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Abstract: A non-planar graph can only be planarised if it is structurally modified. This work presents a new heuristic
algorithm that uses vertices deletion to modify a non-planar graph in order to obtain a planar subgraph. The
proposed algorithm aims to delete a minimum number of vertices to achieve its goal. The vertex deletion
number of a grapl® = (V,E) is the smallest integée > 0 such that there is an induced planar subgraph of
G obtained by the removal & vertices ofG. Considering that the corresponding decision problem is NP-
complete and an approximation algorithm for graph planarisation by vertices deletion does not exist, this work
proposes an evolutionary algorithm that uses a constructive heuristic algorithm to planarise a graph. This
constructive heuristic has time complexity ©fn+ m), wherem= |V| andn = |E|, and it is based on the
PQ-trees data structure and on the vertex deletion operation. The algorithm performance is verified by means
of case studies.

1 INTRODUCTION Take all drawings ofG, the drawing which pos-
sesses the lowest number of edge crossings among all
Practical applications of Graph Drawing, such as the drawings is named optimal drawing & And the
design of VLSI circuits, requires drawing technigues number of edge crossings is nanw@dssing number
for non-planar graphs. A graph (representing the cir- of G, denoted byr(G).
cuit) needs to be drawn on the plane (an electronic ~ The number of vertex deletioh(G) is the small-
chip) without crossing edges. However, graph draw- est integek > 0 such that the deletion & vertices
ing algorithms are restrained to planar graphs, oth- from G produces a planar graph. The decision prob-
erwise the results obtained by these algorithms arelem regarding the number of vertex deletion, the num-
compromised. Network design and analysis and com- ber of vertex splitting, the number of edges deletion
putational geometry are additional well known fields and the crossing number are all NP-complete (Faria
where the drawing of planar graphs are required. A etal., 2001a; Garey and Johnson, 1983; Liu and Geld-
possible way to tackle non-planarity in graphs is to macher, 1977; Yannakakis, 1978). (Faria et al., 2006)
consider its topological invariants, such as the number proved that an approximation algorithm cannot exist
of vertex deletion, which can be used as the measurefor the graph planarisation problem using the vertex
of non-planarity. deletion operation, hence a heuristic algorithm be-
The simple drawingof a graphG = (V,E) is a comes a viable alternative to tackle the problem. Also
drawing ofG on the plane, where each edge does not it has been shown that it remains NP-hard even for
cross itself, adjacent edges do not cross themselvesgubic graphs (Faria et al., 2001a; Faria et al., 2001b;
the crossing of two edges only occurs once, the edgesFaria et al., 2004). Besides, (de Figueiredo et al.,
do not cross over vertices, and no more than two edges1999) showed that the same occurs for the number
cross at the same point. A graph is considqriedhar of vertices splittings according to the result obtained
when there is a simple drawing for this graph on the by (Robertson and Seymour, 1995).
plane, without crossing edges. Without loss of gen- Literature reports many algorithms that attempt to
erality, from now on we are considering only simple remove a minimal number of edges to obtain a planar
drawings. subgraph (Chiba et al., 1979; Fisher and Wing, 1966;
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Marek-Sadowska, 1978; Ozawa and Takahashi, 1981;vertices andn = |E| edges. Anst-numbering is a
Pasedach, 1976). One of the best approaches is thdabeling of the vertices irG with integer numbers

PLANARISEalgorithm by (Jayakumar et al., 1989)
referred adTS PLANARISEIgorithm. The) TS PLA-
NARISEalgorithm is based on the planarity test al-
gorithm by (Lempel et al., 1967) and (Even, 2011)
(also referred as theEC algorithm) and its imple-

mentation using PQ-trees (Booth and Lueker, 1976).

1,2,,n where 1 is adjacent ta and a vertex num-
beredj is adjacent to a pair of vertices numbeiied
andk wherei < j < k. The vertex 1 is named source
and is referred as while the vertexn is named sink
and is referred as. Each biconnected graph has a
st-numbering (Lempel et al., 1967) and such labeling

(Eades and de Mendonca, 1993) considered the num-<can be found in linear time (Even and Tarjan, 1976).

ber of vertex splittings adapting tHeLANARISEal-
gorithm into theSPLIT-PLANARISEThat was done

by replacing the edge removal operation for the vertex

splitting operation. Both algorithms have time com-
plexity O(n?) and space complexi®(n+ m), where

n represents the number of vertices andepresents
the number of edges @. This work proposes an al-
gorithm namedvD-PLANARISEwhich uses similar
ideas to theJTS PLANARISEIgorithm above men-

The graphG labeled withst-numbers is namest-
graph.

Let Gk, where 1< k < n, be a subgraph of ast-
graphG induced by the set of verticé = 1,2, ..., k.
Let By be a graph associated with the subgr&pland
all of the edges ofs connected with the verticag
andV —V in G. These edges are named virtual edges
and the vertice¥ —V are named virtual vertices. The
virtual vertices are labeled as its original vertice&in

tioned, though it uses the operation of vertex deletion though they remain apart (a leaf for each adjacent ver-

instead of edge removal. In the next section it will
be discussed how thH'S PLANARISEIgorithm was

tex not yet embedded). ConsequenthBithere may
be several virtual vertices with the same label, each of

adapted for the new proposed constructive heuristic them with exactly one virtual edge. A drawiy is

which has time and space complexity ©fn+ m).
We can also highlight that th&lf'S PLANARISEIgo-

namedbush formof G if the vertices with smaller or
equal labels thak appears at a higher level than the

rithm generates a planar subgraph where the proposedeaves and all of the virtual vertices appears as leaves.

algorithm generates an induced planar subgraph.

It is possible to demonstrate (Even, 2011; Lempel

Section 2 describes a few necessary concepts. Ingt al., 1967) that &t-graph is planar if and only if

section 3 we present théD-PLANARISEalgorithm.

for eachBy, 2 < k < n—2, there is a planar grafj,

The section 4 analyses the complexity and the perfor-jsomorph toBy such that all the virtual vertices B,
mance of the proposed algorithm. Section 5 presents|apeledk + 1 appear consecutively.

the evolutionary algorithnMAVD-PLANARISEand
later we show an empirical analysis of the performed
tests of the proposed algorithms (section 6).

2 THE LEC ALGORITHM AND
PQ-TREES

This section presents the basics of theS PLA-
NARISEalgorithm, which is based on tHeEC pla-
narity test algorithm which is performed with the aid
of PQ-trees. The definitions of the data structure and

its operations are described in this section. However,

for further details on the implementation of the opera-
tions onPQ-trees we recommend the work of (Booth
and Lueker, 1976).

The LEC algorithm only deals with biconnected
graphs. Considering that it is fairly easy to divide a

graphinto a tree of biconnected components (blocks),

(Gibbons, 1985) presents a linear complexity algo-
rithm for the generation of a tree of biconnected com-
ponents for a given graph. This work may consider,
thus, only biconnected graphs.

Take a biconnected grajgh= (V,E) with n= |V

A PQ-tree (Booth and Lueker, 1978) is a data
structure that represents a set of permutations in a set
S. The nodes oflf can beleaves representing the
elements of5; P-nodesconventionally represented as
a circle; andQ-nodes conventionally represented as
arectangle.

For this kind of tree the order that the descendants
of a node appear is important. Therderlineof T
is defined as the permutation represented by the order
of the leaves o from left to right. For example, the
borderline of the firsPQ-tree in Figure 1 igabcdé.

The set of permutations representedibis gen-
erated by rearranging the descendants of each Rode
andQ, according to two rules — the descendants of a
P-node can be freely permuted and the order of the
descendants of@-node can only be inverted.

The set of permutations @& represented by is
the set of borderlines of theQ-trees obtained from
T, by rearranging the descendants according to these
rules. For example, the set of permutations repre-
sented by th&Q-tree in Figure 1 isfabcdé, [abced,
[cbadé, [cbaed, [dabcé, [dcbaé, [eabcd, [ecbad,
[deabd, [decbd, [edabd, and[edcba.

ThesePQ-trees proved to be useful in many prob-
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Figure 1: The twelve permutations allowed for the given P&g-t

lems involving a successive reduction of the set of is the pertinent rootQ2 node is a full node; the per-
permutations to find a specific permutation. For ex- tinent leaves are labeled as 8; and the non-pertinent
ample, they have been used to identify planar graphs,leaves are labelled as 9,10,11,12.
interval graphs, matrix with the property of consecu-
tive ones (Booth and Lueker, 1976), hierarchical pla-
nar. graphs (Battista and Nardelli, 1988), as well as
the dominance drawings (Eades and de Mendonga,
1993).

In this work, aPQ-treeTy is used to represent the
bush formBy in the algorithm. The nodes df corre-
spond to the following:

e leaves: the virtual vertices &;

e Q-nodes: the maximal biconnected components ' ' ® = = & x w0 v W0mw
in By and Figure 2: A PQ-tree of a bush forBy.

e P-nodes: the articulation vertices By. Reduction is an important operation oP&-tree.

The leaves are named pertinent if they correspond On an abstract level, the reduction takes a set of per-
to the next selected vertices (lalket 1) with the pos- ~ MutationsT] of Sand a subse® C Sand returns a
sibility to be embedded, while the others are named Subsetl’ of I in a way that the elements & con-
non-pertinent leaves. In the same way, a non-leaf S€cutively appear in all the permutationsin The
nodeX is pertinent if any leaf descendantXfin the ~ €léments of are named pertinent elementsf
PQ+ree is pertinent. If all the leaves from the descen-  (Booth and Lueker, 1%76) created an algorithm
dants of a nod& in the PQ-tree are pertinent, then that_reduces@tree into &l " tree in away_that all the
X is named a full node. If no leaf descendant of the Pertinent leaves consecutively appear in the border-
nodeX is pertinent therX is empty. TheX border- line (when possible). The reduction operation can be
line is defined by its set of descendant leaves, readé€fficiently executed with a sophisticated implementa-
from left to right. A nodeX is a pertinent root if itis ~ ton of PQ-trees. This work, however, does not dis-
the lowest level node whose borderline has only per- CUSS these operations that are detailed in (Booth and
tinent leaves. The tree rootedXnis named pertinent ~ Lueker, 1976). _
subtree. Once a pertinent root is identified, a series of  ItiS trivial to notice that not always BQ-treeTy
pattern tests and reallocations described in (Booth andc@n be reduced intog, thus (Ozawa and Takahashi,
Lueker, 1976) can be used in order to build a new tree 1981) defined some criteria to test a tree before ap-
in which all the pertinent leaves are shown consecu- PIYing the reduction. LeG be a biconnectest-graph
tively if such tree exists. In this case all the pertinent @1dT1,T2,,Tn-1 be thePQ-trees corresponding to the
leaves in the new tree will appear as descendants oftush formsBy,Bz,,Bn_1 of G. A nodeX of aPQ-tree

a single node. For instance, suppose thaPtQetree is classified according to its borderline, as follow:
from Figure 2 represents a bush foBy P1 node is e Type A: if the rooted subtree iX could be rear-
a pertinent node1 node is an empty nod®2 node ranged in a way that all the pertinent leaves de-
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scendant oK consecutively appear in the middle to eachu vertex that does not have another adjacent
of the borderline, with at least a non-pertinenttree with a smaller label comparing to thdabel, aiming

in each extreme of the borderline. For example, to maintain the property aft-numbering.

the P, node in Figure 2 is the typ&. The proposed algorithm is presented as follows:

e Type B: if the borderline of the rooted subtree in VD PLANARI SE
X consists only of pertinent nodes, théris a full Input: graph G

P : Qutput: an induced planar subgraph of G
node. For exampl&, node in Figure 2 is typB. Pre-processing: obtain a valid st-nunbering

e Type H: if the rooted subtree iX could be rear- of G obtain small(u) for every vertex u in
ranged in a way that all the pertinent leaves de- G .
scendant oX consecutively appear in one of the Begi n:

. . build the initial tree Ty
ends of the borderline. For examp, node in for k:=2 to n-2 do:

Figure 2 is typeH. {following the st-nunbering}
¢ TypeW: if the borderline of the rooted subtrees in If Ty is reducible then:

X consists only of non-pertinent leaves, thatXs, o S;educe;
is an empty node. For exampl@; node in Figure Updat (V)"
218 typew. obtain Ty¢ by replacing every

pertinent node from TS ; by

It is known that a8PQ-tree is not always one of the a new P-node R such as every

typesA, B, H or W. However, the need to transform edge adj acent to the vertex
(essentially by vertex deletion) the whole tree in a tree Vi With Iabel higher than k
of theW type will be further looked at. appears as a direct descendant
A graph G containing n vertices is planar if of Bk
and only if the pertinent roots in all theQ-trees, £ dreturn G
T,,T3,,Th—2 of G are of theB, H or A type. APQ- na.
tree is reducible if its pertinent root is &, H or A The algorithm starts with th& tree and builds the
type, otherwise, it is irreducible (Ozawa and Taka- sequence oPQ-treesT,,Ts,. If a graph is planar the
hashi, 1981). LEC algorithm finishes after building th&,_; tree,

Both Ty andT> trees are reducible. The first one otherwise it finishes when it detects the impossibility
because it has just a pertinent leaf corresponding toto reduce d tree intoT,’.
the edge(vi,Vv2), and the second one because it has ConsidefTy an irreducibld®Q-tree of a non-planar
only one type of leaf that is the node correspondingto graph, that is, it is impossible to reducéatree into
the virtual vertexn. TS. The proposed algorithm adds a new operation
namedJpdate(k) This operation removes all the per-
tinent leaves transforming thi tree in typeW. Be-
sides, if anyu vertex with a label higher thak+ 1,
3 PLANARISATION BY VERTEX adjacent to the equivalent vertex of the removed per-
DELETION tinent leaves does not have any other adjacent vertex
with a smaller label, a new edge (dummy) is added to
In this section we introduce the proposed graph the graph in a way thatis adjacent t®. This is nec-
planarisation constructive heuristitD-PLANARISE  essary to maintain the propertysifnumbering. Each
which uses the vertex deletion operation. immersion iteration of the algorithm can increase the
In general, thevD-PLANARISEalgorithm starts ~ number of the adjacent vertices &f However, this
with a vertex and continues with the insertion of one number does not exceed the number of vertices.in
vertex at a time, building an induced planar subgraph The main question is how to inspect the adjacency of
G’ of G. The vertices are selected following the label- the vertices to be removed in order to assure the prop-
ing order introduced by thet-numbering algorithm  erty of st-numbering without increasing the complex-
(Lempel etal., 1967). Latbe the next candidate ver- ity of time. This can be done by addingsanall(u)
tex to be inserted in the planar subgraph Let E, field to each vertexi. This field informs the amount
be the edge subset incident with the veneand the of u adjacents with smaller labels than thé&bel es-
vertices ofG’ and letk, be the subset of other edges tablished in the step at-numbering. Thus, when the
incident withv. For each iteration if a vertexcannot pertinent nodes -correspondenttotRe; vertex - are
be inserted int@' then it is removed. The remaining removed to make all th& subtrees of th&/ type, the
set of edgesv,u) € Ey is added (as dummy edges) to small(u) field is reduced by one to each adjacent ver-
the first inserted vertex (vertex 1). This will be done tex u of v, whereu has a larger label thak+ 1.
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When the value of themall(u) field reaches zero, a
dummy edge is added froato u. After the last itera-
tion, all the dummy edges frosto u are removed for
vertex wheresmall(u) field is zero.

4 TIME COMPLEXITY AND
PERFORMANCE OF THE
VD-PLANARISE

The Booth and Lueker reduction of all reducil€)-
treesTy can be performed in a total time Gf(n+ m)
(Jayakumar et al., 1989). If BQ-treeTy is not re-
ducible, theUpdate(k)operation that will remove the

regarding thevD-PLANARISEalgorithm we recom-
mend the work of (Constantino et al., 2011) and (Pin-
heiro et al., 2012).

5 THE EVOLUTIONARY
ALGORITHM
MAVD-PLANARISE

As the VD-PLANARISEalgorithm possesses linear
time complexity, its use as an objective function for
optimisation techniques is efficient enough. Know-
ing that it is possible to run at-numbering algo-
rithm with linear time complexity and that thst-

pertinent vertices is performed. Suppose the worst numberings possibilities space is too large to enumer-
case with the maximum of removed vertices (notice ate, the use of an enhanced mechanism to search a

that it is true for theK,, graph). In this case, for each

large solution space is viable. Hence we propose the

v vertex removed the algorithm inspects the labels of MAVD-PLANARISE

each adjacent vertaxof v. If the label ofuis larger
than the label of/, a unit is reduced to themall(u)
value. Thus th&pdate(k)operation will inspect each
vertex and its adjacents (likeFSalgorithm). Hence

The objective of theMAVD-PLANARISEis to
search for the best parameter setup for bothsthe
numbering andVD-PLANARISEalgorithms.  The
MAVD-PLANARISEHs defined over the basic struc-

in the worst case the total time of this operation is ture of a memetic algorithm, consisting of a genetic

O(n+ m). The addition of dummy edges to theer-
tex is done in the worst casetimes. Therefore the
complexity of time ofVD-PLANARISEs O(n+ m).

algorithm (Goldberg, 1989) and a local search. The
individuals are defined in a structure that contains a
copy of the adjacency structure of the graph to be pla-

Since the proposed algorithm is a heuristic one, narised, &s,t) edge to be used in th&-numbering
guestions may arise regarding the quality of its solu- algorithm, ast vector containing thest-numbering
tions, i.e. the amount of vertices removed. The algo- of the graph over that setup and the fitness value
rithm efficiency - with the exception of a few cases (number of removed vertices) calculated after she

such as the complete gragh - is highly dependable
on thest-numbering, since th@Q-trees are built in

numbering.
The chromosome of an individual is a copy of the

that order. Hence remains the question: how many adjacency list of the given graph. L& be a graph
different st-numberings can a graph possess? And andc be a chromosome consists ofhn genes where
what is the impact of differergt-numberings regard-  nis the number of vertices @&. Each geney is the
ing the quality of the obtained solutions? adjacency list of the vertex,.

It is not trivial to answer these questions since the Every time an individual is generated - over the
number ofst-numberings of a given graph varies ac- initial population generation or by crossover - the
cordingly to its structure and characteristics. For a st-numbering algorithm is applied over its adjacency
complete graph consisting of vertices, after thest structure using the individual selectésjt) edge with
edge is chosen each vertex without a label can be athe purpose of obtaining th&-numbering, which is
candidate to receive the next label, thus it is trivial to stored in thest vector. After thest-numbering is ob-
show that there ama possiblest-numberings for such  tained, the fithess value is then calculated using the
graph. It is easy to see that for that case diffestnt  VD-PLANARISElgorithm. Only after that procedure
numberings does not affect the solution since every an individual is ready for selection and crossover.
vertex is adjacent to every other vertex, however we ~ The MAVD-PLANARISHises a fixed size popula-
can usen! as an upper bound to the number of possi- tion with a random initial generation of each individ-
ble st-numberings. ual, copying the adjacency structure of the original

Therefore, given the larg&-numbering possibil-  graph and randomly swapping the vertices order of
ities space and knowing that differesttnumbering each vertex list. During the selection and renewal of
affects the quality of the solutions obtained by the the population, we opted for using an elitism system
VD-PLANARISEwe decided to use a search tech- (Goldberg, 1989) of the 10% best solutions being kept
nigue to refine the solutions. For additional details on the population. In order to improve the selection
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chances of less fit individuals and avoid stagnation, —MAVD-PLANARISE - VD-PLANARISE Average
the algorithm also utilises a linear scaling (Goldberg,
1989) technique to calculate the fitness value.
Regarding the selection process, after defining the
elite, the algorithm uses the roulette method (Gold-
berg, 1989) to select the pairs for crossover. The se-z
lection process using the roulette method uses the fit-
ness valudy = fscaiing( fo(k)) of each individual of

80
0

>

Removed Vertices

Number of

the actual population and the total valde= 3 _ t, D27 108 175 222 273 328 387 464 531 750
wheren is the number of individuals of the popula- Graph Size (VI+[EI)
tion. After calculating those values a random value Figure 3: Results fo€, x Cy, graphs.

is picked where K r < t5 and the algorithm selects
the individuals that belong to the range of the sum of

the picked number. 6 RESULTS

The crossover mechanism of the proposed algo-

rithm is composed by two steps. The first one is a We tested the algori .
; ' gorithms on two types of graphs;
regular uniform crossover operation (Goldberg, 1989) - tesian graphs, for they possess symmetric and

andgihe .secondlone is wha defines th? method 8Scyclic characteristics among its vertices and edges
a memetic algorithm, a local search to find the best

. . and randomly generated graphs. For eaclwhere
(s,t) edge to be used by the-numbering algorithm. = 5 < n< 10, we generated tef, x Cr graphs with

After.the chrqmosomes are geryergt_ed and before cal-, evenly spread througim, 25, hence obtaining 80
culating the fltngss, every new |nd|V|d_uaI has a small graphs. As for the random graphs, we generated 200
chance of _sufferlng a mutation. Let thIS. chanceobe graphs, with|V| evenly distributed such that 30

The mutation process uses tfip techrigge yhere [V| <75 and for each pair of vertices we set an edge
one gene is randomly raffled and all the adjacency list with a probability of5, where each graph was given a

of that chosen gene is shuffled.
randomd value such that@5< 6 < 0.75.
After the crossover, th®1AVD-PLANARISEun a As for a measure, we tested th®-PLANARISE

greedy local search procedure for each individual on

the ne|ghbourhood of thes,t) edge with the purpose algorithm. The comparative of the quality of the solu-
of choosing the best edge for that graph structure. Thetions was made between the average and the best so-
procedure begins its search by picking up the beStIutions obtained by th¥’D-PLANARISEand the so-
(s,t) edges from the individual parents. The choosing lution obtained by theVAVD-PLANARISERegard-
of this edg_e is ma<_je QUring the crossover and Fhe Pr0-ing the parametrisation of our proposed memetic al-
cess consists of finding the besttinumbering given 4 qrithm "\ defined a population of 100 individuals,
the edge(s?t) and the inversdt,s) of each parent - 5.4 a variable mutation rateproportional to the pop-
and the adjacency structure of the generated individ- | 2+ion's stagnation, such that@® < a < 0.15. For
deach graph we run the algorithm three times and used
the second better result.

Figure 3 presents the chart with the results ob-
tained from the tests on th@, x Cy graphs. The

for every possiblst-numbering using an enumeration

(s,t) edge, itsst-numbering and the resulting num-
ber of vertices of the graph planarisation using that
setup. For each vertexadjacent testhe GREEDYST-

SEARCHalgorithm generates si-numbering using  firt interesting observation is regarding the dis-

the edges,v) as a temporargs,t) edge and planarise o : :
Ve ' . pancy between the average solutions obtained by
the graph using th&/D-PLANARISEalgorithm. If the VD-PLANARISEand the solutions found by the

the resulting planar subgraph has more vertices thanMAVD-PLANARISEmeaning that the differerst-
the one with the origina(s,t) edge, then the vertex

v replaces the verteixin the (s;t) edge. The greedy 3
search also executes the same procedure for the edgé 30
(v,s) and in case the obtained planar subgraph hasz 2
more vertices than the original ong,t) := (v,s) and
the GREEDY ST-SEARCHIgorithm return its recur-
sive call over the news,t) edge. The algorithm ends
when it cannot find a better solution.

—MAVD-PLANARISE — VD-PLANARISE Average

20

o

Number of Remove:

301 801 1301 1801 2301 2801 3301 3801
Graph Size (|V[+|E])

Figure 4: Results for random graphs.
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Table 1: Summary of the experiments.

Cartesian Graphs

Total Graphs:

80

Total Vertices:

8391

Overall Removed
Vertices:

VD-PLANARISE MAVD-PLANARISE VD-PLANARISE

Average
2755
32.8%

1794
21.4%

Optimal
1739
20.7%

Improvement of the
MAVD-PLANARISE
over the average
solution of the
VD-PLANARISE

Graph Size
(IVI*E])
<300
300-599
> 600
Overall

Average
Improvement
47.798%
30.884%
31.961%
40.070%

Standard
Deviation
15.246%
6.666%
8.347%
14.682%

Random Graphs

Total Graphs:

200

Total Vertices:

10500

Overall Removed
Vertices:

VD-PLANARISE MAVD-PLANARISE VD-PLANARISE

Average
3774
35.9%

2794
26.6%

Optimal
2881
27.4%

Improvement of the
MAVD-PLANARISE
over the average
solution of the
VD-PLANARISE

Graph Size
(IVI*E])
<1000
1000-1999
> 2000
Overall

Average
Improvement
43.252%
29.896%
21.006%
31.124%

Standard
Deviation
8.726%
5.695%
3.595%
11.091%

ments achieved by applying the metaheuristic and
comparing it to the average solution obtained by the
VD-PLANARISEWe can observe that as the size of
the graph increases, so the improvement of the solu-
tions obtained by the metaheuristic decreases. This is
expected as the search space increases and the prob-
lem gets more difficult. Nonetheless, the algorithm
performs similar both on cartesian and random graphs
as the overall improvements for cartesian graphs was
40.07% with a standard deviation of 14.682% and for
random graphs with similar size range as the carte-
sian graphs was 43.252% with a standard deviation of
8.726%.

The algorithm execution time is shown by the Fig-
ure 5 using different sized graphs in terms of number
of vertices and edge§V| + |E|) and the execution
time in seconds. It can be noted that the algorithm
has a polynomial time performance, with a slightly
non-linear growing curve.

numberings in fact have great impact over the qual-
ity of the solutions obtained by the planarisation al-
gorithm. Furthermore, we can conclude that for this 7 CONCLUSION
special class of graphs, the algorithm performs well

enough to, in every test case, improve the quality of Thjs ork presented an evolutionary algorithm for
the obtained solutions. , graph planarisation MAVD-PLANARISE which is
Figure 4 shows the re_sults obtained from the tests pageq on memetic algorithms. As the planarisation
on random graphs. . A_galn, we can observe that the p rigtic algorithm, the proposed algorithm applies
proposed metaheuristic was able to search the solu+,e \vp_PL ANARISEnhich uses the vertex deletion
tion space and find better solutions. ) operation to obtain a planar subgraph. To the best of
Table 1 presents a summary of the experiments. , ;- knowledge this is the only algorithm found in the

For cartesian graphs, we can highlight that the so- |iterature which optimises the number of vertices to
lutions obtained by the1AVD-PLANARISEare very o removed for the process of graph planarisation.
close to the optimal solutions of theD-PLANARISE It is important to emphasise that in the literature,

overall only 0.7% worse, hence proving the quality of o |inear complexity algorithm that planarises a

the proposed algorithm for this type of graphs. For 4.50h by removing vertices can be found as the use
the random graphs, it can be seen that the perfor-,¢ e yertex deletion operation is not frequent. Note
mance of theMAVD-PLANARISHS superior t0 the ¢ the proposed algorithm finds an induced planar
optimal solution found testing all thet-numberings.  g,paranh from bi-connected non-planar components.
This happens because the algorithm not only searchingqvever it is possible to find a tree (or a forest in case
the space of possibB-numberings, but also changes e graph is not connected) of bi-connected compo-
the visiting order of the vertices, which affects di- honts in linear time complexity and build an induced
rectly thePQ-trees algorithms and therefore t®- o 1ah5r subgraph using successive applications of the
PLANARISE ) algorithm VD-PLANARISE Hence the algorithm

The table also presents the mean of the improve- ., qqed here represents a sound and novel approach

3500 to graph planarisation using the vertex deletion.

The proposed MAVD-PLANARISE approach
searches the planar solution space using different st-
numberings and obtains good results as it was shown
in section 6. Although the algorithm is capable of
refining the solution, there are no guarantees that by
500 just altering thest-numbering, thevD-PLANARISE

% 500 1000 1500 2000 2500 3000 3500 can obtain the optimal solution (as expected for a
Graph Size ([VI+[EI) heuristic approach). Th#AVD-PLANARISEnot
Figure 5: Time curve for th1AVD-PLANARISE only searches in thest-numbering space, but it

3000

2500

2000

1500

Time (s)

1000
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also runs a local search on each individual, further Faria, L., de Figueiredo, C. M. H., and de Mendonca Neto,
improving the results. C. F. X. (2004). On the complexity of the approxi-
Future research include improvements on the mation of nonplanarity parameters for cubic graphs.
memetic algorithm in order to investigate a wider Fari D'SfretedAprl’:l!ed Ma:jhemagmi&l(lf).1(139—1_34. s
search space, not just the one provided by e ana, L. ce rigueredo, L. W. T Sravier,. S.

o - . de Mendonga, C. F., and Stolfi, J. (2006). On max-
PLANARIZE One option is to use the final solution imum planar induced subgraphsDiscrete Applied

of the MAVD-PLANARIZEas a starting point to Mathematics154(13):1774 — 1782.

another search procedure (suchsasulated anneal-  Fisher, G. and Wing, O. (1966). Computer recognition and
ing, GRASP, VNS, PSO, ptthat does not rely on extraction of planar graphs from the incidence matrix.
the VD-PLANARIZE but instead search in different Circuit Theory, IEEE Transactions onl3(2):154—
neighbourhoods. Another option is to adapt such 163.

neighbourhoods to the local search procedure alreadyGarey, M. and Johnson, D. (1983). Crossing number is np-
presented in this work. In any case, investigating complete.SIAM Journal on Algebraic Discrete Meth-

a wider range of neighbourhoods could potentially 0ds 4(3):312-316.

. . : . Gibbons, A. (1985)Algorithmic Graph TheoryCambridge

improve the quality of the obtained solutions. University Press.

Goldberg, D. E. (1989)Genetic Algorithms in Search, Op-
timization and Machine Learning Addison-Wesley
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