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Abstract: A key issue in defining a product line is specifying the allowable set of products that will be produced using 
product line assets, i.e., the scope of the domain. This paper conducts an evaluation to compare two 
different approaches for defining domain scope, decision model as defined in the Family-oriented 
Abstraction, Specification, Translation (FAST) process and the feature model as defined in the Feature-
Oriented Domain Analysis (FODA) process. The comparison is based on applying the approaches to two 
examples, one a textbook example and the other to a product line we maintain on an open source website, in 
order to identify guidelines for improving the identification and representation of a software family. Our 
conclusion is that decision model includes both commonality and variability definition at software 
architecture level and thus it is more suitable for larger product line with a significant number of 
commonality and variability. 

1 INTRODUCTION 

Software Product Line Engineering is a novel 
software engineering technology taking advantage of 
the commonality and expected variability among 
members of a software family (Weiss, 2013). A key 
issue in defining a product line is specifying the 
allowable set of products that will be produced using 
product line assets. We call this the scope of the 
product line. If the scope is too wide, it becomes 
difficult to develop a set of assets that can be 
efficiently (re)used to produce members of the 
product line. If the scope is too narrow, it is not 
worth the investment to create a set of reusable 
assets. Accordingly, it is important to have a 
systematic approach to defining the scope of a 
family. 

Several different approaches to defining scope 
have evolved over the last few years (Frakes, 1998) 
(Moon, 2005). Approaches such as Family-oriented 
Abstraction, Specification, Translation (FAST) 
(Weiss, 1999) use an assumption-based approach, in 
which one specifies the assumptions about what is 
common to products and what may vary among 
products. The resulting specification is called a 
decision model to define commonality and select the 

set of allowed values of variability in a product line. 
Approaches such as Feature-Oriented Domain 

Analysis (FODA) (Kang, 1990) use a feature model, 
configured as a graph, with annotations, that defines 
the features available for products and specifies 
options, alternatives, and exclusions among features. 
Its focus is on variability. 

Both approaches use their specifications to guide 
the creation of the architecture for the product line 
and to guide the process of producing a product. As 
an attempt to improve both approaches, and 
understand better their relative advantages in 
practice, we conducted an evaluation study to 
compare their usage in two product lines. 
Researchers in the past had attempted to compare 
the two approaches as reported in (Czarnecki, 2012) 
and (Schmid, 2011). Their comparison did not take 
into consideration of decision model’s ability to 
represent commonality besides variability and 
decision model’s emphasis on software architecture. 
The main goal of our comparison was to identify 
guidelines for improving the identification of a 
software family using either feature model or 
decision model on a software architecture level and 
for selecting either one of them depending on the 
characteristics of a family.  
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Furthermore, the paper also provides a set of 
procedures to switch from the decision model to the 
feature model, which was not discussed in any 
existing papers. Interchangeability is very important 
because a product line might grow and its 
development situation may change as well, in which 
case one model might become more advantageous to 
such an extent that the architectures would decide to 
alter modelling approach mid-way through a product 
line development. 

In another related work, Wartik and Prieto-Diaz 
(1992) define a framework for comparing reuse-
oriented domain analysis approaches, in order to 
obtain a common conceptual ground, to establish a 
way to determine which approach best suits each 
needs, and to study the feasibility of a unified 
approach. Ferré and Vegas (1999) survey domain 
analysis methods, with the aim of finding an 
explanation for the diversity of domain modelling 
techniques and studying which techniques the 
methods can use to represent reusable elements. 
They are different from our work of focusing on 
decision model and feature model which are the two 
most prominent techniques for analysing and 
specifying product line domains. These studies 
focused on defining a framework or process as a 
way of comparing the guidelines of the domain 
analysis processes. However, this paper is the first to 
evaluate and compare specific examples of 
applications for each approach. 

The reminder of this paper is organized as 
follows. Section 2 gives a more detailed discussion 
of both approaches, and Section 3 describes the two 
product lines where they were applied. Section 4 
discusses the results of the two evaluation studies. 
Section 5 concludes the evaluation and points to 
future research directions. 

2 TWO-METHOD OVERVIEW 

In this section, we present an overview of the two 
methods, including their description, guidelines and 
generated artefacts. 

2.1 Decision Model 

The FAST process defines a product line as a family 
designed to take advantage of common aspects and 
predicted variability. The FAST process seeks to 
reduce the delay to production of the first family 
member by introducing systematic methods for 
defining the scope of a product line, for creating a 
way to describe products in the product line, and for 

generating products from their descriptions. Once 
the initial investment is made, the time to produce 
products may be quite short. The initial investment 
consists of the effort needed to produce a product 
line engineering environment, and may take a year 
or more of effort because it is often applied to very 
large product line. Thereafter, the product generation 
can be automated. In our industrial case, it takes less 
than one staff/hour to generate a product member 
once the product line environment is in place.  

A commonality analysis is a systematic way of 
gaining such confidence and of deciding what the 
scope of the family is, i.e., what are the potential 
family members. The FAST commonality analysis 
process creates a decision model designed to satisfy 
the following goals. 
1) Define the scope of the family by specifying 

assumptions about what is common to family 
members (commonalities) and what is variable 
among family members (variability and its 
values). 

2) Provide a precise statement of how much 
variability is accommodated by the product line 
by specifying what the allowable set of values is 
for variability. Each such specification is called a 
parameter of variation of a decision model. 

3) Define common terminology for the family by 
creating a dictionary of terms for the family. 

4) Provide a basis for constructing the architecture 
for the product line that can be used to produce 
its products. For example, variability is usually 
mapped to one module in the architecture. 

5) Provide a basis for automating the generation of 
members of the family by specifying three 
elements: (a) a partial ordering among the 
parameters of variation that dictates the order in 
which values for the parameters must be chosen, 
(b) constraints among parameters of variation 
that limit the allowable choices of values, and (c) 
a mapping between parameters of variation and 
modules in the product-line’s architecture, 
known as the system composition mapping. 

The ordering and constraints among parameters of 
variation and the system composition mapping 
together provide a way to construct a model of what 
decisions to be made to specify a product and what 
modules are needed to construct it, which is called a 
decision model.  

2.2 Feature Model 

Feature modelling was proposed as part of the 
Feature-Oriented Domain Analysis (FODA) method 
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(Kang, 1990) with the objective of representing the 
variable features identified in a domain. Kang et al. 
define a set of activities and artefacts for the domain 
analysis process in FODA. The artefacts include the 
feature model, the context model, which defines 
which applications are part of the domain; the 
dictionary, which contains domain terminologies; 
the entity-relationship and functional models, and 
the architectural model. We focus here on the 
feature model since it is the main asset for our 
comparison. The variability represented in the 
feature model are characterized through features, 
which are defined as distinguishable characteristics 
relevant to some stakeholders in the domain.  

The most common way of representing the 
feature model is through a hierarchical view, usually 
a tree, where the features become more detailed as 
the levels increase in the tree. In order to map the 
domain features with their variability, it is necessary 
to analyse the information sources, which can be 
textbooks, existing applications and domain experts. 
Thus, the roles are the domain experts, domain 
analysts, users and requirements analysts. 

The feature model is usually composed of a root 
feature and sub features. The possible sub feature 
types are mandatory, optional, alternative and or 
(Czarnecki, 2000). The model can also include 
composition rules, which are divided into exclusion 
and implication. In Kang et al.’s definition, the rules 
are represented textually. Here we present them as 
dependency relationships in Table 1 notations. 

Table 1: Feature model notations. 

Type Notation Description 

Mandatory 

 

A mandatory feature will 
always be present in the 
product 

Optional 

 

The feature may or may not 
be present in the product 

Alternative 
Exactly one feature of the set 
is selected for the product 

Or 
At least one feature of the set 
is selected for the product 

Implication 
 

If the source feature (F.A) is 
selected, then the destination 
feature (F.C) is also selected 
for the product 

Exclusion 
 

Both features cannot 
together be in the same 
product 

Besides the feature representation, the process 
also includes documentation that defines the features 
including synonyms, description and information 
sources, and the composition rules between the 
features. Once the feature model activity is finished, 
its artefacts can be used to derive functional models, 
such as activity and state charts, the domain 
architecture, and the product selection. 

There are several extensions for the Feature 
Model proposed in FODA. Perhaps the best known 
is from (Czarnecki, 2000). They extend the feature 
notation with the “or” feature and propose a new set 
of documentation for each feature with rationale, 
priority, constraints and binding sites and models. 
Other extensions are PLUSEE (Gomaa, 2004) and 
PLUSS approach (Eriksson, 2005). Feature models 
have also been used to support a diversity of 
different techniques, like legacy systems (Kang, 
2005), constraints programming (Benavides, 2005) 
and grammars (Batory, 2005). 

3 EVALUATION STUDY 

We conducted two case studies to compare the 
Feature Model and the Decision Model approaches. 
The first study, which we used as a pilot case, was 
the Floating Weather Station (FWS) family detailed 
in the FAST process book (Weiss, 1999). The 
second was the open-source software product line 
project PolyFlow testing tool family (Li, 2013). 

The comparison starts from the Decision Model 
approach for both cases. And then the existing 
artefacts were used as a base to generate the feature 
model. For the generation of the feature models in 
the project, we used the ToolDAy (Tool for Domain 
Analysis) (Lisboa, 2007) for tool support. The tool 
uses a somewhat different notation for representing 
the alternative and or features groups than the one 
shown in Table 1. Figure 1 shows the ToolDAy 
notation. The GroupId tag in the relationships 
identifies the features for this group. 

 

 

Figure 1: ToolDAy for “Alternative” and “Or”. 

Feature B
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Feature C
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3.1 FWS Family 

The Floating Weather Station Family is described in 
Chapter 5 of (Weiss, 1999). This example is used to 
exemplify the Decision Model of FAST process. For 
our comparison we used only the artefacts of the 
Commonality Analysis phase. The case was chosen 
because it describes a simplified version of a real 
system. Since it is a small domain, it was easier to 
test our comparison process.  

Floating Weather Station (FWS, Figure 2) buoys 
are deployed at sea and periodically report the 
current wind speed via messages sent by radio. Each 
member of the FWS family contains an on-board 
computer that controls the operation of the buoy 
while it is at sea. The purpose of the commonality 
analysis is to provide the following capabilities for 
the FWS family of buoys:  
 A way to specify the configuration of a particular 

buoy.  
 A way to generate, for a specified buoy 

configuration, the software that controls a buoy 
while it is at sea.  

 

Figure 2: A Picture of a Floating Weather Station. 

Floating Weather Stations interact with systems 
that are equipped to receive the signals transmitted 
by the onboard radio transmitter. Such systems may 
be shipboard, ground-based, or satellite-based. The 
software for the FWS domain interfaces with the 
sensors that the FWS uses to monitor wind speed, 
and with the transmitter that the FWS uses to send 
messages. Figure 3 shows these interactions and 
gives a brief indication of the nature of the interface. 
For example, the Sensor domain receives commands 
from the FWS software and sends data to it.  

 

Figure 3: FWS Domain Interactions. 

Table 2: Commonality and Variability of FWS Family. 

 Commonality 

C1 
FWS transmits messages with the wind speed at fixed 
intervals 

C2 
The wind speed is calculated as a weighted average of 
the sensors reading 

C3 FWS has one or more sensors for wind speed 

C4 FWS has a radio transmitter 

 Variability 

V1 
The formula for computing the wind speed from the 
sensors reading can vary. 

V2 Types of msg can vary in content and format 

V3 The transmission period of message can vary 

V4 The number of wind speed can vary 

V5 The resolution of wind speed sensors varies 

 Parameters of Variation and Their Values 

PV1 
Weight applied to high-resolution sensors reading: 1 – 
100 

PV2 Type of message : Short or long message 

PV3 Transmit period: 1 – MaxTransitPeriod 

PV4 Maximum number of sensors: 2 – 20 

 

The first step for the comparison was to 
understand the domain to be modelled. The 
information sources for that were the Commonality 
Analysis documents. Furthermore, some products 
where identified through web search engines. 
Afterwards, the commonality analysis document was 
analysed. It consists of 6 commonality, 9 variability 
and 13 parameters of variations for the variability. 
Table 2 shows some of the items identified.  

Based on the above information, we started to 
define how the commonality and variability could be 
mapped to a feature model. The FAST commonality 
analysis process advises grouping commonality and 
variability according to their similarities, starting 
with the categories external interfaces and 
behaviour; this was helpful advice. For example in 
the FWS case, the commonalities C1, C2 are 
grouped as Behaviour, and C3 and C4 are grouped 
as Devices. Variability V1, V2 and V3 belong to 
Behaviour and V4 and V5 to Devices. Thus, we can 
map these groups as a high level in a feature model. 

The values defined in the parameters of variation 
(PoV) were used for defining the variants in the 
model. Whenever the value set had a small number 
of options, such as PV2 in Table 2, which has two 
options: Short or Long, they could be mapped to the 
variable features – Optional, Alternative and Or. For 
PV2, it is not possible to have both message types in 
the FWS application. Thus, it can be mapped to an 
Alternative feature group. If more than one option in  
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Figure 4: Feature Model for the FWS Family. 

the PoV is possible, it is equivalent to an Or feature 
group; and parameters whose values indicate that the 
functionality may be either included or excluded are 
considered Optional in the feature model. 

Besides variability, decision model includes also 
the definition of commonality which is essential in 
define the scope of a family or the domain of a 
product line. Feature model doesn’t explicitly 
represent commonalities, but we could treat 
commonality as mandatory features in the feature 
model. This is only possible when the number of 
commonality is smaller than variability, otherwise 
the resultant feature model diagram will be too large 
to handle. Mixing commonality and variability may 
also hinder reader’s ability to comprehend the model 
and thus we decided not to convert commonalities. 

Figure 4 presents the final feature model for the 
FWS domain, excluding commonality because we 
use mandatory variability for other purpose as 
explained later. Figure 4 shows that FWS’ root 
feature is the FWS feature. It has the sub features 
behavior and device, which were extracted from the 
groups defined in the document. The sub features 
that belong to the alternatives (sub features of 
Message Type) and ors (sub features of Sensors 
Resolution) sets were extracted from the Parameters 
of Variation table.  

However, the majority of the PoV have a large 
range of values, for instance 2 to 20 (PV4) or 1 to 
100 (PV1). These variations were represented as a 
mandatory feature, since all of the values are greater 
than or equal to one, and we can use the constraints 
attribute in the documentation to specify the value 
range, rather using explicit Or to select from the 100 
choices. Mandatory is similar to commonality. 

As it can be seen from this example, our 
procedure of converting decision model to feature 
model is quite straightforward. It should also work 
for the other way around of converting a feature 

model to a decision model. We hope our procedure 
will become a standard way for such a conversion. 
This example also shows that feature model works 
well for specifying the variability of small families. 

Another reason why feature model works well in 
this example is that this example does not include 
any kind of dependency constraints. Feature model 
only supports two kinds of constraints: constraint 
attribute to specify a range and “and”/”or” 
constraints among adjacent features. This limitation 
does not affect its ability in specifying small product 
lines. But for very large product lines with very 
complex constraints, its capacity might not be 
sufficient, which we will show through an example 
in the next subsection. 

3.2 PolyFlow 

FAST Decision Model analysis was applied to the 
development of one of Avaya’s research product 
lines, now an open source called PolyFlow (Li, 
2013). It is a family of test tools that minimally 
provide the capability to execute test cases and 
calculate associated coverage measures. Initially, the 
tool operated only on Java programs and calculated 
line coverage and slicing measures. As it became 
more popular, users requested features such as 
automated test generation, testing of C and C++ 
programs, and execution on different platforms, such 
as Windows, Linux, and VxWorks. It soon became 
clear that PolyFlow was a family of test tools that 
should be developed as a product line. More 
descriptions of the PolyFlow family can be found in 
(Devine, 2012), and (Li, 2008). 

The first step of the PolyFlow product-line 
process was to conduct a commonality analysis that 
identified the common aspects as well as the 
variability for the family. The PolyFlow product 
family includes 34 commonality and 41 variability, 
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each variability having an associated parameter of 
variation that has from 2 to 6 values. An example 
commonality is that all family members must derive 
the control flow graph of the program under test and 
be able to display it for the user. Two variability 
examples are the programming language of the 
system under test, such as Java or C, and the type of 
error path identification mechanisms. 

Table 3: Partial PolyFlow Commonality, Variability, and 
Parameters of Variation. 

 Commonality 

C1 Parsing 

C2 Program Structure Graph 

C3 Error Path Identification 

C4 Reporting 

 Variability 

V1 Programming Languages of target system 

V2 Java code types 

V3 Ways to identify error path 

V4 Testing Platforms 

 Parameters of Variation and Values 

PV1 Language: Java, C/C++, C# 

PV2 Java code type: Java source, Java byte code 

PV3 Error path: Keyword, user-defined 

PV4 Platform: *nix, VxWorks, Windows, Switch 

 

Table 3 shows a few commonalities, variability 
and parameters of variation of the PolyFlow product 
line. Table 3 includes four commonalities among the 
product family members: Parsing, Program 
Structure Graph, Error Path Identification and 
Reporting. All product family members must 
provide those four functions. Table 3 also shows 
four variability, Language, Java Type, Error Path 
Identification, and Platform, each of which has a list 
of valid parameter values. For example, the language 
can be Java, C, or C++ (PV1 in Table 3), and the 
platform can be any of *nix, VxWorks, Windows, or 
Switches (PV4 in Table 3). Please note that this is 
only a very small selection from PolyFlow family. 

Based on the available documents and on the 
guidelines defined in the pilot, we built the feature 
model. PolyFlow(eXVantage in the diagram) was 
considered the root feature, and parsing and 
program structure graph some of its first sub 
features, as shown in in Figure 5, with details later. 

For the feature Parsing, the model included the 
commonality Parse/AST and the variability Target 
Language, which was further detailed in an 
alternative relationship between Java and C/C++. 

The Java feature has two options, source-code and 
byte-code. The Error Path Identification feature can 
have more than one form of identification, which is 
represented by the Or feature group with: User 
Defined Words and Exception Handling.  

 

 

Figure 5: Fragment of PolyFlow Feature Model. 

One characteristic of this domain that was not 
present in the FWS family is the existence of 
dependencies among the variability, i.e. complex 
constraints. Only the simple constraints If (V1 is 
C/C++) then V3 is User-Defined Keywords is 
represented in the feature model fragment in Figure 
5, as a relationship arrow between the features 
C/C++ and User Defined Keywords. Relationship 
arrows are difficult to represent constraints 
involving more than three features in the diagram. 

The reason why we selected only a subset of 
PolyFlow decision model is that we found that 
feature model is more suitable for smaller product 
lines. If we include more commonality and 
variability from PolyFlow, we wouldn’t be able to fit 
the feature model into this paper. On the other hand, 
with a tabular form for decision model on an 
architecture level only, it can represent large 
families because of the length of the table can grow 
without affecting the content. A complete set of 
PolyFlow decision model can be found in (Li, 2013). 

4 RESULT ANALYTICS 

The goal of our study is to compare the usage of the 
two product line scoping methods, decision model 
and feature model. So far the previous section has 
shown that the two are interchangible for small 
product lines. So any evaluation of either model 
should imply the feasibility for the other model. In 
this section, we will take a look at their difference 
and the impacts of the difference to the users. Please 
note that our comparison presents an user point of 
view on whether and how to use the two models. 
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They differ on how these activities should be carried 
out formally. 

The strengths of the Decision Model include: 
1) Precise specifications of commonalities and 

variability: the tabular format gives sufficient 
space to add or remove them, as well as 
specifying them. This property of decision model 
makes it suitable for defining product lines with 
high quality requirements, such as safety-critical 
ones. 

2) Support for expression of (sometimes complex) 
constraints among parameters of variability: a 
constraint section in the table gives room to 
specify any kind of constraints.  

3) Expression of binding time: the sequence in 
decision model indicates the order the variability 
should be selected due to some constraints and 
each has a column used to specify its binding 
time. 

4) Guidance for constructing product architecture: 
This character permits a direct mapping from 
parameters to components used to build 
products, thereby allowing automated generation 
of products, which is a key property of FAST 
process. 

More work on evaluation of decision model is still 
needed. In our trial, it took a long time for us to get a 
complete decision model because the product line is 
so complex. Even though the product generation 
time is reduced substantially, the effort needed to 
produce a decision model is quite large: in our 
PolyFlow case study, it took over 1 staff/year. This 
commonality analysis time to create decision model 
has no counter-part in conventional software 
development time, which hinders our ability to 
compare them quantitatively, even though we did a 
study of quality improvement recently (Devine, 
2012). 

The feature model process strengths, including 
its extensions (Czarnecki, 2000), are: 
 simple visual representation;  
 provides a clear view of the full domain; and  
 has several optional fields for documenting (such 

as, description, priorities and constraints) every 
feature in the model. 

These strengths make it perfect for feature modeling 
of small and light weight product lines, where all 
features can be viewed clearly in one simple visual 
representation. However, those strengths could also 
be a drawback for very large systems. The feature 
model process does not incorporate complex 
constraints among features and has not been proven 
to scale to large systems. In fact, in our PolyFlow 

trial, we gave up trying to convert the entire decision 
model to feature model because it became too 
complex to maintain. 

During the comparison, one of the most difficult 
representations of variability in the commonality 
analysis for the feature model is when the value set 
of the Parameters of Variation involve a great 
variety of options – such as PV1 in Table 2 where 
the weight for the high-resolutions sensors can vary 
from one to one-hundred. This type of variability is 
hard to represent as feature groups (Alternatives or 
Or types), because of the quantity of features the 
group would have. Our innovative solution is to map 
the values as an attribute in the feature (Czarnecki, 
2000). Therefore, these attributes can have 
constraints defining their value range. In the PV1 
example, the range would be from 1 to 100. 

Furthermore, the binding time, easily represented 
in the commonality analysis, and included in 
(Czarnecki, 2000), is not easily identified in a 
feature model. Setting the binding time as an 
attribute in the variability features would make it 
more visible. During the comparison, we also found 
that it was possible to identify requirements for tool 
automation in both processes. They were: 
 Features, commonality, variability and 

traceability among documents (both processes); 
 Consistency checker (both processes); 
 Visibility level (FODA);  
 Complex constraints among features (FODA), 

such as those proposed in (Batory, 2005); and, 
 Automatic generation of reports (FODA). 
 Automatic product generation (FAST) 

Overall we found that both feature model and 
decision model are very useful for defining product 
lines. The key guideline in selecting them is that 
feature model works better for small product lines 
and decision model works nicely for large system 
with complex constraints and high quality 
requirements such as safety-critical product lines. 

5 CONCLUDING OBSERVATION 

We have provided here a qualitative evaluation of 
the decision model of FAST process and the feature 
model of FODA processes based on existing 
analyses of two domains: one an example and the 
second a real industrial domain. 

The decision model has a textual and tabular 
view of the domain’s commonalities and variability, 
while the feature model has a visual representation. 
However, both processes have the same goal, which 
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is to identify the common and variable 
characteristics of the domain and to document it in 
order to be used in the architecture definition and as 
a basis for the generation of product line members. 
Conversely, the processes achieve this outcome in 
different ways. The decision model seems to confer 
advantages in precision, and its ability to express 
binding times and constraints on the value spaces for 
variability. Its model representation uses simply 
assumptions over the domain, representable as 
predicates, for the commonality and the variability. 
One result is that the decision model can be viewed 
as the basis for creating a domain specific language. 

The primary advantage of feature models is their 
visual appeal. For simple domains where there are 
few constraints among variability, they help the 
domain engineer to visualize the domain for better 
understanding and maintenance. The visual 
representation must be supplemented with attribute 
definitions as domain complexity increases. Also as 
domain size and complexity increase, the visual 
diagram will require manipulation, such as panning 
and zooming to preserve the ability to see the entire 
domain at one time. 

Both approaches benefit from the ability to 
impose structure on the domain and both may 
become unwieldy as domain size and complexity 
increases. But overall they are the state-of-the art 
technology to define the scope of a software product 
line. Our case study shows that they work for both 
cases and the guideline for selection is to use feature 
model for small product lines and decision model for 
larger ones with precision requirements. The future 
research direction of this work would be to compare 
the two as applied to other complex cases and collect 
quantitative measurements. In addition, it would be 
desirable to do the decision model based on an 
existing feature model real case, even though the one 
way procedure was given in the paper. 
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