
Mathematics of the Design of a Parallel Mapping Assembly
Algorithm

Combining Smith-Waterman and Hirschberg’s LCS Methods

Jaime Seguel
Electrical and Computer Engineering Department, University of Puerto Rico at Mayaguez, PR 00681, U.S.A.

Keywords: Sequence Alignment, Parallel Computation, Recursion, Mapping Assembly.

Abstract: This paper focuses on mathematical definitions and results that prove the correctness of a parallel algorithm
for mapping assembly. The mathematical concepts and facts discussed here establish the reach and
limitations of a combination of Smith-Waterman local alignment method and Hirschberg’s divide-and-
conquer longest common subsequence determination method. The parallel algorithm, whose correctness is
proved, is a general method that works best for solving the problem of the local alignment of a short and a
very large sequence, such as an entire genome. The method is thus, suitable for mapping assembly, where
millions of short sequence segments, the so-called reads, are aligned with a whole genome.

1 INTRODUCTION

Sequencing is the process of determining the precise
order of the characters that compose a DNA, mRNA
or a protein string. Sanger sequencing (Sanger,
Coulson, 1975), a pioneer sequencing method,
remained the method of choice up to the advent of
next generation sequencing (NGS) (Weijia Soon et.
al., 2013). NGS are parallel processes that produce
millions of short sequence segments, the so-called
reads, at once. The shear amount and short length of
the reads renders Sanger’s assembling algorithms
time and space inefficient.

Assembly algorithms are classifiable in two main
groups: de novo assembly, and mapping assembly
methods. De novo assembly reconstructs the
sequence directly from the reads, through
combinatorial graph algorithms (Li et. al., 2010).
Mapping assembly, instead, aligns the reads against
a reference genome. Mapping assembly is normally
faster than de novo assembly but both methods incur
inaccuracies and ambiguities.

The quality of the sequence returned by a
mapping assembly algorithm depends on the
accuracy of the underlying pairwise alignment
method. An alignment of two strings, S1 and S2 over
an alphabet Σ is a 2 × q array, q ≥ max {|S1|, |S2|};
with the characters of S1 in the first row and the
characters of S2 in the second, both placed in the
order that they appear in the original sequences.

There are two kinds of alignment, namely gapped
and unpgapped alignments. In an ungapped
alignment no symbols or blank spaces are inserted
between characters. Blanks may be placed before or
after the sequence character provided that no column
of the alignment consists solely of blanks. An
optimal ungapped alignment places the maximum
number of characters that are similar in the same
column. A gapped alignment, or simply alignment,
fills the alignment array with the characters of an
extended alphabet Σ U {–}. Here “–“, the gap
character, is not an element in Σ. No blank spaces
are allowed but one or more consecutive gap
characters may separate the characters of the
sequences. No gap character is to be aligned with a
gap character, either.

Alignments are built on the basis of scoring
frameworks that consists of a substitution matrix and
a gap insertion penalty function. The substitution
matrix, denoted M = [M (a, b)], assigns a score to
the substitution of each pair a, b of symbols in Σ.
The penalty for a gap insertion, in turn, is assigned
with a function of the form

γ(g) = - d – (g – 1)e; (1)

where e and d are constants, and g is the gap length,
this is, the number of gaps symbols inserted between
two consecutive sequence characters. The score of
an alignment is the sum of the substitution scores of
each sequence’s character alignment, minus the sum
of all penalties for gap inserted.

221Seguel J..
Mathematics of the Design of a Parallel Mapping Assembly Algorithm - Combining Smith-Waterman and Hirschberg’s LCS Methods.
DOI: 10.5220/0004883802210226
In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms (BIOINFORMATICS-2014), pages 221-226
ISBN: 978-989-758-012-3
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

The local alignment problem (LAP) is the search for
a pair of subsequences, one from S1 and the other
from S2, whose alignment achieves maximum score.
LAP is a well-posed optimization problem and the
Smith-Waterman (SW) algorithm (Smith, Waterman,
1981) solves LAP exactly, in O(|S1||S2|) time and
space. However, because of the shear length of
genome sequences and the ever-increasing number
of reference sequences available for comparisons,
the heuristic method called Basic Local Alignment
Sequence Tool (BLAST) (Altschul, 1997), is
preferred by practitioners. BLAST solves LAP
approximately, by finding high scoring pairs (HSP)
instead of alignments. A HSP is the extension of a
word hit, which is the ungapped alignment of the
sequence with a short word whose score is greater
than or equal to a user defined threshold. Word hits
are extended with a local sequence alignment
method, such as Smith-Waterman, up until their
scores drop below another user-defined threshold.
Although BLAST returns the results much faster
than Smith-Waterman, it is still deemed too slow for
most post-genomic era processing demands.
Mapping assembly is an important post-genomic
instance of this demand. Post BLAST tools are
designed for rapidly aligning a sequence to an entire
genome, on a desktop computer. One such tool is
MUMmer (Delcher et. al., 2002). MUMmer’s speed
rests on efficient suffix tree representations of the
sequences. Suffix trees identify perfect matches,
which are more restrictive than ungapped
alignments, in linear time and space. MUMmer
aligns short reads to a genome using a specialized
routine called NUCmer. As in BLAST, NUCmer
approximate solutions are extensions of exact
matches produced with gapped or ungapped
alignment methods. In general both BLAST and
NUCmer, explore a subspace of the alignment space,
and therefore, often return a suboptimal alignment.

The tradeoff between speed and exactness is
highly sensitive when it comes to mapping
assembly. Different approximate alignments often
result in completely unrelated mapping (Li, Homer,
2010). The advantages of an exact algorithmic
solution became apparent soon after the introduction
of BLAST. Comparative studies (Shpaer et. al.,
1996) report a significantly lower number of false
positives and negatives in SW responses. Also,
several experiments have reportedly shown a
significant higher risk for BLAST to miss a
sequence alignment that is detectable by Smith-
Waterman. Approximate local alignment solutions
(Phillippy et. al., 2008) create a need for long and
exhaustive post-assembly processing (Rahman,

2013). This motivates the exploration of accurate
mapping assembly algorithms that are time and
space efficient, as well.

This article examines some mathematical
principles behind the design of a parallel method
based on Smith-Waterman and Hirschberg’s longest
common subsequence algorithm (Hirschberg, 1975).
The idea of combining a sequence alignment method
and Hirschberg’s algorithm is not new.
Combinations of Hirschberg and Needleman-
Wunsch, a global alignment method that preceded
Smith-Waterman, have been reported without in-
depth discussions of the mathematics of their design.
The algorithms that resulted from this combination
are proved to save memory space to the cost of a
slight increase in computation time. The author is
not aware of specific reports on combinations of
Hirschberg and Smith-Waterman.

The parallel algorithm, whose principles are
discussed here, uses Hirschberg’s division phase to
partition the genome into string segments that are
distributed over a set of processors. Each processor
has a copy of the read strings. The optimal
alignments of a read and the genome segments are
computed in parallel, with Smith-Waterman. The
method compares each of the processor’s results and
returns the alignment with the maximum score.
Although this idea is similar to the one inspired by a
combination of Needleman-Wunsch and Hirschberg,
the actual design of the Smith-Waterman/Hirschberg
algorithm has at least two important differences. The
first difference is that, being a global alignment;
Needleman-Wunsch has to be recomputed at each
step of Hirschberg’s division phase. Otherwise, the
global alignment may not be retrievable from the
segments. As shown in Corollary 2, the division
phase of the Smith-Waterman/Hirschberg
combination does not require Smith-Waterman
computations, at least up to a certain depth in the
division tree. The second difference is in the conquer
phase. Unlike the Needleman-Wunsch/Hirschberg’s
conquer phase, which is just the concatenation of the
alignments that solve each sub problem; Smith-
Waterman/Hirschberg’s conquer phase does require
some extra processing. This is due to the fact that the
best local alignment might correspond to the
alignment of a read over two contiguous genome
segments. Most of the theory developed in this
article concerns the reconstruction of the local
alignment of a read with a genome from its
alignments with a pair of contiguous genome
segments.

The mathematical concepts and facts discussed
here come from observations made in the design of

BIOINFORMATICS�2014�-�International�Conference�on�Bioinformatics�Models,�Methods�and�Algorithms

222

PALMA (Parallel Algorithm for Local Mapping
Assembly) by the author and collaborators. PALMA
is currently under implementation.

The rest of this paper is organized as follows:
Section 2 revisits Smith-Waterman and Hirschberg’s
longest common subsequence algorithm. Section 3
discusses the mathematical principles that allow a
perfect solution of the border problem. Section 4
provides some conclusions and future work.

2 SMITH-WATERMAN AND
HIRSCHBERG’S LCS

This section is a brief review of Smith-Waterman
and the division phase of Hirschberg’s Longest
Common Subsequence algorithms.

2.1 Smith-Waterman

Smith-Waterman solves LAP in two main steps.
First, it computes recursively the scores of
subsequence alignments with a positive score. The
results are stored in a |S1|×|S2| dynamic
programming matrix D = [D(k, j)]. Then, tracing
back D from the maximum entry up until the first
zero retrieves the alignment. Trace back may be
simplified with the help of an auxiliary matrix of
pointers P = [P(k, j)], where each P(k, j) points to the
cell whose value produced the maximum D(k, j)
through the local alignment recursive relation. The
next pseudo code implements Smith-Waterman local
alignment recursion as a pair of nested loops.
SW (S1, S2, M, e, d)
//Initialization
For k0 to |S1|; D(k,0)0
For j0 to |S2|; D(0,j)0
g11 and g21
//Dynamic (D) and Backtrack (P) matrix
//computations
For k  1 to |S1|
 For j  1 to |S2|
 D(k,j)max{0,
 D(k–1,j-1)+M(S1[k],S2[j])

 D(k–1,j)–d–g1×e,
 D(k,j–1)–d–g2×e}

 If D(k,j)=0 Or
 D(k,j)=D(k–1,j–1)+ M(S1[k],S2[j])

 g1  1, g2  1
 And P(k, j)  diagonal

 Else If D(k,j)=D(k–1,j)–d–g1×e
 g1  g1 + 1, g2  1
 And P(k,j)  left

 Else g1  1, g2  g2 + 1
 And P(k,j)  up

End for
End for
Return D and P.

The alignment is reconstructed from a tuple of
indices of D referred here a path segment. This tuple
is produced with the following routine:
Backtrack (D(k,j), P)
If D(k,j) = 0 Return ((k,j))
Else

π  ()
While D(k,j) > 0

If P(k,j) = “diagonal”
k  k – 1 and j  j – 1

 Else If P(k, j) = left
 k  k – 1
 Else j  j – 1

π  insert(k,j) as a new leftmost
element in tuple π

End While
End If-Else
Return π

In general, the trace back computation can be started
at any entry of D. If D(k, j) is the maximum entry in
D, Backtrack returns the optimal local alignment.

2.2 Division Phase of Hirschberg’s
Longest Common Subsequence
Algorithm

Hirschberg’s LCS algorithm is a divide-and-conquer
method for finding the longest common subsequence
(LCS) of two sequences. The principle behind the
method is deceptively simple. In general, let S* be
sequence S in reversed order. Then, the longest
common subsequence of S1 and S2 equals the longest
common subsequence of S1* and S2*. This fact allows
splitting the search for the LCS in two independent
searches of roughly half the size of the original. The
first searches the LCS of the first half of S1 and S2
while the second, the LCS of the first half of S1* and
S2*. The division phase is a recursive repetition of this
string split and reversal operation. The conquer phase,
in turn, composes the LCS segments found at the end
of the division phase. A detailed discussion of this
method is beyond the scope of this article. Here we
concentrate on the algorithm’s decomposition phase.

For a fixed but arbitrary pair of nonnegative
integers p and q, p < q, let’s denote S[p…q] the
segment of S that starts in S[p] and ends in S[q]; and
S[q…p] the reversal of S[p…q]. The next general
decomposition method, which is inspired in
Hirschberg’s decomposition phase, is the core
operation in the decomposition phase of our parallel
algorithm.

Hirschberg Decomposition (S1, S2, h)
S  S1; T  S2

Mathematics�of�the�Design�of�a�Parallel�Mapping�Assembly�Algorithm�-�Combining�Smith-Waterman�and�Hirschberg's
LCS�Methods

223

RHD(S, T, h)
If h < 0
 Return (S, T)
Else
 h  h – 1;

T1  T[1…ceil(|T|/2)]
T2  T[|T|…ceil(|T|/2) – 1]

 RHD(S, T1, h)
 RHD(S*, T2, h)

In this context, h is positive integer that denotes
the height of the decomposition tree.

The basic Hirschberg’s principle does translate to
alignment problems in the sense that an alignment
and its reversal have the same score. However, the
recursive splitting may incur loses of information
that impede a perfect reconstruction.

3 MATHEMATICAL
FRAMEWORK

In this section we state the reconstruction problem in
mathematical terms and state and prove some
results.

3.1 Basic Definitions

Backtrack returns an (r+1)-tuple ((k0, j0),…,(kr, jr))
of indices of D referred as path segment (PS). A PS
is characterized by D(k0, j0) = 0 and D(ki, ji) > 0 for i
= 1,…,r; if the tuple has more than one pair. The left
projection of a PS is defined to be the sequence
segment S1[k1…kr] while its right projection, the
sequence segment S2[j1…jr]. A PS ((k0, j0),…,(kr, jr))
is said to be a longest path segment (LPS) if and
only if

i. D(kr, jr) + M(S1[kr+1], S2[jr+1]) ≤ 0, and
ii. D(kr + 1, jr) – g1 ≤ 0, and
iii. D(kr, jr + 1) – g2 ≤ 0.

Let I = {k1, … , kr} × {j1,…,jr}}. A path segment
((k0, j0),…,(kr, jr)) is called maximal score path
segment (MSPS) if

D(kr, jr) = max {D(k, j): (k, j) in I}. (2)

In general, an MSPS is a sub path of an LPS.
Therefore, the maximum value D(kr, jr) in (2) does
not necessarily correspond with the value of D in the
last index of an LPS that contains an MSPS. Such
maximal value is referred as maximal local score
(MLS).

The basic idea behind the parallel local
alignment method can be restated now as the use of
Hirschberg Decomposition to partition and distribute
the reference genome among a given number of

processors, and the use of SW in each processor to
compute in parallel the MSPS that corresponds to
the highest MLS in each segment. As remarked
above, a problem with this strategy is that the
division of the genome may split some MSPS in two
or more segments forcing thus a reconstruction
process. Such reconstruction is the result of joining
an MSPS segment with its complementary segment,
which, because of Hirschberg’s decomposition, is in
reversed order.

The reverse of π = ((k0, j0),…,(kr, jr)), a path
segment for the alignment of S1 and S2,, is defined as
π* = ((|S1|- kr, |S2| - jr), … , (|S1| - k0, |S2| - j0)).

3.2 Theoretical Results

Given a pair of sequences S1 and S2, we denote by
D* = [D*(k, j)] the dynamic programming matrix
returned by the application of SW to S1* and S2*.

The next Theorem is a fundamental result.

Theorem 1. Let S1 and S2 be sequences over the
same alphabet. Let D = [D(k, j)] and D* = [D*(k, j)]
be as defined above. Let π = ((k0, j0),…,(kr, jr)) be an
LPS. Then: For all k0 ≤ k ≤ kr and j0 ≤ j ≤ jr;

a) D(k, j) + D*(|S1| – k, |S2| – j) ≤ MLS; and
b) D(k, j) + D*(|S1| – k, |S2| – j) = MLS if and

only if (k, j) is in an MSPS.

Proof. By definition of the SW algorithm, D(k, j) is
the highest score of the alignment of the prefixes
S1[k0…k] and S2[j0…j] of the projections of π. Also
by definition of SW and definition of sequence
reversal, the value D*(|S1| – k, |S2| – j) is the score of
the alignment of the suffixes S1[k+1…kr] and
S2[j+1…jr] of the same projections, but in reversed
order. Since the alignment of a pair of sequences has
the same characters and gaps insertions than the
alignment of the same pair but in reversed order; the
latter score equals the score of the alignment of the
suffixes in their original order. Therefore, D(k, j) +
D*(|S1| – k, |S2| – j) is the score of an alignment of
S1[k0…kr] and S2.[j0…jr]. Clearly, this score is
always less than or equal to the maximal local score.
This proves a).

As for the proof of claim b); let B be the
maximum score in the block D(k, j), (k, j) in
{k0,…,kr}×{j0,…,jr}. Let π1 = ((k0, j0),…,(km, jm)) be
an MSPS in this block. By definition of MSPS, if (k,
j) is in π1, then by the previous argument, D(k, j) +
D*(|S1| – k, |S2| – j) = B. Reciprocally, if (k, j) is not
in π1, D(k, j) + D*(|S1| – k, |S2| – j) < B. This proves
b).

In general, the reverse of a PS in D is not
necessarily a PS in D*. However, this relation holds

BIOINFORMATICS�2014�-�International�Conference�on�Bioinformatics�Models,�Methods�and�Algorithms

224

for MSPS, as demonstrated in next theorem.
Theorem 2. Let π be an MSPS for the alignment of
S1 and S2. Then, π* is an MSPS for the alignment of
S1* and S2*.
Proof. Let π = ((k0, j0),…,(kr, jr)). Since π is an
MSPS, it satisfies equation (2). By applying
Theorem 1 b),

D(k, j) + D*(|S1| – k, |S2| – j) = D(kr, jr); (3)

for all (k, j) in π. In order to demonstrate that π* is
an MSPS for the alignment of S1* and S2* we need
to show that:

i. D*(|S1|- kr, |S2| - jr) = 0,
ii. D*(|S1|- k, |S2| - j) > 0 for (k, j) in π, (k, j) ≠

(kr, jr), and
iii. D*(|S1| - k0, |S2| - j0) = MLS.

By substituting (kr, jr) in equation (3) we get

D(kr, jr) + D*(|S1| – kr, |S2| – jr) = D(kr, jr). (4)

Therefore, D*(|S1| – kr, |S2| – jr) = 0; and i. is
proved. By substituting (k0, j0) in equation (4) we get
D(k0, j0) + D*(|S1| – k0, |S2| – j0) = D(kr, jr). But since
D(k0, j0) = 0, D*(|S1| – k0, |S2| – j0) = D(kr, jr)
follows. Now, D(kr, jr) is the maximum score for the
alignment of S1[k0…kr] and S2[j0…jr]. Since the
score of a local alignment and its reversal are the
same. D(kr, jr) is also the maximum score for the
alignment of S1[k0…kr]* and S2[j0…jr]*. This proves
iii. Finally, since for each (k, j) in π, (k, j) ≠ (kr, jr)
and (k0, j0); 0 < D(k, j) < D(kr, jr), by equation (4) we
conclude that ii. is also true.☐

Theorem 1 provides a solution for the
reconstruction of a split MSPS.

Let π = ((k0, j0),…,(kr, jr)) be an MSPS for the
alignment of S1 and S2. Assume that S2[j0…jr] is split
into S2[j0…jm] and S2[jm + 1 … jr] for some j0 < jm <
jr. By computing the alignment of S1 and S2[j0…jm]
and that of S1* and S2[jm + 1 … jr]* we get the PS π1
= ((k0, j0),…,(km, jm)) and π2 = ((|S1| - kr, |S2| -
jr),…,(|S1| - k0, |S2| - j0)). By joining (π1, π2*) we
reconstruct the original MSPS. Unfortunately,
recursive splitting may not allow a perfect path
reconstruction as further divisions of S2[j0…jm] or
S2[jm + 1 … jr]* may not be MSPS. The previous
considerations prove the next Corollary.

Corollary 1. If a PS in the alignment of S1[k0…kr]
and S2[j0…jr] is restricted to π1 =((k0, j0),…,(km, jm))
for some jm, j0 < jm < jr, then it can be reconstructed
by joining it with the reversed of the PS π2 = ((|S1| -
kr, |S2| - jr),…,(|S1| - k0, |S2| - j0)) of the alignment of
S1[k0…kr]* and S2[jm + 1…jr]* if π is an MSPS.

The next negative result proves the existence of
cases in which perfect path reconstruction is not
possible.

Lemma. Let π = ((k0, j0),…,(kr, jr)) be a PS for the
alignment of S1 and S2. Let jm be an index, 0 < jm <
jr. Then, if D(kr, jr) ≤ D(kr-1, jr-1), π cannot be
reconstructed from π1 = ((k0, j0),…,(km, jm)) and π2 =
((|S1| - kr, |S2| - jr),…,(|S1| - k0, |S2| - j0)) through the
process described in the previous Corollary.
Proof. Since by hypothesis D(kr, jr) ≤ D(kr – 1, jr – 1),
the value of M(S1[kr], S2[jr]) ≤ 0. Therefore, D*(|S1|
– kr, |S2| – jr) = 0; and thus, (|S1| – kr, |S2| – jr) is not
part of path π2. As a consequence, (kr, jr) is not in
π2*.

Corollary 2. Let |S1| < |S2|. Let M be the substitution
matrix in a scoring framework and let Q = max
{M(a, b): a, b in Σ}. Let γ(g) = -d – (g – 1) × e be the
gap penalty mapping in the same scoring
framework. Then, if

h ≥ log2 (|S1| + (Q|S1| - d)/ e + 1); (5)

the h-level Hirschberg Decomposition ensures
perfect reconstruction.
Proof. Under the hypothesis of Corollary 2, the
maximum score for an ungapped alignment of S1
and S2 is Q|S1|. The maximal length g of gap is thus
constrained by Q|S1| - d – (g – 1)e = 0.

It follows that the maximal length of a gap is
bounded by g ≤ (Q|S1| - d)/e + 1.

Thus, no PS is longer than |S1| + (Q|S1| - d)/e + 1.
Therefore, the constraint imposed on parameter h
ensures that no PS is split more than once. The claim
follows from Corollary 1.☐

4 CONCLUSIONS

The theoretical framework discussed in this article
proves the correctness of a parallel algorithm for the
computation of the local alignment of short and very
long biological sequences. The parallelism improves
with the difference in length of the sequences. The
method partitions the large sequence using
Hirschberg Decomposition up to the limit stated in
equation (5), and computes in parallel the best local
alignment of the short sequence with the segments
of the large one, using the Smith-Waterman
algorithm. If no border problems are encountered,
the method is embarrassingly parallel as no inter
processor communications are necessary. On the
other hand, if Hirschberg Decomposition has split an
MSPS, the reversed segment of the MSPS must be
sent to the processor that holds its complement in
natural order. Then, the receiving processor must
reverse the received path segment, concatenate the
segments together into a single LPS, and compute
the underlying MSPS. All these processes are

Mathematics�of�the�Design�of�a�Parallel�Mapping�Assembly�Algorithm�-�Combining�Smith-Waterman�and�Hirschberg's
LCS�Methods

225

executed in parallel and in linear time. Thus, the rate
of growth of the execution time of the parallel
algorithm is O(|S1||S2|/W), where W is the number of
workers or processor elements in the computing
platform. According to equation (5), the limit of W
is W ≤ |S1| + (Q|S1| - d)/ e + 1 to ensure perfect
reconstruction. Thus, in the limit of W, the parallel
method should be close to O(|S2|) time and space.

Work is underway to use these ideas in the
implementation of a parallel method for mapping
assembly. This implementation is being developed
in C language with MPI and OpenMP. In the
mapping assembly program, special care is being
taken to pipeline efficiently the millions of short
reads into the parallel algorithm.

ACKNOWLEDGEMENTS

This work was supported in part by the NIH-MARC
5T36GM095335-02 award.

REFERENCES

Sanger R., Coulson A., 1975. A rapid method for
determining sequences in DNA by primed synthesis
with DNA polymerase. In J. Ml. Biol. 94(3), 441-448.

Weijia Soon W., Hariharan M., Snyder M., 2013. High-
throughput sequencing for biology and medicine. In
Mol. Syst. Biology 9:640 doi:10.1038/msb.2012.61.

Li R. et. al., 2010. De novo assembly of human genomes
with massively parallel short read sequencing. In
Genome Research, 20 (2), 265-272.

Smith T., Waterman M., 1981. Identification of common
molecular subsequences. In J. of Mol. Biol. 147, 195-
197.

Altschul S., Madden T., Shaffer A., Zhang J., Zhang Z.,
Miller W., Lipman D., 1997. Gapped BLAST and PSI-
BLAST: A new generation of protein database search
programs. In Nuc. Ac. Res. 25 (17), 3389-3402.

Delcher A., Phillippy A., Carlton J., Salzberg S., 2002.
Fast algorithms for large-scale genome alignment
comparison. In Nuc. Ac. Res., 30(11), 2478-2483.

Li H., Homer N., 2010. A survey of sequence alignment
algorithms for next-generation sequencing. In Brief.
Bioinform., 11(5) 473-483.

Shpaer E., Robinson M., Yee D., Candlin J., Mines R.,
Hunkapiller T., 1996. Sensitivity and selectivity in
protein similarity searches: a comparison of smith-
waterman in hardware to blast and fasta. In Genomics,
38(2), 179-191.

Rahman A., Pachter L., 2013. CGAL: computing genome
assembly likelihoods. In Gen. Biol. 14:R8,
doi:10.1186/gb-2013-14-1-r8.

Hirschberg D., 1975. A linear space algorithm for
computing maximal common subsequences. In Comm.
ACM, 18(6), 341-343, 1975.

BIOINFORMATICS�2014�-�International�Conference�on�Bioinformatics�Models,�Methods�and�Algorithms

226

