
DC2DP: A Dublin Core Application Profile to Design Patterns

Angélica Aparecida de Almeida Ribeiro, Jugurta Lisboa-Filho,
Lucas Francisco da Matta Vegi and Alcione de Paiva Oliveira

Departamento de Informática, Universidade Federal de Viçosa (UFV), Viçosa, Minas Gerais, Brazil

Keywords: Design Pattern, Dublin Core Standard, Reuse.

Abstract: Design patterns describe reusable solutions to existing problems in object-oriented software development.
Design patterns are mostly documented in written form in books and scientific papers, which hinders
processing them via computer, their diffusion, and their broader reuse. They can also be found on the
internet, though documented with little detail, which makes it hard to understand and consequently reuse
them. This paper presents an application profile of the Dublin Core metadata standard specific for design
patterns, called DC2DP. The goal is to allow design patterns to be documented so as to provide the user
with a more detailed and standardized description, besides enabling automatic processing through web
services. The paper also extends an Analysis Patterns Reuse Infrastructure (APRI) by adding a design
pattern repository to it, thus allowing these patterns to be cataloged and searched, which makes their
discovery, study, and reuse easier.

1 INTRODUCTION

In order to locate a book in a library, a work of art in
a museum, or a city map in a map repository, the
various catalogs of these objects need to be
consulted. In the digital era, this type of catalog
corresponds to a metadata (data on data) repository
containing the description and information on how
to obtain or locate the documented object. Metadata
must follow a standardized documentation structure
(element set) so that the systems are able to achieve
interoperability in its search modules. The Dublin
Core Metadata Element Set (DCMI, 1998) was
defined as a way to serve several areas, making
available a minimum set of mandatory elements in
documenting any type of object. Moreover, an
application profile may be defined, i.e., a standard
customization for a specific area.

In software engineering, design patterns (Gamma
et al., 1995), analysis patterns (Fowler, 1997),
frameworks, and components are examples of
reusable computational artifacts during software
development. The issue is that these reusable
artifacts are not easily found and most times
programmers and designers choose to develop their
solutions from scratch instead of researching the
existence of previously tested solutions validated in
other systems.

Thus, Vegi et al. (2012b) proposed an Analysis
Patterns Reuse Infrastructure (APRI) made up of a
repository of analysis patterns, documented based on
a Dublin Core Application Profile specific for
analysis patterns.

According to Gamma et al. (1995), a design
pattern identifies the mains aspects of a design
structure that is common and possibly useful for
creating other object-oriented projects. Each design
pattern is able to focus on one particular problem or
topic of an object-oriented design. The pattern
describes how, where, and in which situation it must
be employed, and the consequences of its use.
Gamma et al. (1995) states that the object-oriented
architectures, when well structured, may carry
several patterns. Gamma et al. also claims that one
way of measuring the quality of an object-oriented
system is to assess how the developers used the
common collaborations among its objects. The use
of these patterns during the development of a system
is able to produce smaller, simpler, and much more
understandable architectures than in architectures in
which these patterns are ignored.

Documenting these patterns helps to capture the
design experience so that the designers can use them
more effectively. For that end, these patterns must
be documented and presented in some easily
accessible and understandable catalog.

209Aparecida de Almeida Ribeiro A., Lisboa-Filho J., Vegi L. and Oliveira A..
DC2DP: A Dublin Core Application Profile to Design Patterns.
DOI: 10.5220/0004885202090216
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 209-216
ISBN: 978-989-758-028-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

This paper proposes a specific Dublin Core
Application Profile to document design patterns. The
profile is based on elements of the DC2AP metadata
profile, proposed by Vegi et al. (2012a) to document
analysis patterns, and on the template used by
Gamma et al. (1995). Moreover, this paper proposes
extending the APRI structure by adding to it a
repository of design patterns, thus allowing this type
of pattern to be cataloged and reused.

The remaining of the paper is structured as
follows. Section 2 reviews works related to design
pattern catalogs, besides introducing DC2AP, a
metadata profile to document analysis patterns.
Section 3 introduces DC2DP, a Dublin Core
Application Profile to document design patterns.
Section 4 proposes extending the APRI structure,
while section 5 presents the final considerations and
proposes some future work.

2 RELATED WORKS

2.1 Design Pattern Catalogs

A design pattern catalog is made up of a set of
related patterns with characteristics in common.
These patterns may be used individually or be
interconnected, since they may be used alongside
each other. There are several design pattern catalogs,
such as GoF Patterns (Gamma et al., 1995), J2EE
Patterns (Alur et al., 2003), SOA Patterns (SOA
Patterns, 2013), among others.

Each existing design pattern catalog uses a way
of documenting the patterns that compose it, i.e.,
each one uses a set of elements to describe the
pattern, with no standardized way of documenting
design patterns.

2.2.1 GoF Pattern Catalog

Gamma et al. (1995) propose in their book a design
pattern catalog, which became known as GoF
Pattern Catalog, made up of 23 patterns classified
according to two criteria: scope and purpose.

Regarding scope, the patterns may be split into
class and objects. As for the purpose, the patterns are
classified into creation, structural, and behavioral
patterns.

In order to describe the design patterns in the
catalog, the authors divided each pattern into
sections according to the template proposed. The
elements in the template used in documenting these
patterns are: pattern name and classification, purpose
and goal, also known as, motivation, applicability,

structure, participants, collaborations, consequences,
implementation, code examples, and known uses.

2.2.2 J2EE Pattern Catalog

Alur et al. (2003) presented in their book a design
pattern catalog based on the work experience with
the J2EE platform of Sun Java Center to clients
worldwide.

The J2EE Pattern catalog is made up of 21
patterns split into presentation layer, business layer,
and integration layer patterns. Each pattern is
documented following a template. The elements in
the template are: problem, forces, solution,
consequences, and related patterns.

2.2.3 SOA Pattern Catalog

The design patterns in the catalog presented in SOA
Patterns (2013) list the service-oriented principles
when a dependency or relationship among services
in an architecture must be highlighted.

The SOA Pattern catalog is made up of 83
patterns divided into the following categories:
Service Implementation, Service Security, Service
Contract Design, Legacy Encapsulation, Service
Governance, Capability Composition, Service
Messaging, Composition Implementation, Service
Interaction Security, Transformation, REST-
inspired.

The elements in the template to document the
SOA patterns are: problem, solution, application,
principles, related patterns, goals related to service-
oriented computing.

2.2 Dublin Core Application Profile to
Analysis Patterns

The Dublin Core Application Profile to Analysis
Patterns (DC2AP) was proposed by Vegi et al.
(2012a) to document analysis patterns. This
metadata profile was created based on the template
proposed by Pantoquilho et al. (2003) to document
analysis patterns and on the Dublin Core metadata
standard elements (DCMI, 1998).

According to Vegi et al. (2012a), the goal of
DC2AP is to improve the recovery and reuse of
analysis patterns by means of a description that
allows the computer to perform a more precise
treatment of the data previously not recovered by
search engines. This task is performed based on
detailed information provided on these patterns.

The DC2AP elements are associated to a
Universal Resource Identifier (URI) and

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

210

semantically described by a Resource Description
Framework (RDF). Using URI and RDF enables
using the Linked Data concept, which then allows
the patterns to be made available in an environment
where the data may be processed directly or
indirectly by machines. The DC2AP elements are
detailed in section 3.2.

3 DUBLIN CORE APPLICATION
PROFILE TO DESIGN
PATTERNS

This section describes the Dublin Core Application
Profile to Design Patterns (DC2DP). In order to
define the DC2DP profile elements, initially the
design pattern documentation template elements
proposed by Gamma et al. (1995) were compared
with the elements of the DC2AP so as to analyze
whether the same metadata profile could be used to
document the analysis and design patterns.

Based on this comparison, a significant
difference was found between the element sets since
the analysis patterns are more targeted towards the
phase of analysis of requirements and modeling of
the problem, mainly focusing on documenting the
functional and non-functional requirements, the
class diagrams among other artifacts targeted
towards the analysis phase of a piece of software.
On the other hand, design patterns are targeted
towards the solution phase of the design, in order to
define object-oriented architectures, tending to
document examples of source code for certain
problems.

Thus, the Dublin Core Application Profile to
Design Patterns (DC2DP) was specified based on
the elements of the template proposed by Gamma et
al. (1995) to specify design patterns and on the
DC2AP elements.

DC2DP’s main goal is to improve the recovery
and reuse of design patterns, by providing more
detailed information on these patterns, now in a
recoverable by search engines format.

The next sub-sections detail the steps taken to
define DC2DP. Sub-section 3.1 presents the
mapping between the Dublin Core elements and
those of the template proposed by Gamma et al.
(1995). Sub-section 3.2 presents the mapping
between the elements generated in the mapping of
sub-section 3.1 and the elements of DC2AP. Finally,
sub-section 3.3 presents the DC2DP elements with
their application rules.

3.1 Mapping between the Elements of
the Dublin Core Metadata
Standard and Gamma’s Template

Unlike the Dublin Core metadata standard, which is
generic and, therefore, helps in documenting
resources from several domains, the template
proposed by Gamma et al. (1995) is specific for
documenting design patterns, which is why it was
chosen to be the basis for creating DC2DP.

Hence, the first task in defining DC2DP was
mapping the elements of the template of Gamma et
al. (1995) and the Dublin Core elements. This
mapping process was carried out by comparing all
the elements of either structure, based on the
elements’ semantic correspondence. The result of
this mapping can be seen in Figure 1.

Dublin Core Gamma et al. (1995)
Title Name

Also Known As
Creator No Equivalent
Subject No Equivalent
Description Intention

Motivation
Applicability
Known Uses

Publisher No Equivalent
Contributor No Equivalent
Date No Equivalent
Type No Equivalent
Format No Equivalent
Identifier No Equivalent
Source No Equivalent
Language No Equivalent
Relation Related Patterns
Coverage No Equivalent
Rights No Equivalent

No
Equivalent

Classification
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code

Figure 1: Mapping between the elements of the Dublin
Core and the template by Gamma et al. (1995).

3.2 Mapping between the DC2AP
Elements and Dublin Core Profile
with Gamma’s Template Elements

From the mapping described in sub-section 3.1, the
elements from the Dublin Core profile and from the

DC2DP:�A�Dublin�Core�Application�Profile�to�Design�Patterns

211

DC2AP Dublin Core + Gamma et al.
1.Identifier Identifier
2.Title
 2.1 Alternative Title

Title
 Also Known As

3.Creator Creator
4.Subject Subject
5. Description
 5.1 Problem
 5.2 Motivation
 5.2.1 Example
 5.2.2 Known Uses
 5.3 Context

Description
Intention
Motivation
 Applicability
 Known Uses
No Equivalent

6. Publisher Publisher
7. Contributor Contributor
8. Date
 8.1 Created
 8.2 Modified

Date
 No Equivalent
 No Equivalent

9. Type
 9.1 Notation

Type
 No equivalent

10. Format Format
11. Source Source
12. Language Language
13. Relation
 13.1 Is Version Of
 13.2 Is Replaced By
 13.3 Replaces
 13.4 Is Part Of
 13.5 Has Part
 13.6 Is Designed With
 13.7 Should Avoid
 13.8 Complemented By
 13.9 About

Relation
 No Equivalent
 No Equivalent
 No Equivalent
 No Equivalent
 No Equivalent
 No Equivalent
 No Equivalent
 Related Patterns
 No Equivalent

14. Coverage Coverage
15. Rights Rights
16. History
 16.1 Event Date
 16.2 Author
 16.3 Reason
 16.4 Changes

No Equivalent
 No Equivalent
 No Equivalent
 No Equivalent
 No Equivalent

17. Requirements
 17.1 Functional Requirements
 17.2 Non-functional Requirements
 17.3 Dependencies and Contributions
 17.3.1 Dependency Graph
 17.3.2 Contribution Graph
 17.4 Conflict Identification & Guidance to Resolution
 17.5 Priorities Diagram
 17.6 Participants

No Equivalent
 No Equivalent
 No Equivalent
 Colaborations
 No Equivalent
 No Equivalent
 Implementation
 No Equivalent
 Participants

18. Modelling
 18.1 Behaviour
 18.1.1 Use Case Diagram
 18.1.2 Collaboration/Sequence Diagrams
 18.1.3 Activity/State Diagrams
 18.2 Structure
 18.2.1 Class Diagram
 18.2.2 Class Description
 18.2.3 Relationship Descriptions
 18.3 Solution Variants

Structure
 No Equivalent
 No Equivalent
 Structure
 No Equivalent
 Structure
 Structure
 Participants
 Collaborations
 No Equivalent

19. Resulting Context No Equivalent
20. Design Guidelines Implementation
21. Consequences
 21.1 Positive
 21.2 Negative

Consequences
 Consequences
 Consequences

No Equivalent
Classification
Sample Code

Figure 2: Mapping between DC2AP and the elements of the Dublin Core + Gamma et al. (1995).

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

212

template by Gamma et al. (1995) were combined,
thus originating the basic DC2DP structure.

Next, the elements of this structure were
compared to the DC2AP elements, since there was a
need to check whether these two patterns were very
similar and whether a new Dublin Core profile had
to be generated to document design patterns or just a
profile based on DC2AP had to be created to
document design patterns. The comparison was
similar to the one made with Dublin Core, with the
elements being compared according to their
semantics. The result of this mapping can be seen in
Figure 2.

As it can be seen, many elements of Dublin Core
+ Gamma to not match the DC2AP profile, thus a
new standard for documenting design patterns was
proposed, whose elements are described in sub-
section 3.3.

3.3 DC2DP: Dublin Core Application
Profile to Design Patterns

Figure 3 shows the elements belonging to the Dublin
Core Application Profile to Design Patterns
(DC2DP), generated based on the mappings
presented in sub-sections 3.1 and 3.2.

In order to generate DC2DP, the main
characteristics in the Dublin Core pattern elements
were taken into account, thus allowing the design
patterns to be documented based on a generic
metadata standard so as to transmit to the user
necessary information on the patterns, aiding them
in making the right choice and appropriately using
these patterns.

Gamma et al. (1995) present the elements in a
catalog for design pattern documentation that the
user must read in order to understand whether the
pattern they use or intend to use is the right one for
the problem being tackled. Some of these elements
are: Applicability (Examples), Consequences,
Structure (Structural Modeling), Participants (Class
Description), Collaborations (Description of
Relationships), Source-code Example. Therefore,
these elements were kept in DC2DP.

Other elements, however, had their names
changed when integrating DC2DP, which are
presented in parenthesis as shown above. This
change was done because the semantic meanings of
the elements were similar to some elements in
DC2AP, thus keeping both elements was considered
redundant. Moreover, since DC2AP and DC2DP are
used to document patterns and store them in a reuse
infrastructure, i.e., APRI, it was considered worth
maintaining the same name of the elements used in

the two profiles whenever possible.
The DC2AP profile contains elements to control

versions of the documented patterns, besides other
elements for sharing usage experience. According
to Vegi et al. (2012a), these characteristics were
incorporated into DC2AP so as to allow new and
enhanced versions of the patterns to be proposed
with the collaboration of their usage experience. In
addition, all versions of these patterns may relate
with one another, a resource which enables users to
recover the version that best and most efficiently
meets their needs. Based on the importance of
version control and on the help it provides in the
mapping in sub-section 3.2, DC2DP kept the
following elements: History and Relation.

After the elements that make up DC2DP had
been defined, rules were proposed regarding
obligatoriness, occurrence, and type of value of each
of the elements proposed. These rules are presented
in Figure 3.

Due to space constraints, the semantic
description of each element that makes up DC2DP,
as well as the details of the application rules, are not
presented in this paper, but a detailed specification
of the profile can be found at
<http://www.dpi.ufv.br/projetos/apri>.

4 DESIGN PATTERN
REPOSITORY IN APRI

The goal of the Analysis Patterns Reuse
Infrastructure (APRI) is to provide an environment
that enables the dissemination and evolution of
analysis patterns using an approach targeted to Web
Services (Vegi et al., 2012b).

An APRI maintains a repository of analysis
patterns documented with the DC2AP metadata
profile. Thus, one of the main roles of an APRI is to
allow the patterns to be discovered by the users,
besides offering tools that allow the patterns to be
updated.

This paper extends the APRI structure (Figure 4)
by adding a repository of design patterns
documented by means of the DC2DP profile. Hence,
the analysis patterns may be referenced by design
patterns and vice-versa.

A catalog with the design patterns documented
by using the DC2DP profile and stored in the APRI
repository is available at: <http://www.dpi.ufv.br/
projetos/apri>.

The main advantage of the proposed repository,
is that, all the design patterns are gathered in the

DC2DP:�A�Dublin�Core�Application�Profile�to�Design�Patterns

213

same place, this way facilitating the retrieving of the
patterns and consequently their reuse. Moreover, the
proposed metadata profile to document the design
patterns use the concept of linked data, which allows

a design pattern to create a link between all the other
patterns, that can somehow help in its
implementation, thereby making a more complete
documentation of the pattern.

Elements of DC2DP
1.Identifier [M][S][UNS]
2. Title [M][S][St] 2.1 Alternative Title [O][Mu][St]
3. Classification [O][S][St]
4. Creator [M][Mu][St]
5. Subject [M][Mu][St]

6. Description [M][S][N]

6.1 Problem [M][S][St]

6.2 Motivation
[M][Mu][St]

6.2.1Example
[M][Mu][St]
6.2.2 Known Uses
[M][Mu][St]

7. Date [M][S][N]
7.1 Created [M][S][D]
7.2 Modified [Cd][S][D]

8. Publisher [O][Mu][St]
9. Contributor [Cd][Mu][St]
10. Type [M][S][US]
11. Source [Cd][S][US]
12. Language [M][S][US]

13. Relation [Cd][S][N]

13.1 Is version of [Cd][S][UNS]
13.2 Is Replaced By [Cd][Mu][UNS]
13.3 Replaces [Cd][Mu][UNS]
13.4 Is Part of [O][Mu][UNS]
13.5 Has Part [O][Mu][UNS]
13.6 Related Patterns [O][Mu][UNS]
13.7 Is Analyzed With [O][Mu][UNS]

14. Coverage [O][Mu][St]
15. Rights [Cd][Mu][US]

16. History[M][Mu][N]

16.1 Event Date [M][S][D]
16.2 Author [M][Mu][St]
16.3 Reason [M][S][St]
16.4 Changes [Cd][S][St]

17. Behavior Modelling[O][S][N] 17.1 Sequence Diagram [O][S][U]

18. Structure Modelling [M][S][N]

18.1 Object Diagram [O][S][U]

18.2 Class Diagram
[M][S][U]

18.2.1 Class Description
[M][S][St]
18.2.2Relation Description
[M][S][St]

19. Sample Code [M][S][N]
19.1 Programming Language [M][Mu][St]
19.2 Code [M][Mu][St]
19.3 Code Description [M][Mu][St]

20. Design Guidelines [O][Mu][St]

21. Consequences [M][S][N]
21.1 Positive [M][Mu][St]
21.2 Negative [O][Mu][St]

Rules’ Acronyms
Obligatoriness Occurrence Value Type

[M] Mandatory
[O] Optional
[Cd] Conditional

[S] Single
[Mu] Multiple

[St] String
[D] Date
[U] URI
[N] Null
[UNS] URI, number or string
[US] URI or string

Figure 3: Elements of the Dublin Core Application Profile to Design Patterns.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

214

The use of the linked data together with the semantic
web concept, allow the data that is going to be
recovered in the researches, to be more precise and
return only what the user really desire, without
excess data.

However, the disadvantage of this repository is
the need of the user to have access to the internet, so
that the data can be retrieved and the patterns
visualized.

In order to exemplify the application of the
metadata profile proposed in this study, Figure 5
presents a design pattern documented in DC2DP.
The design pattern specified is the Singleton,
proposed by Gamma et al. (1995). Due to space
issues, only the mandatory elements are shown in
the description of this pattern.

Figure 4: Extension of the Analysis Patterns Reuse
Infrastructure (APRI).

5 FINAL CONSIDERATIONS

The DC2DP profile was specified aiming at enabling
a more detailed specification of design patterns,
since it has been developed specifically to this
domain. Through that, this profile must be able to
provide users with more complete information, when
such information is available, thus helping them to
choose the pattern that best aids in carrying out a
project and consequent quicker and more effective
design production.

With the APRI architecture extension proposed
in this paper, the service-oriented infrastructure for
cataloging and reusing analysis patterns may be
extended and adapted to catalog and reuse design
patterns, thus enriching the APRI architecture. This
proposal will allow design patterns to be easily
found, studied, and reused, also by using web
services.

As a future work, an experiment is intended to
assess the APRI structure in order to check whether
providing these patterns in a repository will in fact

help users in their designs. Moreover, an APRI
prototype will be created so as to technologically
enable the practical application of DC2AP and
DC2DP in documenting patterns.

ACKNOWLEDGEMENTS

This project was partially financed by the agencies
CAPES, CNPq, FAPEMIG and by the company
Funarbe.

REFERENCES

Alur, D.; Crupi, J.; Malks. D., 2003. Core J2EE Patterns:
Best Practices and Design Strategies. Sun
Microsystems. Palo Alto.

DCMI - Dublin Core Metadata Initiative, 1998. Dublin
Core metadata element set, v.1.0: Reference
description. Available in: <http://www.dublincore.
org/documents/1998/09/dces/>.

 Fowler, M., 1997. Analysis Patterns: reusable object
models. Addison-Wesley Publishing.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995.
Design patterns: elements of reusable object-oriented
software. Reading: Addison Wesley Publishing
Company.

Pantoquilho, M., Raminhos, R., Araújo, J., 2003. Analysis
patterns specifications: filling the gaps. In: Viking
Plop Conference, Bergen, Norway. p. 169-180.

SOA Pattern, 2013. Available in: <http://soapatterns.org/
design_patterns/overview>.

Vegi, L. F. M., Lisboa-Filho, J., Costa, G. L. S, Oliveira,
A. P.; Braga, J. L., 2012a. DC2AP: A Dublin Core
application profile to analysis patterns. In: Int. Conf.
on Software Engineering and Knowledge Engeneering
(SEKE), Redwood City, California, USA.

Vegi, L. F. M., Lisboa-Filho, J., Crompvoets, J., 2012b. A
machine-processable Dublin Core application profile
for analysis patterns to provide linked data. In: Int.
Conf. on Dublin Core and Metadata. Kuching,
Sarawak, Malaysia.

DC2DP:�A�Dublin�Core�Application�Profile�to�Design�Patterns

215

1.Identifier: http://purl.org/apri/metadata/Singleton-v1
2. Title: Singleton

3. Creator: Erich Gamma, Ralph Johnson, Richard Halm, John Vlissides
4. Subject: Single instance, Global variable

5.Description

5.1 Problem: Ensure a class only has one instance, and provide a global point of access to it.
5.2 Motivation:
1. It’s important for some classes to have
exactly one instance.
2. A global variable makes an object
accessible, but it doesn’t keep you from
instantiating multiple objects.
3. A better solution is to make the class itself
responsible for keeping track of its sole
instance. The class can ensure that no other
instance can be created, and it can provide a
way to access the instance.

5.2.1Example: 1. Use the Singleton pattern when there must be
exactly one instance of a class, and it must be accessible to clients
from a well-known access point.
2. When the sole instance should be extensible by subclassing, and
clients should be able to use an extended instance without
modifying their code.

5.2.2 Known Uses: 1. The InterViews user interface toolkit
[LCI+92] uses the Singleton pattern to access the unique instance
of its Session and WidgetKit classes, among others.

6. Date: 6.1 Created: 1995
7. Type: Design Pattern
8. Language: English – EN

9. History
9.1 Event Date: 1995
9.2 Author: Erich Gamma, Ralph Johnson, Richard Halm, John Vlissides
9.3 Reason: Creation of this design pattern.

10.Structure
Modelling

10.1Class Diagram:
http://purl.org/apri/patterns/Singleton_v1

10.1.1 Class Description: Singleton: defines an Instance operation
that lets clients access its unique instance. Instance is a class
operation (that is, a class method in Smalltalk and a static member
function in C++). May be responsible for creating its own unique
instance.
10.1.2 Relation Description: Clients access a Singleton instance
solely through Singleton's Instance operation.

11. Sample
Code

11.1 Programming Language: C++

11.2 Code:
class MazeFactory {
public:
 static MazeFactory* Instance();
// existing interface goes here
 protected:
 MazeFactory();
 private:
 static MazeFactory* _instance;
};

11.3 Code Description: MazeFactory defines an
interface for building different parts of a maze. What's
relevant here is that the Maze application needs only
one instance of a maze factory, and that instance should
be available to code that builds any part of the maze.
This is where the Singleton pattern comes in. By
making the MazeFactory a singleton, we make the maze
object globally accessible without resorting to global
variables. We make it a Singleton class in C++ by
adding a static Instance operation and a static _instance
member to hold the one and only
instance. We must also protect the constructor to
prevent accidental instantiation, which might lead to
more than one instance.

12.
Consequences

12.1 Positive: 1. Controlled access to sole instance. Because the Singleton class encapsulates its sole instance, it can
have strict control over how and when clients access it.
12.2 Negative: Cannot inhibit access your class. Any part of the code to call the method Instance (), because it is
static, and have access to the data class.

Figure 5: Specification of the Singleton design pattern.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

216

