
An Evaluation to Compare Software Product Line Decision Model
and Feature Model

Liana B. Lisboa1, J. Jenny Li2, P. Morreale2, D. Heer2 and D. M. Weiss3
1Aplicateca, Bahia, Brazil

2Department of Computer Science, Kean University, Morris, NJ, U.S.A.
3Department of Computer Science, Iowa State University, Ames, IA, U.S.A.

Keywords: Software Product Line, Product Family Scoping, FAST, FODA, Decision Model, Feature Model.

Abstract: A key issue in defining a product line is specifying the allowable set of products that will be produced using
product line assets, i.e., the scope of the domain. This paper conducts an evaluation to compare two
different approaches for defining domain scope, decision model as defined in the Family-oriented
Abstraction, Specification, Translation (FAST) process and the feature model as defined in the Feature-
Oriented Domain Analysis (FODA) process. The comparison is based on applying the approaches to two
examples, one a textbook example and the other to a product line we maintain on an open source website, in
order to identify guidelines for improving the identification and representation of a software family. Our
conclusion is that decision model includes both commonality and variability definition at software
architecture level and thus it is more suitable for larger product line with a significant number of
commonality and variability.

1 INTRODUCTION

Software Product Line Engineering is a novel
software engineering technology taking advantage of
the commonality and expected variability among
members of a software family (Weiss, 2013). A key
issue in defining a product line is specifying the
allowable set of products that will be produced using
product line assets. We call this the scope of the
product line. If the scope is too wide, it becomes
difficult to develop a set of assets that can be
efficiently (re)used to produce members of the
product line. If the scope is too narrow, it is not
worth the investment to create a set of reusable
assets. Accordingly, it is important to have a
systematic approach to defining the scope of a
family.

Several different approaches to defining scope
have evolved over the last few years (Frakes, 1998)
(Moon, 2005). Approaches such as Family-oriented
Abstraction, Specification, Translation (FAST)
(Weiss, 1999) use an assumption-based approach, in
which one specifies the assumptions about what is
common to products and what may vary among
products. The resulting specification is called a
decision model to define commonality and select the

set of allowed values of variability in a product line.
Approaches such as Feature-Oriented Domain

Analysis (FODA) (Kang, 1990) use a feature model,
configured as a graph, with annotations, that defines
the features available for products and specifies
options, alternatives, and exclusions among features.
Its focus is on variability.

Both approaches use their specifications to guide
the creation of the architecture for the product line
and to guide the process of producing a product. As
an attempt to improve both approaches, and
understand better their relative advantages in
practice, we conducted an evaluation study to
compare their usage in two product lines.
Researchers in the past had attempted to compare
the two approaches as reported in (Czarnecki, 2012)
and (Schmid, 2011). Their comparison did not take
into consideration of decision model’s ability to
represent commonality besides variability and
decision model’s emphasis on software architecture.
The main goal of our comparison was to identify
guidelines for improving the identification of a
software family using either feature model or
decision model on a software architecture level and
for selecting either one of them depending on the
characteristics of a family.

144 Lisboa L., Li J., Morreale P., Heer D. and Weiss D..
An Evaluation to Compare Software Product Line Decision Model and Feature Model.
DOI: 10.5220/0004887001440151
In Proceedings of the 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2014), pages 144-151
ISBN: 978-989-758-030-7
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Furthermore, the paper also provides a set of
procedures to switch from the decision model to the
feature model, which was not discussed in any
existing papers. Interchangeability is very important
because a product line might grow and its
development situation may change as well, in which
case one model might become more advantageous to
such an extent that the architectures would decide to
alter modelling approach mid-way through a product
line development.

In another related work, Wartik and Prieto-Diaz
(1992) define a framework for comparing reuse-
oriented domain analysis approaches, in order to
obtain a common conceptual ground, to establish a
way to determine which approach best suits each
needs, and to study the feasibility of a unified
approach. Ferré and Vegas (1999) survey domain
analysis methods, with the aim of finding an
explanation for the diversity of domain modelling
techniques and studying which techniques the
methods can use to represent reusable elements.
They are different from our work of focusing on
decision model and feature model which are the two
most prominent techniques for analysing and
specifying product line domains. These studies
focused on defining a framework or process as a
way of comparing the guidelines of the domain
analysis processes. However, this paper is the first to
evaluate and compare specific examples of
applications for each approach.

The reminder of this paper is organized as
follows. Section 2 gives a more detailed discussion
of both approaches, and Section 3 describes the two
product lines where they were applied. Section 4
discusses the results of the two evaluation studies.
Section 5 concludes the evaluation and points to
future research directions.

2 TWO-METHOD OVERVIEW

In this section, we present an overview of the two
methods, including their description, guidelines and
generated artefacts.

2.1 Decision Model

The FAST process defines a product line as a family
designed to take advantage of common aspects and
predicted variability. The FAST process seeks to
reduce the delay to production of the first family
member by introducing systematic methods for
defining the scope of a product line, for creating a
way to describe products in the product line, and for

generating products from their descriptions. Once
the initial investment is made, the time to produce
products may be quite short. The initial investment
consists of the effort needed to produce a product
line engineering environment, and may take a year
or more of effort because it is often applied to very
large product line. Thereafter, the product generation
can be automated. In our industrial case, it takes less
than one staff/hour to generate a product member
once the product line environment is in place.

A commonality analysis is a systematic way of
gaining such confidence and of deciding what the
scope of the family is, i.e., what are the potential
family members. The FAST commonality analysis
process creates a decision model designed to satisfy
the following goals.
1) Define the scope of the family by specifying

assumptions about what is common to family
members (commonalities) and what is variable
among family members (variability and its
values).

2) Provide a precise statement of how much
variability is accommodated by the product line
by specifying what the allowable set of values is
for variability. Each such specification is called a
parameter of variation of a decision model.

3) Define common terminology for the family by
creating a dictionary of terms for the family.

4) Provide a basis for constructing the architecture
for the product line that can be used to produce
its products. For example, variability is usually
mapped to one module in the architecture.

5) Provide a basis for automating the generation of
members of the family by specifying three
elements: (a) a partial ordering among the
parameters of variation that dictates the order in
which values for the parameters must be chosen,
(b) constraints among parameters of variation
that limit the allowable choices of values, and (c)
a mapping between parameters of variation and
modules in the product-line’s architecture,
known as the system composition mapping.

The ordering and constraints among parameters of
variation and the system composition mapping
together provide a way to construct a model of what
decisions to be made to specify a product and what
modules are needed to construct it, which is called a
decision model.

2.2 Feature Model

Feature modelling was proposed as part of the
Feature-Oriented Domain Analysis (FODA) method

An�Evaluation�to�Compare�Software�Product�Line�Decision�Model�and�Feature�Model

145

(Kang, 1990) with the objective of representing the
variable features identified in a domain. Kang et al.
define a set of activities and artefacts for the domain
analysis process in FODA. The artefacts include the
feature model, the context model, which defines
which applications are part of the domain; the
dictionary, which contains domain terminologies;
the entity-relationship and functional models, and
the architectural model. We focus here on the
feature model since it is the main asset for our
comparison. The variability represented in the
feature model are characterized through features,
which are defined as distinguishable characteristics
relevant to some stakeholders in the domain.

The most common way of representing the
feature model is through a hierarchical view, usually
a tree, where the features become more detailed as
the levels increase in the tree. In order to map the
domain features with their variability, it is necessary
to analyse the information sources, which can be
textbooks, existing applications and domain experts.
Thus, the roles are the domain experts, domain
analysts, users and requirements analysts.

The feature model is usually composed of a root
feature and sub features. The possible sub feature
types are mandatory, optional, alternative and or
(Czarnecki, 2000). The model can also include
composition rules, which are divided into exclusion
and implication. In Kang et al.’s definition, the rules
are represented textually. Here we present them as
dependency relationships in Table 1 notations.

Table 1: Feature model notations.

Type Notation Description

Mandatory

A mandatory feature will
always be present in the
product

Optional

The feature may or may not
be present in the product

Alternative
Exactly one feature of the set
is selected for the product

Or
At least one feature of the set
is selected for the product

Implication

If the source feature (F.A) is
selected, then the destination
feature (F.C) is also selected
for the product

Exclusion

Both features cannot
together be in the same
product

Besides the feature representation, the process
also includes documentation that defines the features
including synonyms, description and information
sources, and the composition rules between the
features. Once the feature model activity is finished,
its artefacts can be used to derive functional models,
such as activity and state charts, the domain
architecture, and the product selection.

There are several extensions for the Feature
Model proposed in FODA. Perhaps the best known
is from (Czarnecki, 2000). They extend the feature
notation with the “or” feature and propose a new set
of documentation for each feature with rationale,
priority, constraints and binding sites and models.
Other extensions are PLUSEE (Gomaa, 2004) and
PLUSS approach (Eriksson, 2005). Feature models
have also been used to support a diversity of
different techniques, like legacy systems (Kang,
2005), constraints programming (Benavides, 2005)
and grammars (Batory, 2005).

3 EVALUATION STUDY

We conducted two case studies to compare the
Feature Model and the Decision Model approaches.
The first study, which we used as a pilot case, was
the Floating Weather Station (FWS) family detailed
in the FAST process book (Weiss, 1999). The
second was the open-source software product line
project PolyFlow testing tool family (Li, 2013).

The comparison starts from the Decision Model
approach for both cases. And then the existing
artefacts were used as a base to generate the feature
model. For the generation of the feature models in
the project, we used the ToolDAy (Tool for Domain
Analysis) (Lisboa, 2007) for tool support. The tool
uses a somewhat different notation for representing
the alternative and or features groups than the one
shown in Table 1. Figure 1 shows the ToolDAy
notation. The GroupId tag in the relationships
identifies the features for this group.

Figure 1: ToolDAy for “Alternative” and “Or”.

Feature B

Feature A

Feature C

GroupId GroupId

Feature B

Feature A

Feature C

GroupId GroupId

OrAlternative

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

146

3.1 FWS Family

The Floating Weather Station Family is described in
Chapter 5 of (Weiss, 1999). This example is used to
exemplify the Decision Model of FAST process. For
our comparison we used only the artefacts of the
Commonality Analysis phase. The case was chosen
because it describes a simplified version of a real
system. Since it is a small domain, it was easier to
test our comparison process.

Floating Weather Station (FWS, Figure 2) buoys
are deployed at sea and periodically report the
current wind speed via messages sent by radio. Each
member of the FWS family contains an on-board
computer that controls the operation of the buoy
while it is at sea. The purpose of the commonality
analysis is to provide the following capabilities for
the FWS family of buoys:
 A way to specify the configuration of a particular

buoy.
 A way to generate, for a specified buoy

configuration, the software that controls a buoy
while it is at sea.

Figure 2: A Picture of a Floating Weather Station.

Floating Weather Stations interact with systems
that are equipped to receive the signals transmitted
by the onboard radio transmitter. Such systems may
be shipboard, ground-based, or satellite-based. The
software for the FWS domain interfaces with the
sensors that the FWS uses to monitor wind speed,
and with the transmitter that the FWS uses to send
messages. Figure 3 shows these interactions and
gives a brief indication of the nature of the interface.
For example, the Sensor domain receives commands
from the FWS software and sends data to it.

Figure 3: FWS Domain Interactions.

Table 2: Commonality and Variability of FWS Family.

 Commonality

C1
FWS transmits messages with the wind speed at fixed
intervals

C2
The wind speed is calculated as a weighted average of
the sensors reading

C3 FWS has one or more sensors for wind speed

C4 FWS has a radio transmitter

 Variability

V1
The formula for computing the wind speed from the
sensors reading can vary.

V2 Types of msg can vary in content and format

V3 The transmission period of message can vary

V4 The number of wind speed can vary

V5 The resolution of wind speed sensors varies

 Parameters of Variation and Their Values

PV1
Weight applied to high-resolution sensors reading: 1 –
100

PV2 Type of message : Short or long message

PV3 Transmit period: 1 – MaxTransitPeriod

PV4 Maximum number of sensors: 2 – 20

The first step for the comparison was to
understand the domain to be modelled. The
information sources for that were the Commonality
Analysis documents. Furthermore, some products
where identified through web search engines.
Afterwards, the commonality analysis document was
analysed. It consists of 6 commonality, 9 variability
and 13 parameters of variations for the variability.
Table 2 shows some of the items identified.

Based on the above information, we started to
define how the commonality and variability could be
mapped to a feature model. The FAST commonality
analysis process advises grouping commonality and
variability according to their similarities, starting
with the categories external interfaces and
behaviour; this was helpful advice. For example in
the FWS case, the commonalities C1, C2 are
grouped as Behaviour, and C3 and C4 are grouped
as Devices. Variability V1, V2 and V3 belong to
Behaviour and V4 and V5 to Devices. Thus, we can
map these groups as a high level in a feature model.

The values defined in the parameters of variation
(PoV) were used for defining the variants in the
model. Whenever the value set had a small number
of options, such as PV2 in Table 2, which has two
options: Short or Long, they could be mapped to the
variable features – Optional, Alternative and Or. For
PV2, it is not possible to have both message types in
the FWS application. Thus, it can be mapped to an
Alternative feature group. If more than one option in

An�Evaluation�to�Compare�Software�Product�Line�Decision�Model�and�Feature�Model

147

Figure 4: Feature Model for the FWS Family.

the PoV is possible, it is equivalent to an Or feature
group; and parameters whose values indicate that the
functionality may be either included or excluded are
considered Optional in the feature model.

Besides variability, decision model includes also
the definition of commonality which is essential in
define the scope of a family or the domain of a
product line. Feature model doesn’t explicitly
represent commonalities, but we could treat
commonality as mandatory features in the feature
model. This is only possible when the number of
commonality is smaller than variability, otherwise
the resultant feature model diagram will be too large
to handle. Mixing commonality and variability may
also hinder reader’s ability to comprehend the model
and thus we decided not to convert commonalities.

Figure 4 presents the final feature model for the
FWS domain, excluding commonality because we
use mandatory variability for other purpose as
explained later. Figure 4 shows that FWS’ root
feature is the FWS feature. It has the sub features
behavior and device, which were extracted from the
groups defined in the document. The sub features
that belong to the alternatives (sub features of
Message Type) and ors (sub features of Sensors
Resolution) sets were extracted from the Parameters
of Variation table.

However, the majority of the PoV have a large
range of values, for instance 2 to 20 (PV4) or 1 to
100 (PV1). These variations were represented as a
mandatory feature, since all of the values are greater
than or equal to one, and we can use the constraints
attribute in the documentation to specify the value
range, rather using explicit Or to select from the 100
choices. Mandatory is similar to commonality.

As it can be seen from this example, our
procedure of converting decision model to feature
model is quite straightforward. It should also work
for the other way around of converting a feature

model to a decision model. We hope our procedure
will become a standard way for such a conversion.
This example also shows that feature model works
well for specifying the variability of small families.

Another reason why feature model works well in
this example is that this example does not include
any kind of dependency constraints. Feature model
only supports two kinds of constraints: constraint
attribute to specify a range and “and”/”or”
constraints among adjacent features. This limitation
does not affect its ability in specifying small product
lines. But for very large product lines with very
complex constraints, its capacity might not be
sufficient, which we will show through an example
in the next subsection.

3.2 PolyFlow

FAST Decision Model analysis was applied to the
development of one of Avaya’s research product
lines, now an open source called PolyFlow (Li,
2013). It is a family of test tools that minimally
provide the capability to execute test cases and
calculate associated coverage measures. Initially, the
tool operated only on Java programs and calculated
line coverage and slicing measures. As it became
more popular, users requested features such as
automated test generation, testing of C and C++
programs, and execution on different platforms, such
as Windows, Linux, and VxWorks. It soon became
clear that PolyFlow was a family of test tools that
should be developed as a product line. More
descriptions of the PolyFlow family can be found in
(Devine, 2012), and (Li, 2008).

The first step of the PolyFlow product-line
process was to conduct a commonality analysis that
identified the common aspects as well as the
variability for the family. The PolyFlow product
family includes 34 commonality and 41 variability,

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

148

each variability having an associated parameter of
variation that has from 2 to 6 values. An example
commonality is that all family members must derive
the control flow graph of the program under test and
be able to display it for the user. Two variability
examples are the programming language of the
system under test, such as Java or C, and the type of
error path identification mechanisms.

Table 3: Partial PolyFlow Commonality, Variability, and
Parameters of Variation.

 Commonality

C1 Parsing

C2 Program Structure Graph

C3 Error Path Identification

C4 Reporting

 Variability

V1 Programming Languages of target system

V2 Java code types

V3 Ways to identify error path

V4 Testing Platforms

 Parameters of Variation and Values

PV1 Language: Java, C/C++, C#

PV2 Java code type: Java source, Java byte code

PV3 Error path: Keyword, user-defined

PV4 Platform: *nix, VxWorks, Windows, Switch

Table 3 shows a few commonalities, variability
and parameters of variation of the PolyFlow product
line. Table 3 includes four commonalities among the
product family members: Parsing, Program
Structure Graph, Error Path Identification and
Reporting. All product family members must
provide those four functions. Table 3 also shows
four variability, Language, Java Type, Error Path
Identification, and Platform, each of which has a list
of valid parameter values. For example, the language
can be Java, C, or C++ (PV1 in Table 3), and the
platform can be any of *nix, VxWorks, Windows, or
Switches (PV4 in Table 3). Please note that this is
only a very small selection from PolyFlow family.

Based on the available documents and on the
guidelines defined in the pilot, we built the feature
model. PolyFlow(eXVantage in the diagram) was
considered the root feature, and parsing and
program structure graph some of its first sub
features, as shown in in Figure 5, with details later.

For the feature Parsing, the model included the
commonality Parse/AST and the variability Target
Language, which was further detailed in an
alternative relationship between Java and C/C++.

The Java feature has two options, source-code and
byte-code. The Error Path Identification feature can
have more than one form of identification, which is
represented by the Or feature group with: User
Defined Words and Exception Handling.

Figure 5: Fragment of PolyFlow Feature Model.

One characteristic of this domain that was not
present in the FWS family is the existence of
dependencies among the variability, i.e. complex
constraints. Only the simple constraints If (V1 is
C/C++) then V3 is User-Defined Keywords is
represented in the feature model fragment in Figure
5, as a relationship arrow between the features
C/C++ and User Defined Keywords. Relationship
arrows are difficult to represent constraints
involving more than three features in the diagram.

The reason why we selected only a subset of
PolyFlow decision model is that we found that
feature model is more suitable for smaller product
lines. If we include more commonality and
variability from PolyFlow, we wouldn’t be able to fit
the feature model into this paper. On the other hand,
with a tabular form for decision model on an
architecture level only, it can represent large
families because of the length of the table can grow
without affecting the content. A complete set of
PolyFlow decision model can be found in (Li, 2013).

4 RESULT ANALYTICS

The goal of our study is to compare the usage of the
two product line scoping methods, decision model
and feature model. So far the previous section has
shown that the two are interchangible for small
product lines. So any evaluation of either model
should imply the feasibility for the other model. In
this section, we will take a look at their difference
and the impacts of the difference to the users. Please
note that our comparison presents an user point of
view on whether and how to use the two models.

An�Evaluation�to�Compare�Software�Product�Line�Decision�Model�and�Feature�Model

149

They differ on how these activities should be carried
out formally.

The strengths of the Decision Model include:
1) Precise specifications of commonalities and

variability: the tabular format gives sufficient
space to add or remove them, as well as
specifying them. This property of decision model
makes it suitable for defining product lines with
high quality requirements, such as safety-critical
ones.

2) Support for expression of (sometimes complex)
constraints among parameters of variability: a
constraint section in the table gives room to
specify any kind of constraints.

3) Expression of binding time: the sequence in
decision model indicates the order the variability
should be selected due to some constraints and
each has a column used to specify its binding
time.

4) Guidance for constructing product architecture:
This character permits a direct mapping from
parameters to components used to build
products, thereby allowing automated generation
of products, which is a key property of FAST
process.

More work on evaluation of decision model is still
needed. In our trial, it took a long time for us to get a
complete decision model because the product line is
so complex. Even though the product generation
time is reduced substantially, the effort needed to
produce a decision model is quite large: in our
PolyFlow case study, it took over 1 staff/year. This
commonality analysis time to create decision model
has no counter-part in conventional software
development time, which hinders our ability to
compare them quantitatively, even though we did a
study of quality improvement recently (Devine,
2012).

The feature model process strengths, including
its extensions (Czarnecki, 2000), are:
 simple visual representation;
 provides a clear view of the full domain; and
 has several optional fields for documenting (such

as, description, priorities and constraints) every
feature in the model.

These strengths make it perfect for feature modeling
of small and light weight product lines, where all
features can be viewed clearly in one simple visual
representation. However, those strengths could also
be a drawback for very large systems. The feature
model process does not incorporate complex
constraints among features and has not been proven
to scale to large systems. In fact, in our PolyFlow

trial, we gave up trying to convert the entire decision
model to feature model because it became too
complex to maintain.

During the comparison, one of the most difficult
representations of variability in the commonality
analysis for the feature model is when the value set
of the Parameters of Variation involve a great
variety of options – such as PV1 in Table 2 where
the weight for the high-resolutions sensors can vary
from one to one-hundred. This type of variability is
hard to represent as feature groups (Alternatives or
Or types), because of the quantity of features the
group would have. Our innovative solution is to map
the values as an attribute in the feature (Czarnecki,
2000). Therefore, these attributes can have
constraints defining their value range. In the PV1
example, the range would be from 1 to 100.

Furthermore, the binding time, easily represented
in the commonality analysis, and included in
(Czarnecki, 2000), is not easily identified in a
feature model. Setting the binding time as an
attribute in the variability features would make it
more visible. During the comparison, we also found
that it was possible to identify requirements for tool
automation in both processes. They were:
 Features, commonality, variability and

traceability among documents (both processes);
 Consistency checker (both processes);
 Visibility level (FODA);
 Complex constraints among features (FODA),

such as those proposed in (Batory, 2005); and,
 Automatic generation of reports (FODA).
 Automatic product generation (FAST)

Overall we found that both feature model and
decision model are very useful for defining product
lines. The key guideline in selecting them is that
feature model works better for small product lines
and decision model works nicely for large system
with complex constraints and high quality
requirements such as safety-critical product lines.

5 CONCLUDING OBSERVATION

We have provided here a qualitative evaluation of
the decision model of FAST process and the feature
model of FODA processes based on existing
analyses of two domains: one an example and the
second a real industrial domain.

The decision model has a textual and tabular
view of the domain’s commonalities and variability,
while the feature model has a visual representation.
However, both processes have the same goal, which

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

150

is to identify the common and variable
characteristics of the domain and to document it in
order to be used in the architecture definition and as
a basis for the generation of product line members.
Conversely, the processes achieve this outcome in
different ways. The decision model seems to confer
advantages in precision, and its ability to express
binding times and constraints on the value spaces for
variability. Its model representation uses simply
assumptions over the domain, representable as
predicates, for the commonality and the variability.
One result is that the decision model can be viewed
as the basis for creating a domain specific language.

The primary advantage of feature models is their
visual appeal. For simple domains where there are
few constraints among variability, they help the
domain engineer to visualize the domain for better
understanding and maintenance. The visual
representation must be supplemented with attribute
definitions as domain complexity increases. Also as
domain size and complexity increase, the visual
diagram will require manipulation, such as panning
and zooming to preserve the ability to see the entire
domain at one time.

Both approaches benefit from the ability to
impose structure on the domain and both may
become unwieldy as domain size and complexity
increases. But overall they are the state-of-the art
technology to define the scope of a software product
line. Our case study shows that they work for both
cases and the guideline for selection is to use feature
model for small product lines and decision model for
larger ones with precision requirements. The future
research direction of this work would be to compare
the two as applied to other complex cases and collect
quantitative measurements. In addition, it would be
desirable to do the decision model based on an
existing feature model real case, even though the one
way procedure was given in the paper.

REFERENCES

Weiss, D. M., 2013. Software Product Line Hall of Fame.
http://www.sei.cmu.edu/productlines/plp_hof.html.

W. B. Frakes, R. Prieto-Díaz, and C. J. Fox, 1998.
"DARE: Domain Analysis and Reuse Environment,"
Annals of SW Eng., vol. 5, no. 1998, pp. 125-141.

M. Moon, K. Yeom, and H. S. Chae, 2005. "An Approach
to Developing Domain Requirements as a Core Asset
Based on Commonality and Variability Analysis in a
Product Line," IEEE Transactions on SW Eng., vol.
31, no. 7, pp. 551-569.

D. Weiss and C. T. R. Lai, 1999. Software Product-Line
Engineering: A Family-Based Software Development

Process: Addison-Wesley, 1999, pp. 448.
K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A.

S. Peterson, 1990. "Feature-Oriented Domain Analysis
(FODA) Feasibility Study," Technical Report
CMU/SEI-90-TR-21, SEI, CMU, Pittsburgh.

K. Czarnecki, and et al., 2012. "Cool features and tough
decisions: a comparison of variability modeling
approaches", VaMoS'12 Proceedings of the Sixth
International Workshop on Variability Modeling of
Software-Intensive Sys., pp 173-182, NYC, NY, USA.

K. Schmid, and et al., 2011. "A comparison of decision
modeling approaches in product lines", VaMoS'11
Proceedings of the 5th Workshop on Variability
Modeling of Software-Intensive Systems, pp 119-126,
New York, NY, USA.

S. Wartik and R. Prieto-Díaz, 1992. "Criteria for
comparing reuse-oriented domain analysis
approaches," International Journal of Software
Engineering and Knowledge Eng., vol. 2, no. 3, pp.
403-43.

X. Ferré and S. Vegas, 1999. "An Evaluation of Domain
Analysis Methods," 4th Int. Workshop on Evaluation
of Model Methods in Sys. Ana. & Des.

K. Czarnecki and U. Eisenecker, 2000. Generative
Programming – Methods, Tools, and Applications:
Addison-Wesley, pp832

H. Gomaa and M. E. Shin, 2004. "Tool Support for
Software Variability Management and Product
Derivation in Software Product Lines," Workshop on
Software Variability Management for Product
Derivation, SPLC, Boston, USA.

M. Eriksson, J. Börstler, and K. Borg, 2005. "The PLUSS
Approach - Domain Modeling with Features, Use
Cases and Use Case Realizations," SPLC, Rennes,
France, pp. 33-44.

K. C. Kang, M. Kim, J. Lee, and B. Kim, 2005. "Feature-
Oriented Re-engineering of Legacy Systems into
Product Line Assets – a Case Study," SPLC, Rennes,
France, pp. 45-56.

D. Benavides, P. Trinidad, and A. Ruiz-Cortes, 2005.
"Automated Reasoning on Feature Models," Conf. on
Advanced Information Systems Engineering (CAiSE),
Portugal, pp. 491-503.

D. Batory, 2005. "Feature Models, Grammars, and
Propositional Formulas," Software Product Lines
Conference (SPLC), Rennes, France, pp. 7-20.

Li, J. J., 2013. http://www.trustie.net/projects/project/
show/PolyFlow

L. B. Lisboa, V. C. Garcia, E. S. Almeida, and S. L.
Meira, 2007. "ToolDAy - A Process-Centered Domain
Analysis Tool," Brazilian Symposium on Software
Engineering (SBES) - Tools Session, João Pessoa,
Paraiba, Brazil, pp. 54-60.

Devine, T. R., Goseva, K. Krishnan, S., Lutz, R. R. and Li,
J. J., 2012. “An empirical study of pre-release software
faults in an industrial product line”, Proc. of IEEE
ICST2012, April.

Li, J. J., Slye, H., Trung, D. and Weiss, D. M., 2008.
“Decision-model-based Code Generation for PLE”,
Proc. of IEEE SPLC2008.

An�Evaluation�to�Compare�Software�Product�Line�Decision�Model�and�Feature�Model

151

