsrp-
2.0-spec.html.

OASIS (2012). Reference architecture foundation for ser-
vice oriented architecture version 1.0.

Object Management Group (2011). Business process model
and notation (BPMN).

Parnas, D. L. (1979). Designing software for ease of exten-
sion and contraction. IEEE Transactions on Software
Engineering, 5(2):128–138.

Petri, C. A. (1962). Kommunikationen mit automaten.
Schriften der IIM, (2).

Reynolds, W. and Antony, M. (2010). Oracle SOA Suite 11g
R1 Developer’s Guide. Packt Publishing, 2nd edition.

Robbes, R., Vidal, R., and Bastarrica, M. (2013). Are soft-
ware analytics efforts worthwhile for small compa-
nies? The case of Amisoft. IEEE Software, 30(5):46–
53.

Royce, W. W. (1970). Managing the development of large
software systems. In IEEE WESCON Proceedings,
pages 328–338. Institute of Electrical and Electronics
Engineers.

Sommerville, I. (2010). Software Engineering. Pearson
Education, 9th international edition.

Taylor, R. N., Medvidovic, N., and Dashofy, E. (2009).
Software Architecture: Foundations, Theory, and
Practice. Wiley.

W3 Consortium (1999). XSL transformations (XSLT).
http://www.w3c.org/TR/xslt.

Yourdon, E. (1988). Modern Structured Analysis. Prentice-
Hall, 2nd edition.

Žemlička, M. (2006). Principles of Kind Parsing. PhD the-
sis, Charles University, Faculty of Mathematics and
Physics, Prague, Czech Republic.

Flexible�Business-oriented�Service�Interfaces�in�Information�Systems

171


