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Abstract: In this paper, the characteristics of the complex-valued neuron model with parameters represented by polar
coordinates (calledpolar variable complex-valued neuron) are investigated. The main results are as reported
below. The polar variable complex-valued neuron is unidentifiable: there exists a parameter that does not
affect the output value of the neuron and one cannot identify its value. The plateau phenomenon can occur
during learning of the polar variable complex-valued neuron: the learning error does not decrease in a period.
Furthermore, it is suggested by computer simulations that a single polar variable complex-valued neuron has
the following characteristics: (a) Unidentifiable parameters (singular points) degrade the learning speed. (b)
A plateau can occur during learning. When the weight is attracted to the singular point, the learning tends to
be stuck.

1 INTRODUCTION

A complex-valued neural network is a general neural
network with parameters such as weight and a thresh-
old value extending from real to complex numbers.
Complex-valued neural networks are suitable for in-
formation processing of complex-valued data or two-
dimensional data (Hirose, 2006; Nitta, 2009; Hirose,
2013).

Conventionally, an approach for real numbers
must be applied to a real part and imaginary part
separately, whereas a complex-valued neural network
allows direct data processing. It is also advanta-
geous because good-natured behavior of the com-
plex number to rotation can be taken automatically.
Consequently, some properties that are intrinsic to a
complex-valued neural network have been clarified
(Nitta, 2008).

Learning models have been studied by relation
with singular points lately (Amari et al., 2006; Wei
et al., 2008; Cousseau et al., 2008; Nitta, 2013). For
example, learning models with hierarchic structures
or a symmetric property on exchange of weights, such
as hierarchical neural networks and mixture models,
have singular points, mostly. It has been proved that
singular points affect the learning dynamics of learn-
ing models, and that they can cause a standstill in
learning.

Properties of the singular points of complex-
valued neuron constituting a complex-valued neural

network are investigated in this paper. A usual neu-
ron with real-valued weights and a real-valued thresh-
old is designated as areal-valued neuron. A neu-
ral network comprising real-valued neurons is des-
ignated as areal-valued neural network. Generally,
a complex number can be expressed in two ways:
using orthogonal coordinates and with polar coordi-
nates. A complex-valued neuron whose parameters
(weight and threshold) are expressed with an orthogo-
nal coordinate is designated as anorthogonal variable
complex-valued neuron, whereas a complex-valued
neuron whose parameters are expressed using a polar
coordinate is designated as apolar variable complex-
valued neuron. The literature (Hirose et al., 2001;
Kawata and Hirose, 2003; Hirose et al., 2004; Hirose,
2006) includes numerous explanations of complex-
valued neural network models comprising polar vari-
able complex-valued neurons and their applications.

This paper demonstrates that a polar variable
complex-valued neuron is unidentifiable. Mathemat-
ical indications show that a plateau phenomenon can
occur during learning (Nitta, 2010). Then it is sug-
gested experimentally that (a) unidentifiable parame-
ters (singular points) degrade the learning speed. (b)
A plateau can occur during learning.

Properties related to the singular points of a polar
variable complex-valued neuron are investigated ana-
lytically in Section 2. Then, using computer simula-
tions, the kind of effect the singular point has on the
learning dynamics of a polar variable complex-valued
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neuron is investigated in Section 3. Finally, this paper
is concluded. Future topics are described in Section
4.

2 ANALYSIS

The singularity of a polar variable complex-valued
neuron is investigated analytically in this section.

2.1 Unidentifiability of a Polar Variable
Complex-valued Neuron

In this section, it is shown that a polar variable
complex-valued neuron is unidentifiable. A con-
nected set comprising parameter values for which po-
lar variable complex-valued neurons take an identical
output value is designated as acritical set, whereas
points on a critical set are regarded as singular points
in this paper. Only connected sets were employed as
analysis objects because an unconnected set is con-
sidered to have no bad effect on learning dynamics.

The following polar variable complex-valued neu-
ron of N input is assumed. Then output valuev is
defined as

v = fC

(

N

∑
k=0

rk exp[iθk] · zk

)

∈C, (1)

whereC stands for the set of complex numbers,zk ∈C
signifies thek-th input signal,rk exp[iθk] ∈ C denotes
weight to thek-th input signal (rk ∈ R represents the
amplitude andθk ∈ R is phase whereR is the set
of real numbers)(1 ≤ k ≤ N), i =

√
−1, z0 ≡ 1,

r0 exp[θ0] ∈ C represents the threshold of a complex-
valued neuron (r0 ∈ R is amplitude andθ0 ∈ R is
phase). In addition,fC : C → C is an activation func-
tion.

In the polar variable complex-valued neuron de-
scribed above, if the amplitude parameterrk is equal
to zero for some 0≤ k ≤ N, then [weight× input]
= rk exp[iθk] · zk = 0 holds, and no value ofθk affects
the output valuev of a complex-valued neuron. That
is, one cannot identify the value of the phase param-
eterθk uniquely when the amplitude parameterrk is
equal to zero. Therefore, it is verified that the phase
θk is an unidentifiable parameter and a polar variable
complex-valued neuron has an unidentifiable nature.

Next, the critical set of the polar variable complex-
valued neuron described above is specifically deter-
mined. First, let

M
def
= {(r,Θ) ∈ RN+1×RN+1}, (2)

r
def
=







r0
...

rN






∈ RN+1, (3)

Θ def
=







θ0
...

θN






∈ RN+1, (4)

whereM is a parameter space that specifies the po-
lar variable complex-valued neuron described above.
Then, for any(r′,Θ′) ∈ M and any 0≤ k ≤ N, let

Ck(r
′,Θ′)

def
= {(r,Θ) ∈ M | r0 = r′0, · · · ,

rk−1 = r′k−1,rk = 0,rk+1 = r′k+1,

· · · ,rN = r′N ,θ0 = θ′0, · · · ,
θk−1 = θ′k−1,θk+1 = θ′k+1, · · · ,
θN = θ′N}. (5)

Then the critical set of the polar variable complex-
valued neuron described above,C(r′,Θ′) is given as

C(r′,Θ′) = ∪N
k=0Ck(r

′,Θ′). (6)

Actually, for any(r,Θ) ∈C(r′,Θ′), there exists some
k such that(r,Θ) ∈ Ck(r′,Θ′). Therefore considering
rk = 0,

v = fC
(

r′0 exp[iθ′0]z0+ · · ·+ r′k−1exp[iθ′k−1]zk−1

+rk exp[iθk]zk + r′k+1exp[iθ′k+1]zk+1+ · · ·
+r′N exp[iθ′N ]zN

)

= fC
(

r′0 exp[iθ′0]z0+ · · ·+ r′k−1exp[iθ′k−1]zk−1

+0+ r′k+1exp[iθ′k+1]zk+1+ · · ·
+r′N exp[iθ′N ]zN

)

(7)

holds, andv remains constant irrespective ofθk ∈ R.

2.2 Learning Dynamics Near the
Singular Point of a Polar Variable
Complex-valued Neuron

Learning dynamics near the singular point of a po-
lar variable complex-valued neuron is investigated us-
ing the analysis procedure of reference (Amari et al.,
2006).

A polar variable complex-valued neuron defined
in section 2.1 is adopted as an analysis object. The
activation functionfC is taken as a linear function for
simplicity.

fC(z) = z, z = x+ iy. (8)

Error is defined asE = (1/2)|t − v|2 (t ∈ C is
teacher signal andv ∈ C is an actual output value).
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In fact, E is a complex function, but it takes only a
real value as function values, and is not regular as
a complex function. That is,E is not complex dif-
ferentiable. Nevertheless, it is possible to derive a
learning rule by considering the partial differential. In
that case, the learning dynamics of a complex-valued
neuron change according to whether the parameter
(weight and threshold) is considered as orthogonal co-
ordinates system, or it is considered as a polar coor-
dinate system. Although error functionE was dis-
cussed, the same argument applies to the complex dif-
ferentiability of activation functionfC (See (Hirose,
2006, pp.18-22) for details).

A learning rule is derived as follows using the
steepest descent method: For any 0≤ k ≤ N,

∆rk(n)
def
= rk(n+1)− rk(n)

= −ε · ∂E
∂rk

= ε ·Re
[

δ · zk ·exp[iθk(n)]
]

, (9)

∆θk(n)
def
= θk(n+1)−θk(n)

= −ε · ∂E
∂θk

= −ε · rk(n) · Im
[

δ·zk ·exp[iθk(n)]
]

,

(10)

whereδ def
= t − v, z is a complex conjugate of com-

plex z, andn is a variable that represents the num-
ber of learning cycles. For example,rk(n) expresses
the value of parameterrk after finishing learning ofn
times.

A learning rule of a single complex-valued neu-
ron whose weight is expressed on a polar coordinate
is derived using the steepest descent method in the ref-
erence (Hirose, 2006, pp.59-64). Because the follow-
ing nonlinear function (amplitude - phase type activa-
tion function) is used as the activation function of the
complex-valued neuron concerned, difference in ex-
pression has occurred from the learning rule derived
in this paper:

fap(u) = tanh(|u|) ·exp[i ·arg(u)], u ∈C. (11)

For any 0≤ k ≤ N, define

Mrk

def
= { (r,Θ) ∈ M | ∆rk = 0 }, (12)

Mθk

def
= { (r,Θ) ∈ M | ∆θk = 0 }. (13)

Then learning rules (Eqs. (9) and (10)) yield

Mrk =
{

(r,Θ) ∈ M
∣

∣ Re
[

δzk ·exp[iθk]
]

= 0
}

, (14)

Mθk =
{

(r,Θ) ∈ M
∣

∣ rk ·Im
[

δzk ·exp[iθk]
]

= 0
}

.

(15)

Table 1: Training patterns used in the experiment.

Input Output
Pattern 1 1.0 0.5i
Pattern 2 0.5−0.5i −0.5+0.5i
Pattern 3 −0.5−0.5i 1.0−0.5i

Next, the behavior of learning near singular points
is investigated. Near singular pointrk = 0 ( k =
0, · · · ,N), for k = 0, · · · ,N, Eqs. (9), (10) yield,

∆rk = ε ·Re
[

δzk ·exp[iθk]
]

, (16)

∆θk ; 0. (17)

Therefore, the velocity of change of amplitude
rk ( k = 0, · · · ,N) is higher than the velocity of phase
θk ( k = 0, · · · ,N), and a state is attracted to the sub-
manifold∩N

k=0Mrk (State∆rk ; 0 (k = 0, · · · ,N) is ap-
proached). That is, an equilibrium state∩N

k=0{Mrk ∩
Mθk} is reached, and consequently parameter(r,Θ)∈
M will change only slightly. This is a plateau phe-
nomenon in a learning curve, which is the same as that
in learning dynamics near singular points of a real-
valued neural network, as demonstrated in an earlier
study (Amari et al., 2006).

3 EXPERIMENT

In this section, behavior of learning near the singular
points of a polar variable complex-valued neuron is
investigated experimentally.

A polar variable complex-valued neuron of one in-
put is used for simplicity. The activation functionfC
is assumed as a linear function:

fC(z) = z, z = x+ iy. (18)

We assume that the thresholdw0 = r0 · exp[iθ0] ≡
0. That is, the learnable parameter is only one
weight w1 = r1 · exp[iθ1]. The general steepest de-
scent method (Eqs. (9), (10)) was used in learning.
The learning rate was set to 0.5. Training patterns are
of three types, as shown in Table 1. Learning was
judged to converge, and terminated when the learn-
ing error(1/2)|t − v|2 dropped to 0.0001 or less (t is
a teacher signal andv is the actual output value of a
polar variable complex-valued neuron).

At the singular point of the polar variable
complex-valued neuron described above,r1 = 0 (the
amplitude of the weightw1 is zero). Therefore, the
initial value of r1 was set to 0.00001, assuming the
case in which learning was started near singular point
r1 = 0 (Case 1 of Table 2). Moreover, initial value
r1 = 1.0 was adopted assuming that learning started
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Table 2: Initial values of amplitude of weight. Case 1:
Learning is started from near the singular point. Case 2:
Learning is started from off the singular point.

r1

Case 1 0.00001
Case 2 1.0

Table 3: Initial values of phaseθ1 of weightw1.

Case 1 2 3 4 5 6 7 8

Initial value 0 π
4

π
2

3π
4 π 5π

4
3π
2

7π
4

from a point distant from the singular pointr1 = 0
(Case 2 of Table 2). The initial value of the phase
θ1 of the weightw1 was chosen from the eight types
presented in Table 3.

The experimental results are presented in Table
4. The average numbers of training cycles start-
ing from near the singular point were 1.52 times
(;83.88/55.13), 1.71 times (;55.75/32.63) those of
starting off from the singular point for training pat-
terns 1 and 2, respectively. The average number of
training cycles starting from near the singular point in
training pattern 3 was 1.05 times (;34.50/33.00) that
starting off from the singular point. Thus, we could
realize from the above results that the average learn-
ing speed of the polar variable complex-valued neu-
ron starting from near the singular point is about 1.5
- 1.7 times slower than or comparable to that starting
off from the singular point.

When starting from near the singular point, we ob-
served a plateau phenomenon in the case 5 for the
training pattern 1 (Fig. 1). A standstill in learning
occurred from 1st to 110th cycle. The transitions of
the amplituder1 and the phaseθ1 of the weightw1
are shown in Figs. 2 and 3, respectively. As shown
in Fig. 4, the speed of change of the amplitude is
faster than that of the phase:∆r1 > ∆θ1. And also,
the phaseθ1 changed little up to around 90th learn-
ing cycle: ∆θ1 ; 0. These observation results have
agreed with the theoretical results presented in Sec-
tion 2.2. The amplitude of the weight was attracted to
singular point 0 from 1st to around 100th cycle.

It seems at a glance from Fig. 1 that the error
remains completely unchanged and a plateau occurs
from 1st to 110th learning cycle. However, the actual
data says that this is not true. For a fact, the error re-
mains completely unchanged during 1-40, 42-46, 48-
49, and 54-55 learning cycles, respectively: plateau
occurs in each period. In other periods, the error de-
creases albeit only slightly. However, roughly speak-
ing, we could say that a quasi-plateau occurs from 1st
to 110th cycle.

Experimental results suggest the following for sin-
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Figure 1: A Learning curve (Training Pattern 1, Case 5).
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Figure 2: Transition of the amplituder1 of the weightw1
(Training Pattern 1, Case 5, starting from near the singular
point).
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Figure 3: Transition of the phaseθ1 of the weightw1 (Train-
ing Pattern 1, Case 5, starting from near the singular point).

gular points and learning dynamics of polar variable
complex-valued neurons. (a) When learning is started
near the singular point, a mostly greater than average
number of training cycles is required compared with
the case in which learning is started from off the sin-
gular point. (b) A plateau can occur during learning.
When the weight is attracted to the singular point, the
learning speed tends to be stuck.
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Table 4: Number of training cycles necessary for convergence. Case number implies those presented in Table 3 (the initial
value of the phaseθ1 of the weightw1).

(a) Training pattern 1
Case 1 2 3 4 5 6 7 8 Average
Start around the singular
point(r1 = 0.00001) 191 66 12 66 192 66 12 66 83.88
Start apart from the
singular point(r1 = 1.0) 74 61 12 61 74 73 13 73 55.13

(b) Training pattern 2
Case 1 2 3 4 5 6 7 8 Average

Start around the singular
point(r1 = 0.00001) 30 37 119 37 30 37 119 37 55.75
Start apart from the
singular point(r1 = 1.0) 33 45 38 31 0 31 38 45 32.63

(c) Training pattern 3
Case 1 2 3 4 5 6 7 8 Average

Start around the singular
point(r1 = 0.00001) 37 36 32 33 37 36 32 33 34.50
Start apart from the
singular point(r1 = 1.0) 36 31 29 29 32 38 34 35 33.00
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Figure 4: Transition of the error with respect to the ampli-
tuder1 and the phaseθ1 of the weightw1 (Training Pattern
1, Case 5, starting from near the singular point).

4 CONCLUSIONS

The singularity of a polar variable complex-valued
neuron is investigated in this paper. The following
results are obtained. (a) A polar variable complex-
valued neuron is unidentifiable. That is, there exists a
parameter that does not affect the output value of the
neuron, and as a result one cannot identify its value.
(b) A plateau can occur during learning of a polar
variable complex-valued neuron. In the plateau pe-
riod, the learning error does not decrease. (c) Singular

points (or critical points) degrade the learning speed.
When using polar variable complex-valued neurons,
one should pay attention to these properties.

It is reported that the expectation of generaliza-
tion error in cases where true parameters are uniden-
tifiable is greater than in cases where true parameters
are identifiable in a three-layer real-valued neural net-
work (Fukumizu, 1999). Properties peculiar to sin-
gular points, including whether the generalization er-
ror of a polar variable complex-valued neuron deteri-
orates, are interesting subjects for future study.
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