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Abstract: This paper focuses on mathematical definitions and results that prove the correctness of a parallel algorithm 
for mapping assembly. The mathematical concepts and facts discussed here establish the reach and 
limitations of a combination of Smith-Waterman local alignment method and Hirschberg’s divide-and-
conquer longest common subsequence determination method. The parallel algorithm, whose correctness is 
proved, is a general method that works best for solving the problem of the local alignment of a short and a 
very large sequence, such as an entire genome. The method is thus, suitable for mapping assembly, where 
millions of short sequence segments, the so-called reads, are aligned with a whole genome. 

1 INTRODUCTION 

Sequencing is the process of determining the precise 
order of the characters that compose a DNA, mRNA 
or a protein string. Sanger sequencing (Sanger, 
Coulson, 1975), a pioneer sequencing method, 
remained the method of choice up to the advent of 
next generation sequencing (NGS) (Weijia Soon et. 
al., 2013). NGS are parallel processes that produce 
millions of short sequence segments, the so-called 
reads, at once. The shear amount and short length of 
the reads renders Sanger’s assembling algorithms 
time and space inefficient.  

Assembly algorithms are classifiable in two main 
groups: de novo assembly, and mapping assembly 
methods. De novo assembly reconstructs the 
sequence directly from the reads, through 
combinatorial graph algorithms (Li et. al., 2010). 
Mapping assembly, instead, aligns the reads against 
a reference genome. Mapping assembly is normally 
faster than de novo assembly but both methods incur 
inaccuracies and ambiguities.  

The quality of the sequence returned by a 
mapping assembly algorithm depends on the 
accuracy of the underlying pairwise alignment 
method. An alignment of two strings, S1 and S2 over 
an alphabet Σ is a 2 × q array, q ≥ max {|S1|, |S2|}; 
with the characters of S1 in the first row and the 
characters of S2 in the second, both placed in the 
order that they appear in the original sequences. 

There are two kinds of alignment, namely gapped 
and unpgapped alignments. In an ungapped 
alignment no symbols or blank spaces are inserted 
between characters. Blanks may be placed before or 
after the sequence character provided that no column 
of the alignment consists solely of blanks. An 
optimal ungapped alignment places the maximum 
number of characters that are similar in the same 
column. A gapped alignment, or simply alignment, 
fills the alignment array with the characters of an 
extended alphabet Σ U {–}. Here “–“, the gap 
character, is not an element in Σ. No blank spaces 
are allowed but one or more consecutive gap 
characters may separate the characters of the 
sequences. No gap character is to be aligned with a 
gap character, either.  

Alignments are built on the basis of scoring 
frameworks that consists of a substitution matrix and 
a gap insertion penalty function. The substitution 
matrix, denoted M = [M (a, b)], assigns a score to 
the substitution of each pair a, b of symbols in Σ. 
The penalty for a gap insertion, in turn, is assigned 
with a function of the form 

γ(g) = - d – (g – 1)e; (1)

where e and d are constants, and g is the gap length, 
this is, the number of gaps symbols inserted between 
two consecutive sequence characters. The score of 
an alignment is the sum of the substitution scores of 
each sequence’s character alignment, minus the sum 
of all penalties for gap inserted.  
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The local alignment problem (LAP) is the search for 
a pair of subsequences, one from S1 and the other 
from S2, whose alignment achieves maximum score. 
LAP is a well-posed optimization problem and the 
Smith-Waterman (SW) algorithm (Smith, Waterman, 
1981) solves LAP exactly, in O(|S1||S2|) time and 
space. However, because of the shear length of 
genome sequences and the ever-increasing number 
of reference sequences available for comparisons, 
the heuristic method called Basic Local Alignment 
Sequence Tool (BLAST) (Altschul, 1997), is 
preferred by practitioners. BLAST solves LAP 
approximately, by finding high scoring pairs (HSP) 
instead of alignments. A HSP is the extension of a 
word hit, which is the ungapped alignment of the 
sequence with a short word whose score is greater 
than or equal to a user defined threshold. Word hits 
are extended with a local sequence alignment 
method, such as Smith-Waterman, up until their 
scores drop below another user-defined threshold. 
Although BLAST returns the results much faster 
than Smith-Waterman, it is still deemed too slow for 
most post-genomic era processing demands. 
Mapping assembly is an important post-genomic 
instance of this demand. Post BLAST tools are 
designed for rapidly aligning a sequence to an entire 
genome, on a desktop computer. One such tool is 
MUMmer (Delcher et. al., 2002). MUMmer’s speed 
rests on efficient suffix tree representations of the 
sequences. Suffix trees identify perfect matches, 
which are more restrictive than ungapped 
alignments, in linear time and space. MUMmer 
aligns short reads to a genome using a specialized 
routine called NUCmer. As in BLAST, NUCmer 
approximate solutions are extensions of exact 
matches produced with gapped or ungapped 
alignment methods. In general both BLAST and 
NUCmer, explore a subspace of the alignment space, 
and therefore, often return a suboptimal alignment.  

The tradeoff between speed and exactness is 
highly sensitive when it comes to mapping 
assembly. Different approximate alignments often 
result in completely unrelated mapping (Li, Homer, 
2010). The advantages of an exact algorithmic 
solution became apparent soon after the introduction 
of BLAST. Comparative studies (Shpaer et. al., 
1996) report a significantly lower number of false 
positives and negatives in SW responses. Also, 
several experiments have reportedly shown a 
significant higher risk for BLAST to miss a 
sequence alignment that is detectable by Smith-
Waterman. Approximate local alignment solutions 
(Phillippy et. al., 2008) create a need for long and 
exhaustive post-assembly processing (Rahman, 

2013). This motivates the exploration of accurate 
mapping assembly algorithms that are time and 
space efficient, as well.  

This article examines some mathematical 
principles behind the design of a parallel method 
based on Smith-Waterman and Hirschberg’s longest 
common subsequence algorithm (Hirschberg, 1975). 
The idea of combining a sequence alignment method 
and Hirschberg’s algorithm is not new. 
Combinations of Hirschberg and Needleman-
Wunsch, a global alignment method that preceded 
Smith-Waterman, have been reported without in-
depth discussions of the mathematics of their design. 
The algorithms that resulted from this combination 
are proved to save memory space to the cost of a 
slight increase in computation time. The author is 
not aware of specific reports on combinations of 
Hirschberg and Smith-Waterman.  

The parallel algorithm, whose principles are 
discussed here, uses Hirschberg’s division phase to 
partition the genome into string segments that are 
distributed over a set of processors. Each processor 
has a copy of the read strings. The optimal 
alignments of a read and the genome segments are 
computed in parallel, with Smith-Waterman. The 
method compares each of the processor’s results and 
returns the alignment with the maximum score. 
Although this idea is similar to the one inspired by a 
combination of Needleman-Wunsch and Hirschberg, 
the actual design of the Smith-Waterman/Hirschberg 
algorithm has at least two important differences. The 
first difference is that, being a global alignment; 
Needleman-Wunsch has to be recomputed at each 
step of Hirschberg’s division phase. Otherwise, the 
global alignment may not be retrievable from the 
segments. As shown in Corollary 2, the division 
phase of the Smith-Waterman/Hirschberg 
combination does not require Smith-Waterman 
computations, at least up to a certain depth in the 
division tree. The second difference is in the conquer 
phase. Unlike the Needleman-Wunsch/Hirschberg’s 
conquer phase, which is just the concatenation of the 
alignments that solve each sub problem; Smith-
Waterman/Hirschberg’s conquer phase does require 
some extra processing. This is due to the fact that the 
best local alignment might correspond to the 
alignment of a read over two contiguous genome 
segments. Most of the theory developed in this 
article concerns the reconstruction of the local 
alignment of a read with a genome from its 
alignments with a pair of contiguous genome 
segments.  

The mathematical concepts and facts discussed 
here come from observations made in the design of 
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PALMA (Parallel Algorithm for Local Mapping 
Assembly) by the author and collaborators. PALMA 
is currently under implementation. 

The rest of this paper is organized as follows: 
Section 2 revisits Smith-Waterman and Hirschberg’s 
longest common subsequence algorithm. Section 3 
discusses the mathematical principles that allow a 
perfect solution of the border problem. Section 4 
provides some conclusions and future work. 

2 SMITH-WATERMAN AND 
HIRSCHBERG’S LCS 

This section is a brief review of Smith-Waterman 
and the division phase of Hirschberg’s Longest 
Common Subsequence algorithms. 

2.1 Smith-Waterman 

Smith-Waterman solves LAP in two main steps. 
First, it computes recursively the scores of 
subsequence alignments with a positive score. The 
results are stored in a |S1|×|S2| dynamic 
programming matrix D = [D(k, j)]. Then, tracing 
back D from the maximum entry up until the first 
zero retrieves the alignment. Trace back may be 
simplified with the help of an auxiliary matrix of 
pointers P = [P(k, j)], where each P(k, j) points to the 
cell whose value produced the maximum D(k, j) 
through the local alignment recursive relation. The 
next pseudo code implements Smith-Waterman local 
alignment recursion as a pair of nested loops. 
SW (S1, S2, M, e, d) 
//Initialization 
For k0 to |S1|; D(k,0)0  
For j0 to |S2|; D(0,j)0 
g11 and g21 
//Dynamic (D) and Backtrack (P) matrix 
//computations 
For k  1 to |S1|  
  For j  1 to |S2| 
    D(k,j)max{0, 
               D(k–1,j-1)+M(S1[k],S2[j])              

  D(k–1,j)–d–g1×e, 
  D(k,j–1)–d–g2×e} 

    If D(k,j)=0 Or 
       D(k,j)=D(k–1,j–1)+ M(S1[k],S2[j]) 

 g1  1, g2  1  
   And P(k, j)  diagonal 

    Else If D(k,j)=D(k–1,j)–d–g1×e 
 g1  g1 + 1, g2  1  
    And P(k,j)  left 

    Else g1  1, g2  g2 + 1  
           And P(k,j)  up 

End for 
End for 
Return D and P. 

The alignment is reconstructed from a tuple of 
indices of D referred here a path segment. This tuple 
is produced with the following routine: 
Backtrack (D(k,j), P) 
If D(k,j) = 0 Return ((k,j)) 
Else  

π  ( ) 
While D(k,j) > 0 

If P(k,j) = “diagonal” 
k  k – 1 and j  j – 1 

 Else If P(k, j) = left 
  k  k – 1  
 Else j  j – 1  

π  insert(k,j) as a new leftmost 
element in tuple π 

End While 
End If-Else 
Return π 

In general, the trace back computation can be started 
at any entry of D. If D(k, j) is the maximum entry in 
D, Backtrack returns the optimal local alignment. 

2.2 Division Phase of Hirschberg’s 
Longest Common Subsequence 
Algorithm 

Hirschberg’s LCS algorithm is a divide-and-conquer 
method for finding the longest common subsequence 
(LCS) of two sequences. The principle behind the 
method is deceptively simple. In general, let S* be 
sequence S in reversed order. Then, the longest 
common subsequence of S1 and S2 equals the longest 
common subsequence of S1* and S2*. This fact allows 
splitting the search for the LCS in two independent 
searches of roughly half the size of the original. The 
first searches the LCS of the first half of S1 and S2 
while the second, the LCS of the first half of S1* and 
S2*. The division phase is a recursive repetition of this 
string split and reversal operation. The conquer phase, 
in turn, composes the LCS segments found at the end 
of the division phase. A detailed discussion of this 
method is beyond the scope of this article. Here we 
concentrate on the algorithm’s decomposition phase. 

For a fixed but arbitrary pair of nonnegative 
integers p and q, p < q, let’s denote S[p…q] the 
segment of S that starts in S[p] and ends in S[q]; and 
S[q…p] the reversal of S[p…q]. The next general 
decomposition method, which is inspired in 
Hirschberg’s decomposition phase, is the core 
operation in the decomposition phase of our parallel 
algorithm. 

Hirschberg Decomposition (S1, S2, h) 
S  S1; T  S2 
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RHD(S, T, h) 
If h < 0 
 Return (S, T) 
Else 
 h  h – 1;  

T1  T[1…ceil(|T|/2)] 
T2  T[|T|…ceil(|T|/2) – 1] 

 RHD(S, T1, h) 
 RHD(S*, T2, h) 

In this context, h is positive integer that denotes 
the height of the decomposition tree.  

The basic Hirschberg’s principle does translate to 
alignment problems in the sense that an alignment 
and its reversal have the same score. However, the 
recursive splitting may incur loses of information 
that impede a perfect reconstruction. 

3 MATHEMATICAL 
FRAMEWORK 

In this section we state the reconstruction problem in 
mathematical terms and state and prove some 
results.  

3.1 Basic Definitions 

Backtrack returns an (r+1)-tuple ((k0, j0),…,(kr, jr)) 
of indices of D referred as path segment (PS). A PS 
is characterized by D(k0, j0) = 0 and D(ki, ji) > 0 for i 
= 1,…,r; if the tuple has more than one pair. The left 
projection of a PS is defined to be the sequence 
segment S1[k1…kr] while its right projection, the 
sequence segment S2[j1…jr]. A PS ((k0, j0),…,(kr, jr)) 
is said to be a longest path segment (LPS) if and 
only if  

i. D(kr, jr) + M(S1[kr+1], S2[jr+1]) ≤ 0, and  
ii. D(kr + 1, jr) – g1 ≤ 0, and  
iii. D(kr, jr + 1) – g2 ≤ 0. 

Let I = {k1, … , kr} × {j1,…,jr}}. A path segment 
((k0, j0),…,(kr, jr)) is called maximal score path 
segment (MSPS) if  

D(kr, jr) = max {D(k, j): (k, j) in   I}. (2)

In general, an MSPS is a sub path of an LPS. 
Therefore, the maximum value D(kr, jr) in (2) does 
not necessarily correspond with the value of D in the 
last index of an LPS that contains an MSPS. Such 
maximal value is referred as maximal local score 
(MLS).  

The basic idea behind the parallel local 
alignment method can be restated now as the use of 
Hirschberg Decomposition to partition and distribute 
the reference genome among a given number of 

processors, and the use of SW in each processor to 
compute in parallel the MSPS that corresponds to 
the highest MLS in each segment. As remarked 
above, a problem with this strategy is that the 
division of the genome may split some MSPS in two 
or more segments forcing thus a reconstruction 
process. Such reconstruction is the result of joining 
an MSPS segment with its complementary segment, 
which, because of Hirschberg’s decomposition, is in 
reversed order.  

The reverse of π = ((k0, j0),…,(kr, jr)), a path 
segment for the alignment of S1 and S2,, is defined as 
π* = ((|S1|- kr, |S2| - jr), … , (|S1| - k0, |S2| - j0)).   

3.2 Theoretical Results 

Given a pair of sequences S1 and S2, we denote by 
D* = [D*(k, j)] the dynamic programming matrix 
returned by the application of SW to S1* and S2*. 

The next Theorem is a fundamental result. 

Theorem 1. Let S1 and S2 be sequences over the 
same alphabet. Let D = [D(k, j)] and  D* = [D*(k, j)] 
be as defined above. Let π = ((k0, j0),…,(kr, jr)) be an 
LPS.  Then: For all k0 ≤ k ≤ kr and j0 ≤ j ≤ jr;  

a) D(k, j)  + D*(|S1| – k, |S2| – j) ≤ MLS; and 
b) D(k, j)  + D*(|S1| – k, |S2| – j)  = MLS if and 

only if (k, j) is in an MSPS. 

Proof. By definition of the SW algorithm, D(k, j) is 
the highest score of the alignment of the prefixes 
S1[k0…k] and S2[j0…j] of the projections of π. Also 
by definition of SW and definition of sequence 
reversal, the value D*(|S1| – k, |S2| – j) is the score of 
the alignment of the suffixes S1[k+1…kr] and 
S2[j+1…jr] of the same projections, but in reversed 
order. Since the alignment of a pair of sequences has 
the same characters and gaps insertions than the 
alignment of the same pair but in reversed order; the 
latter score equals the score of the alignment of the 
suffixes in their original order. Therefore, D(k, j ) + 
D*(|S1| – k, |S2| – j) is the score of an alignment of 
S1[k0…kr] and S2.[j0…jr]. Clearly, this score is 
always less than or equal to the maximal local score. 
This proves a).  

As for the proof of claim b); let B be the 
maximum score in the block D(k, j), (k, j) in 
{k0,…,kr}×{j0,…,jr}. Let π1 = ((k0, j0),…,(km, jm)) be 
an MSPS in this block. By definition of MSPS, if (k, 
j) is in π1, then by the previous argument, D(k, j)  + 
D*(|S1| – k, |S2| – j) = B. Reciprocally, if (k, j) is not 
in π1,  D(k, j)  + D*(|S1| – k, |S2| – j) < B. This proves 
b).  

In general, the reverse of a PS in D is not 
necessarily a PS in D*.  However, this relation holds 
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for MSPS, as demonstrated in next theorem. 
Theorem 2. Let π be an MSPS for the alignment of 
S1 and S2. Then, π* is an MSPS for the alignment of 
S1* and S2*. 
Proof. Let π = ((k0, j0),…,(kr, jr)). Since π is an 
MSPS, it satisfies equation (2).  By applying 
Theorem 1 b),  

D(k, j)  + D*(|S1| – k, |S2| – j) = D(kr, jr); (3)

for all (k, j) in π. In order to demonstrate that π* is 
an MSPS for the alignment of S1* and S2* we need 
to show that:  

i. D*(|S1|- kr, |S2| -  jr) = 0,  
ii. D*(|S1|- k, |S2| - j) > 0 for (k, j) in π, (k, j) ≠ 

(kr, jr), and 
iii. D*(|S1| - k0, |S2| - j0) = MLS.  

By substituting (kr, jr) in equation (3) we get  

D(kr, jr)  + D*(|S1| – kr, |S2| – jr) = D(kr, jr). (4)

Therefore, D*(|S1| – kr, |S2| – jr) = 0; and i. is 
proved. By substituting (k0, j0) in equation (4) we get 
D(k0, j0) + D*(|S1| – k0, |S2| – j0) = D(kr, jr). But since 
D(k0, j0) = 0, D*(|S1| – k0, |S2| – j0) = D(kr, jr) 
follows. Now, D(kr, jr) is the maximum score for the 
alignment of S1[k0…kr] and S2[j0…jr]. Since the 
score of a local alignment and its reversal are the 
same. D(kr, jr) is also the maximum score for the 
alignment of S1[k0…kr]* and S2[j0…jr]*. This proves 
iii. Finally, since for each (k, j) in π, (k, j) ≠ (kr, jr) 
and (k0, j0); 0 < D(k, j) < D(kr, jr), by equation (4) we 
conclude that ii. is also true.☐   

Theorem 1 provides a solution for the 
reconstruction of a split MSPS.  

Let π = ((k0, j0),…,(kr, jr)) be an MSPS for the 
alignment of S1 and S2. Assume that S2[j0…jr] is split 
into S2[j0…jm] and S2[jm + 1 … jr] for some j0 < jm < 
jr. By computing the alignment of S1 and S2[j0…jm] 
and that of S1* and S2[jm + 1 … jr]* we get the PS π1 
= ((k0, j0),…,(km, jm)) and π2 = ((|S1| - kr, |S2| - 
jr),…,(|S1| - k0, |S2| - j0)). By joining (π1, π2*) we 
reconstruct the original MSPS. Unfortunately, 
recursive splitting may not allow a perfect path 
reconstruction as further divisions of S2[j0…jm] or 
S2[jm + 1 … jr]* may not be MSPS. The previous 
considerations prove the next Corollary.   

Corollary 1. If a PS in the alignment of S1[k0…kr] 
and S2[j0…jr] is restricted to π1 =((k0, j0),…,(km, jm)) 
for some jm, j0 < jm < jr, then it can be reconstructed 
by joining it with the reversed of the PS π2 = ((|S1| - 
kr, |S2| - jr),…,(|S1| - k0, |S2| - j0)) of the alignment of 
S1[k0…kr]* and S2[jm + 1…jr]* if π is an MSPS.    

The next negative result proves the existence of 
cases in which perfect path reconstruction is not 
possible.  

Lemma. Let π = ((k0, j0),…,(kr, jr)) be a PS for the 
alignment of S1 and S2. Let jm be an index, 0 < jm < 
jr. Then, if D(kr, jr) ≤ D(kr-1, jr-1), π cannot be 
reconstructed from π1 = ((k0, j0),…,(km, jm)) and π2 = 
((|S1| - kr, |S2| - jr),…,(|S1| - k0, |S2| - j0)) through the 
process described in the previous Corollary. 
Proof. Since by hypothesis D(kr, jr) ≤ D(kr – 1, jr – 1), 
the value of M(S1[kr], S2[jr]) ≤ 0. Therefore, D*(|S1| 
– kr, |S2| – jr) = 0; and thus, (|S1| – kr, |S2| – jr) is not 
part of path π2. As a consequence, (kr, jr) is not in 
π2*.  

Corollary 2. Let |S1| < |S2|. Let M be the substitution 
matrix in a scoring framework and let Q = max 
{M(a, b): a, b in Σ}. Let γ(g) = -d – (g – 1) × e be the 
gap penalty mapping in the same scoring 
framework. Then, if  

h ≥ log2 (|S1| + (Q|S1| - d)/ e + 1); (5)

the h-level Hirschberg Decomposition ensures 
perfect reconstruction.                    
Proof. Under the hypothesis of Corollary 2, the 
maximum score for an ungapped alignment of S1 
and S2 is Q|S1|. The maximal length g of gap is thus 
constrained by Q|S1| - d – (g – 1)e = 0.                                   

It follows that the maximal length of a gap is 
bounded by g ≤ (Q|S1| - d)/e + 1.                                        

Thus, no PS is longer than |S1| + (Q|S1| - d)/e + 1. 
Therefore, the constraint imposed on parameter h 
ensures that no PS is split more than once. The claim 
follows from Corollary 1.☐  

4 CONCLUSIONS 

The theoretical framework discussed in this article 
proves the correctness of a parallel algorithm for the 
computation of the local alignment of short and very 
long biological sequences. The parallelism improves 
with the difference in length of the sequences. The 
method partitions the large sequence using 
Hirschberg Decomposition up to the limit stated in 
equation (5), and computes in parallel the best local 
alignment of the short sequence with the segments 
of the large one, using the Smith-Waterman 
algorithm. If no border problems are encountered, 
the method is embarrassingly parallel as no inter 
processor communications are necessary. On the 
other hand, if Hirschberg Decomposition has split an 
MSPS, the reversed segment of the MSPS must be 
sent to the processor that holds its complement in 
natural order. Then, the receiving processor must 
reverse the received path segment, concatenate the 
segments together into a single LPS, and compute 
the underlying MSPS. All these processes are 
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executed in parallel and in linear time. Thus, the rate 
of growth of the execution time of the parallel 
algorithm is O(|S1||S2|/W), where W is the number of 
workers or processor elements in the computing 
platform. According to equation (5), the limit of W 
is W ≤ |S1| + (Q|S1| - d)/ e + 1 to ensure perfect 
reconstruction. Thus, in the limit of W, the parallel 
method should be close to O(|S2|) time and space. 

Work is underway to use these ideas in the 
implementation of a parallel method for mapping 
assembly. This implementation is being developed 
in C language with MPI and OpenMP. In the 
mapping assembly program, special care is being 
taken to pipeline efficiently the millions of short 
reads into the parallel algorithm. 
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