
Secure Web Engineering Supported by an Evaluation Framework�

Preliminary Report on a Web Engineering Approach for Secure Applications
Supported by a Conceptual Evaluation Framework for Secure Systems Engineering

Marianne Busch
Ludwig-Maximilians-Universität München, Oettingenstraße 67, 80538 München, Germany

1 STAGE OF THE RESEARCH

This paper reports on the progress of the author’s PhD
in the area of security engineering for web applica-
tions. Initially, the work was located at the beginning
of the Software Development Life Cycle (SDLC) with
a focus on design. However, designing a perfectly se-
cure application is worth nothing, if it is not possible
for security engineers to choose appropriate methods,
notations and tools (so called mechanisms) to work
with in each phase of the SDLC. Therefore, we2 addi-
tionally develop a conceptual framework for the eval-
uation of these Mechanisms, which is not limited to
the web, and also has a focus on security.

At the moment, almost two-thirds of the work for
the PhD is done, which means that most underlying
ideas are written down but further case studies and
evaluations will follow.

2 OUTLINE OF OBJECTIVES

Daily news tells that web applications are often not
secure enough, which is a threat to the user’s privacy
as well as to the image of companies. Our first aim
is to make web applications more secure by taking
security features into account at the very beginning
of the SDLC. During the requirements and design
phases, graphical or textual models can help to get
an overview of a web application and its security fea-
tures. Besides, models can be used for documentation
purposes, and security-related properties in models
can be validated and transformed to artifacts for the
implementation phase. We extend an existing model-

�I like to thank my PhD supervisor Martin Wirsing and
my colleague Nora Koch for their support and for fruitful
discussions. This work has been supported by the EU-NoE
project NESSoS, GA 256980.

2The term “we”, as used in this paper, refers to a team
effort, however, with substantial contributions by the author.

ing approach in a way that general security features as
secure connections, authentication and access control
on data structures can be represented. Additionally,
we focus on specific security features, as access con-
trol on the navigation structure of a web application
or automated reactions to denial-of-service attacks.

Collecting and analyzing data of existing secu-
rity engineering methods, notations and tools (mech-
anisms) is of major importance for security and soft-
ware engineers, as it helps them to take decisions
about solutions for upcoming tasks. These tasks can
be related to the design of web applications, but can
as well go beyond web engineering.

To ease the tasks of recording own results and of
getting an overview of existing methods, notations
and tools the Common Body of Knowledge3 was im-
plemented as a semantic Wiki within the scope of
the EU project NESSoS. As we are members of this
project, we gained experience working with the CBK
and its underlying ontology and reflected on require-
ments for a conceptual evaluation framework. Our
second aim is to provide an approach for the evalua-
tion of methods, notations and tools for the engineer-
ing of secure software systems. Evaluation should
also be possible for vulnerabilities, threats and secu-
rity properties (e.g., integrity). The term “evaluation”
covers the collection, analysis and finer-grained rep-
resentation of (security-specific) knowledge. Another
requirement is that the core framework is not overly
detailed, but easy to extend.

3 RESEARCH PROBLEM

In this section, research questions are prompted,
which – to the best of our knowledge – were not fully
answered before the author’s work started in 2011.

Generally, secure web applications can be mod-

3CBK. http://nessos-project.eu/cbk

3
Busch M..
Secure Web Engineering Supported by an Evaluation Framework - Preliminary Report on a Web Engineering Approach for Secure Applications
Supported by a Conceptual Evaluation Framework for Secure Systems Engineering.
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



eled on a high-level of abstraction, as UML-based
Web Engineering (UWE) (Koch et al., 2008; Busch
et al., 2011) or on a level where all information for an
implementation is given, as usually done with Action-
GUI (Basin et al., 2011). Advantages of a higher level
of abstraction are that modeling of modern web ap-
plications does not take too much time, quickly pro-
vides an overview and the engineer can go into de-
tails whenever needed. Advantages of lower level of
abstraction are that, ideally, the code of a web ap-
plication can be fully generated from the model, al-
though generated applications are severely limited by
the power of the modeling language.

A large majority of companies strives for attract-
ing customers by using leading-edge technology in
their web pages. Limitations are unwanted, despite
the prospect of web applications that are more secure,
if modeled thoroughly. This is why the author started
to extend UWE for security features in her Master’s
thesis (Busch, 2011). Beyond the Master’s thesis, in-
teresting questions are:

� How can a high-level modeling language as UWE
be extended so that the result is useful, security-
specific and more closely related to the web?

� Although not the whole source code can be ob-
tained, which artifacts can be generated?

� Which benefits can be achieved by model-
checking and testing of artifacts?

� Is UWE’s graphical notation enough or might it
be useful to create a textual version?

� If engineers start modeling with UWE, but later
decide that complete model generation is impor-
tant in a certain situation, how can UWE models
be transformed to ActionGUI?

� Can UWE’s security extensions be added to other
web modeling languages, as to (IFML, 2013)?

A challenge is to understand the domain of security
engineering, not only regarding security modeling,
but also regarding the creation of an evaluation frame-
work. For the latter, issues to be examined are:

� How could security-related features, as secu-
rity properties, vulnerabilities and threats, be-
come first-class citizens and how could the depen-
dences between mechanisms (method, notations
and tools) and security features be modeled best?

� How would an ontology look like, which can be
used for finding answers to research questions be-
yond comparing general mechanisms?

� How is the process of data collection and data
analysis specified, to make sure that emerging re-
search results are comprehensible and valid?

4 STATE OF THE ART

This chapter introduces approaches for secure web
engineering as well as evaluation approaches.

4.1 Secure Web Engineering

Many web engineering approaches exist, which do
not allow to model security features, as e.g., OOHRIA
(Meliá et al., 2008), OOWS (Valverde and Pastor,
2008), WebML (Brambilla and Fraternali, 2013) and
(IFML, 2013), which is based on WebML.

Security-aware modeling approaches are briefly
introduced in the following [description adapted from
(Busch et al., 2011; Busch et al., 2013)].

Our approach is based on the UWE LANGUAGE
(Koch et al., 2008; Busch et al., 2011). One of the
cornerstones is the “separation of concerns” princi-
ple using separate models for different views. How-
ever, we can observe that security features are cross-
cutting concerns which cannot be separated com-
pletely. Since the extension of the author’s Master
thesis (Busch, 2011), main UWE models have been:
The Requirements Model. defines (security)

requirements for a project.
The Content Model. contains the data structure

used by the application.
The UWE Role Model. describes a hierarchy of

user groups to be used for authorization and ac-
cess control issues. It is usually part of a User
Model, which specifies basic structures, as e.g.,
that a user can take on certain roles simultane-
ously.

The Basic Rights Model. describes access control
policies. It constrains elements from the Content
Model and from the Role Model.

The Presentation Model. sketches the web applica-
tion’s user interface.

The Navigation State Model. defines the navigation
flow of the application and navigational access
control policies. The former shows which pos-
sibilities of navigation exist in a certain context.
The latter specifies which roles are allowed to
navigate to a specific state and the action taken
in case access cannot be granted. In a web appli-
cation such actions can be, e.g., to logout the user
and to redirect to the login form or just to display
an error message. Furthermore, secure connec-
tions between server and browser are modeled.

For each view, an appropriate type of UML diagram
is used, e.g., a state machine for the navigation model.
In addition, the UWE Profile adds a set of stereotypes,
tag definitions and constraints, which can be down-
loaded from the UWE website (LMU, 2013). Stereo-

MODELSWARD�2014�-�Doctoral�Consortium

4



types can then be applied to UML model elements and
values can be assigned to tags, which are associated to
at least one stereotype.

ACTIONGUI (Basin et al., 2010) is an approach
for generating complete, but simplified, data-centric
web applications from models. It provides an OCL
specification of all functionalities, so that navigation
is only modeled implicitly by OCL constraints. As
described in Section 3, ActionGUI abstracts less from
an implementation than UWE does.

UMLSEC (Jürjens, 2004) is an extension of UML
with emphasis on secure protocols. It is defined
in form of a UML profile including stereotypes for
concepts like authenticity, freshness, secrecy and in-
tegrity, role-based access control, guarded access, fair
exchange, and secure information flow. In particular,
the use of constraints gives criteria to evaluate the se-
curity aspects of a system design, by referring to a
formal semantics of a simplified fragment of UML.
UMLsec models, compared to UWE models, are ex-
tremely detailed and therefore quickly become very
complex. Tool support is only partly adopted from
UML1.4 to UML2. However, the new tools4 have not
been updated for almost two years.

SECUREUML (Lodderstedt et al., 2002) is a
UML-based modeling language for secure systems.
It provides modeling elements for role-based access
control and the specification of authorization con-
straints. A SecureUML dialect has to be defined in or-
der to connect a system design modeling language as,
e.g., ComponentUML to the SecureUML metamodel,
which is needed for the specification of all possible
actions on the predefined resources. In our approach,
we specify role-based execution rights to methods in
a basic rights model using dependencies instead of the
SecureUML association classes, which avoids the use
of method names with an access related return type.
However, UWE’s basic rights models can easily be
transformed into a SecureUML representation.

A similar approach is UACML (Slimani et al.,
2011) which also comes with a UML-based meta-
metamodel for access control, which can be special-
ized into various meta-models for, e.g., role-based
access control (RBAC) or mandatory access control
(MAC). Conversely to UWE, the resulting diagrams
of SecureUML and UACML are overloaded, as Se-
cureUML uses association classes instead of depen-
dencies and UACML does not introduce a separate
model to specify user-role hierarchies.

There is a set of approaches that address modeling
of security aspects of service-oriented architectures
(SOAs), such as the SECTET framework (Hafner and
Breu, 2008), UML4SOA (Gilmore et al., 2011), and

4UMLsec tools. http://carisma.umlsec.de

SecureSOA (Menzel and Meinel, 2009). The first one
proposes the use of sequence diagrams for the repre-
sentation of a set of security patterns, in UML4SOA
security features are modeled as non-functional prop-
erties using class diagrams, and the latter relies on
FMC block diagrams and BPMN notation.

4.2 Evaluation Approaches

Evaluation approaches are often tailored to the needs
of a specific area. We start by introducing general
approaches and continue with security-specific ones.
This section is adapted from (Busch and Koch, 2013).

General Evaluation Approaches. KITCHENHAM
et al. (Kitchenham and Charters, 2007) specify so
called “Systematic Literature Reviews” in software
engineering. The aim is to answer research questions
by systematically searching and extracting knowl-
edge of existing literature. Our evaluation frame-
work, called SECEVAL, is based on their work, how-
ever SECEVAL is not restricted to literature reviews.
We focus on the use of arbitrary resources, as source
code or experiments which are carried out to an-
swer a security-related research question. In contrast
to Kitchenham’s approach, the process we define is
generic and thus allows us to refine the way of search-
ing after first results indicate a worthwhile direction
for further research.

SIQINU (Becker et al., 2013) is a framework for
evaluating the quality of a product version which can
then be improved. It uses the conceptual framework
C-INCAMI, which specifies concepts and relation-
ships for measurement and evaluation. SIQinU de-
fines a strategy using UML activity diagrams whereas
C-INCAMI is specified by a UML class diagram.

MOODY (Moody, 2003) proposes an evaluation
approach which is based on experiments. Practi-
tioners use methods and afterwards answer questions
about perceived ease of use, perceived usefulness and
intention to use. A figure how Moody’s approach can
be integrated can be found online (Busch, 2013).

The CBK (Common Body of Knowledge) (Beck-
ers et al., 2012) defines an ontology for software en-
gineers to describe Knowledge Objects (KOs), which
are methods, techniques, notations, tools or standards.
Techniques are methods which do not specify activ-
ities for applying the method. The CBK is imple-
mented as a semantic Wiki and serves as a knowl-
edge base containing all relevant information about
existing KOs. Unlike the CBK, SECEVAL is not im-
plemented yet. In contrast to the CBK, SECEVAL
focuses on security-related features and provides a
fine-grained ontology, which explicitly considers the

Secure�Web�Engineering�Supported�by�an�Evaluation�Framework�-�Preliminary�Report�on�a�Web�Engineering�Approach�for
Secure�Applications�Supported�by�a�Conceptual�Evaluation�Framework�for�Secure�Systems�Engineering

5



phases of the SDLC. Additionally, it defines a process
for the evaluation of KOs.

Security-specific Evaluation Approaches.
Security-related frameworks often consider con-
crete software systems for their evaluation. An
example is the OWASP RISK RATING METHOD-
OLOGY5, where the risk for a concrete application
or system is estimated. For SECEVAL, we added
vulnerability-dependent features of the OWASP
model, as e.g., the difficulty of detecting or exploiting
a vulnerability. Features that are related to a concrete
system and the rating of a possible attack are intro-
duced as an extension of SECEVAL, which can be
found online (Busch, 2013).

The i* metamodel6 is the basis of a vulnerability-
centric requirements engineering framework intro-
duced in (Elahi et al., 2010). The extended,
VULNERABILITY-CENTRIC I* METAMODEL aims at
analyzing security attacks, countermeasures, and re-
quirements based on vulnerabilities. The metamodel
is represented using UML class models.

Another approach which is focused on vulnera-
bilities is described by Wang et al. (Wang and Guo,
2009) Their concept model is less detailed than the i*
metamodel. Their aim is not to describe reality by us-
ing graphical models, but to create a knowledge base
which can then be queried using a language for the
semantic web, called SWRL.

5 METHODOLOGY

To answer the research questions, listed in Section 3,
the following methodological steps are used.

To conduct a LITERATURE REVIEW, similar to
Kitchenham et al. (Kitchenham and Charters, 2007),
helps to get into the topic at the beginning and makes
it easy to stay up-to-date during the work on the PhD.
To prove the applicability of SECEVAL, we plan to
graphically model the knowledge gathered in the lit-
erature review regarding (security) modeling for web
applications.

To fully understand the research questions that
we want to answer, it is necessary to ELICIT RE-
QUIREMENTS for the UWE extension as well as for
SECEVAL. Additionally, small CASE STUDIES can
show, if new ideas are reasonable and consistent to
the whole approach. Towards the end of the PhD, big
case studies are going to make sure that our approach

5Risk Rating Methodology. https://www.owasp.org/
index.php/OWASP Risk Rating Methodology

6i* notation. http://istar.rwth-aachen.de/

scales and that common, as well as exceptional situa-
tions can be modeled.

Asking for FEEDBACK is crucial, be it by submit-
ting papers or by conducting interviews. To get feed-
back from international senior researchers, who are
experts in various areas of security engineering, we
combined a questionnaire with live-explanations and
discussions, which was very useful for the develop-
ment of SECEVAL. Regarding UWE, it is interesting
to compare the amount of errors in bigger web ap-
plications, which are modeled with UWE, with those
which are implemented traditionally. Unfortunately,
such a big empirical study is out of the scope of the
author’s PhD7, but feedback from students, which are
working with UWE in their bachelor or master’s the-
ses partly fills this gap, along with the validation by
using case studies.

6 EXPECTED OUTCOME

In this section, an overview of preliminary and ex-
pected results for secure web engineering and for our
security framework SECEVAL is given.

6.1 Secure Web Engineering

We briefly introduce a small case study from (Busch
et al., 2013), named SmartGrid Bonus Application,
before (expected) results are presented, using the
same order as in Section 3. Another case study about
patient monitoring can be found in (LMU, 2013) and
additionally, we are working on a big case study about
the customer web interface in a smart grid home.
Both case studies are built upon requirements from
SIEMENS, which is a partner in the NESSoS project.
Most tools and prototypes, which are mentioned in
this section can also be found at the UWE web page
(LMU, 2013).

Of all UWE models, introduced in Section 4, the
basic rights model and the navigation state model are
most important for modeling security features. Our
case study is a prototype of an energy offer manage-
ment system including optional bonus handling. It
provides two different user roles namely provider and
customer: providers manage and sell energy packages
including optional bonus programs for customers, as
depicted in Figure 1. Customers have the possibility
to buy offered energy packages. Therefore, our ap-
plication lists all available energy offers and the cus-
tomer selects a specific offer which includes a bonus
code. After buying an energy package, the application

7Advice how to do this in a small way are welcome.

MODELSWARD�2014�-�Doctoral�Consortium

6



shows the corresponding bonus code which contains
a gift voucher, e.g., for online shops. Finally, the cus-
tomer gets a confirmation for the ordered energy.

Figure 1: UWE: Navigation States Example.

In order to model the data structure man-
aged by our case study, we use UWE’s CON-
TENT MODEL. Basically, it comprises two domain
classes, EnergyOffer and BonusProgram, which
are also used in Figure 2. An instance of the
class EnergyOffer represents a specific energy of-
fer launched by an energy provider including start
and end date. Each object of EnergyOffer can
include an arbitrary number of BonusProgram in-
stances. A BonusProgram instance stands for an ad-
ditional bonus customers get, after they have bought
the corresponding EnergyOffer.

Figure 2: UWE: Basic Rights Example.

In order to model RBAC constraints we use
UWE’s BASIC RIGHTS MODEL, depicted in Fig-
ure 2. Basically, it uses classes of the CONTENT
MODEL on the left-hand side in combination with
user roles on the right-hand side. Access permis-
sions were defined by stereotyped dependencies: for
our application, a provider has no restricting con-

straints. By contrast, there is only a limited set of per-
missions for users taking on the role of a customer:
they are only allowed to read instances of the class
EnergyOffer and to call the methods buyOffer()
and generateBonusCode().

At the moment, we are working on more web-
security specific content, which is not shown in the
example above. It will e.g. be possible to use UWE
for modeling application behavior in case of panic- or
under-fire mode. The panic mode is useful for tumul-
tuous regions around the world, where users might be
physically forced to sign in an online service to per-
form certain tasks. This can e.g., be mitigated by a
second password, which changes the web application
in a predefined way. The under-fire modeling ele-
ments refer to the application’s behavior under denial-
of-service attacks.

Artifacts which can be extracted from UWE mod-
els are e.g. RBAC rules. We use the model to text
transformation language XPand to transform UWE
models to XACML8 and to code snippets. For
the latter, we implemented a prototypic transforma-
tion of the data structure, roles and RBAC rules to
Apache Wicket with Apache Shiro and Hibernate
(Wolf, 2012).

Exporting XACML policies, which can include
RBAC policies from the Basic Rights model as well
as from the navigational states model, is implemented
in a tool called UWE2XACML. In (Busch et al.,
2012), it is also explained how XACML can be trans-
formed in FACPL, a formal policy language with the
advantage of fully specified semantics.

Additionally, XACML can be used to generate
tests by using a tool chain, including UWE2XACML,
X-CREATE 9 for generating XACML requests, a
PDP (Policy Decision Point which responds to
XACML requests), as suggested in (Bertolino et al.,
2013). The advantage is that policies are modeled
at a high level of abstraction so they are easy to un-
derstand and to maintain, whereas policies written in
XACML tend to become lengthy and error-prone.

Constraints like “a customer can only get access to
a bonus code after he bought an energy package” can
be inferred from navigational state models (cf. transi-
tions in Figure 1). To extract so called Secure Nav-
igation Paths (SNPs) and to use them both for au-
tomatic testing and for the generation of a monitor,
which shields the web application from illicit access
sequences, is described in (Busch et al., 2013). The
associated tool MagicSNP is an extension of a plugin
for MagicDraw 17.010, called MagicUWE, which we

8XACML 2.0. http://docs.oasis-open.org/xacml/2.0/
9X-CREATE. http://labsedc.isti.cnr.it/tools/xcreate

10MagicDraw. http://magicdraw.com/

Secure�Web�Engineering�Supported�by�an�Evaluation�Framework�-�Preliminary�Report�on�a�Web�Engineering�Approach�for
Secure�Applications�Supported�by�a�Conceptual�Evaluation�Framework�for�Secure�Systems�Engineering

7



implemented to ease the creation of UWE models.
Another transformation we considered is the

model-to-model transformation from UWE to Action-
GUI, described in (Busch and Garcı́a de Dı́os, 2012).

Some engineers prefer textual models and as this
is a matter of taste and both types have advantages and
disadvantages, we aim at providing a Domain Spe-
cific Language (DSL) for UWE, called TEXTUAL-
UWE. The focus is on creating an intelligible lan-
guage, which is not only easy to read but also ex-
ploitable by algorithms. As we want to open the way
to expressive algorithms, we decided to use Scala11, a
multi-paradigm programming language. For our work
we use the functional style, as it allows writing short
and precise algorithms to support TextualUWE. We
are working on algorithms to check security features
of TextualUWE models, as e.g., which part of the web
application can be reached by a user which is asso-
ciated to a certain role. Further verifiable features
are to find inconsistencies in the model or to check
what happens when parts of pages (so-called naviga-
tion nodes) are illegally accessed.

A transformation from graphical UWE models to
TextualUWE is currently under construction (Rze-
haczek, 2013) – it works for the small case study
shown above. For implementing the transformation
we use Acceleo, as it is mightier than XPand. It trans-
forms MagicDraw projects, exported using the XML
Metadata Interchange (XMI) format, to our DSL.

As soon as we added all web specific security fea-
tures we plan to integrate, we are going to use the
concepts for IFML and report on needed extensions,
due to the fact that the navigation structure cannot be
modeled in IFML.

6.2 Conceptual Evaluation Framework

Our evaluation framework SECEVAL provides a
structure for data as well as a structure for perform-
ing a data analysis on the collected data (i.e., meth-
ods, notations and tools in the context of security
properties, vulnerabilities and threats). We grouped
these concepts in three packages: Security Context,
Data Collection and Data Analysis. Figure 3 shows
SECEVAL’s ontology represented as a UML class di-
agram. We selected UML, as we think it fits our needs
best. Deliverable D2.4 (Busch and Koch, 2013) of
the NESSoS project includes a detailed description of
SECEVAL. This section is adapted from D2.4 and fo-
cuses exemplarily on the security context.

The SECURITY CONTEXT package is used to
specify the object-oriented data structure we use for

11Scala. http://scala-lang.org

Figure 3: SECEVAL: Model Overview.

describing methods and related security features, no-
tations and tools. The classes Method, Notation and
Tool inherit general attributes, as e.g., a problem de-
scription and whether or not it is based on standards,
from the abstract class Mechanism. Additionally, a
tool can support methods and a notation can be used
for several methods.

Having a well-defined data structure which is ex-
tensible is one thing, collecting concrete data the
other. The package DATA COLLECTION contains the
search process as well as research questions which
should be investigated.

Research questions define what is inside and out-
side the scope of research. Before specifying the re-
search questions, a basic understanding of the con-
text is needed, therefore a dependency, stereotyped by
“use”, points from ResearchQuestion to the pack-
age SecurityContext. Queries can be defined ac-
cordingly. They are used to find matching sources
containing data which might help to answer the re-
search questions. Please note that for us the term “re-
search question” does not have to refer to scientific
research questions.

After collecting data, the source data may con-
sist of, e.g., some papers, several websites or code.
The process of extracting information from the data
is called DATA ANALYSIS. An analysis strategy de-
fines criteria which are important for answering the
research question, like costs or preconditions. These
criteria are used to classify information which is ex-
tracted from the sources. Information can also be pro-
cessed, for example one could calculate annual costs
for tools. The instructions used for those calculations
are referred to as AnalysisAlgorithm in Figure 3.
Each piece of information (processed or not) can re-
late to classes of the security context model, e.g., a
tool can be described using information from the web-
site of the tool. However, information does not have

MODELSWARD�2014�-�Doctoral�Consortium

8



Figure 4: SECEVAL: Security Context.

to be related to a context model’s class.
Figure 4 shows a more detailed data structure of

the Security Context package, as attributes and enu-
merations are shown.

During our experience with the CBK, we noticed
that tools as well as methods would be better de-
scribed according to their usage in the SDLC, because
attributes which are used to describe a method or tool
are related to the SDLC phases it covers. As far as we
know, no phase-related attributes are needed to de-
scribe features of notations. Figure 5 also depicts our
Method class. The abstract class MAreasOfDev is a
wildcard for detailed information about the method.
A method can support several development phases.
The phases of the SDLC are the same we have chosen
to classify tools and methods in the NESSoS project
(Busch and Koch, 2011): requirements, design, im-
plementation, testing, assurance, risk & cost, service
composition and deployment.

The full MagicDraw 17.0 model of SECEVAL and
all diagrams (including the overall process and full
details of method and tool description according to
phases within the SDLC) can be downloaded from the
web (Busch, 2013). There, the OWASP and Moody
extension of SECEVAL, which was mentioned in Sec-
tion 4 can also be found.

In (Busch and Koch, 2013), we use SECEVAL for

a case study in which we evaluate vulnerability scan-
ners for testing security features of web applications.
Additionally, we plan to update our knowledge about
secure web engineering approaches by conducting an
evaluation based on SECEVAL. A long-term objec-
tive is to implement SECEVAL as a knowledge base,
similarly to the CBK.

In summary, it can be stated that our approach for
engineering secure web applications and our concep-
tual evaluation framework SECEVAL, tackle the prob-
lem of securing applications during the SDLC. Con-
sequently, a long-term impact could be the reduction
of security flaws and of necessary security patches.

Figure 5: SECEVAL: Details of Methods (excerpt).

Secure�Web�Engineering�Supported�by�an�Evaluation�Framework�-�Preliminary�Report�on�a�Web�Engineering�Approach�for
Secure�Applications�Supported�by�a�Conceptual�Evaluation�Framework�for�Secure�Systems�Engineering

9



REFERENCES

Basin, D., Clavel, M., and Egea, M. (2010). Automatic
Generation of Smart, Security-Aware GUI Models.
In Engineering Secure Software and Systems, volume
5965 of Lecture Notes in Computer Science, pages
201–217. Springer.

Basin, D., Clavel, M., Egea, M., Garcı́a de Dios, M. A.,
Dania, C., Ortiz, G., and Valdazo, J. (2011). Model-
Driven Development of Security-Aware GUIs for
Data-Centric Applications. In Aldini, A. and Gorri-
eri, R., editors, Foundations of Security Analysis and
Design VI, volume 6858 of Lecture Notes in Computer
Science, pages 101–124. Springer Berlin Heidelberg.

Becker, P., Papa, F., and Olsina, L. (2013). Enhancing the
Conceptual Framework Capability for a Measurement
and Evaluation Strategy. 4th International Workshop
on Quality in Web Engineering , 6360:1–12.

Beckers, K., Eicker, S., Heisel, M., and (UDE),
W. S. (2012). NESSoS Deliverable D5.2 –
Identification of Research Gaps in the Com-
mon Body of Knowledge. http://www.nessos-
project.eu/media/deliverables/y2/NESSoS-D5.2.pdf.

Bertolino, A., Busch, M., Daoudagh, S., Koch, N., Lonetti,
F., and Marchetti, E. (2013). A Toolchain for Design-
ing and Testing XACML Policies. In Proceedings of
ICST 2013.

Brambilla, M. and Fraternali, P. (2013). Large-scale Model-
Driven Engineering of web user interaction: The
WebML and WebRatio experience. Science of Com-
puter Programming.

Busch, M. (2011). Integration of Security As-
pects in Web Engineering. Master’s the-
sis, Ludwig-Maximilians-Universität München.
http://uwe.pst.ifi.lmu.de/publications/BuschDA.pdf.

Busch, M. (2013). SecEval – Information and Figures.
http://www.pst.ifi.lmu.de/ busch/SecEval/.

Busch, M. and Garcı́a de Dı́os, M. A. (2012). Ac-
tionUWE: Transformation of UWE to ActionGUI
Models. Technical report, Ludwig-Maximilians-
Universität München. Number of Report: 1203.

Busch, M., Knapp, A., and Koch, N. (2011). Modeling Se-
cure Navigation in Web Information Systems. In Gra-
bis, J. and Kirikova, M., editors, 10th International
Conference on Business Perspectives in Informatics
Research, LNBIP, pages 239–253. Springer Verlag.

Busch, M. and Koch, N. (2011). NESSoS De-
liverable D2.1 – First release of Method
and Tool Evaluation. http://www.nessos-
project.eu/media/deliverables/y1/NESSoS-D2.1.pdf.

Busch, M. and Koch, N. (2013). NESSoS Deliverable D2.4
– Second Release of the Method and Tool Evaluation.
to appear.

Busch, M., Koch, N., Masi, M., Pugliese, R., and Tiezzi,
F. (2012). Towards model-driven development of ac-
cess control policies for web applications. In Model-
Driven Security Workshop in conjunction with MoD-
ELS 2012. ACM Digital Library.

Busch, M., Koch, N., and Wirsing, M. (2014). SecEval: An

Evaluation Framework for Engineering Secure Sys-
tems. submitted.

Busch, M., Ochoa, M., and Schwienbacher, R. (2013).
Modeling, Enforcing and Testing Secure Navigation
Paths for Web Applications. Technical Report 1301,
Ludwig-Maximilians-Universität München.

Elahi, G., Yu, E., and Zannone, N. (2010). A vulnerability-
centric requirements engineering framework: analyz-
ing security attacks, countermeasures, and require-
ments based on vulnerabilities. Requirements Engi-
neering, 15(1):41–62.

Gilmore, S., Gönczy, L., Koch, N., Mayer, P., Tribas-
tone, M., and Varró, D. (2011). Non-functional Prop-
erties in the Model-Driven Development of Service-
Oriented Systems. SOSYM, 10(3):287–311.

Hafner, M. and Breu, R. (2008). Security Engineering for
Service-Oriented Architectures. Springer.

IFML (2013). Interaction Flow Modeling Lan-
guage (IFML), FTF – Beta 1. OMG standard.
http://www.omg.org/spec/IFML/.

Jürjens, J. (2004). Secure Systems Development with
UML. Springer. Tools and further information:
http://www.umlsec.de/.

Kitchenham, B. and Charters, S. (2007). Guidelines for
performing Systematic Literature Reviews in Soft-
ware Engineering. Technical Report EBSE 2007-001,
Keele University and Durham University Joint Report.

Koch, N., Knapp, A., Zhang, G., and Baumeister, H. (2008).
UML-based Web Engineering: An Approach based on
Standards. In Web Engineering: Modelling and Imple-
menting Web Applications, Human-Computer Interac-
tion Series, pages 157–191. Springer.

LMU (2013). UWE – UML-based Web Engineering Home-
page. http://uwe.pst.ifi.lmu.de/.

Lodderstedt, T., Basin, D., and Doser, J. (2002). Se-
cureUML: A UML-Based Modeling Language for
Model-Driven Security. In Proc. 5th Int. Conf. Uni-
fied Modeling Language (UML’02), volume 2460 of
Lecture Notes in Computer Science, pages 426–441.
Springer.

Meliá, S., Gómez, J., Pérez, S., and Dı́az, O. (2008). A
Model-Driven Development for GWT-Based Rich In-
ternet Applications with OOH4RIA. In ICWE’08,
pages 13–23. IEEE.

Menzel, M. and Meinel, C. (2009). A Security Meta-model
for Service-Oriented Architectures. In Proc. 2009
IEEE Int. Conf. Services Computing (SCC’09), pages
251–259. IEEE.

Moody, D. L. (2003). The Method Evaluation Model:
a Theoretical Model for Validating Information Sys-
tems Design Methods. In Ciborra, C. U., Mercurio,
R., de Marco, M., Martinez, M., and Carignani, A.,
editors, ECIS, pages 1327–1336.

Rzehaczek, K. (2013). Transformation of graphical UWE
models to a textual DSL. Bachelor Thesis.

Slimani, N., Khambhammettu, H., Adi, K., and Logrippo,
L. (2011). UACML: Unified Access Control Model-
ing Language. In NTMS 2011, pages 1–8.

Valverde, F. and Pastor, O. (2008). Applying Interac-
tion Patterns: Towards a Model-Driven Approach for

MODELSWARD�2014�-�Doctoral�Consortium

10



Rich Internet Applications Development. In Proc. 7th
Int. Wsh. Web-Oriented Software Technologies (IW-
WOST’08).

Wang, J. A. and Guo, M. (2009). Security Data Mining in an
Ontology for Vulnerability Management. In Bioinfor-
matics, Systems Biology and Intelligent Computing,
2009. IJCBS ’09. International Joint Conference on,
pages 597–603.

Wolf, K. (2012). Sicherheitsbezogene Model-to-Code
Transformation für Webanwendungen (German).
Bachelor Thesis.

Secure�Web�Engineering�Supported�by�an�Evaluation�Framework�-�Preliminary�Report�on�a�Web�Engineering�Approach�for
Secure�Applications�Supported�by�a�Conceptual�Evaluation�Framework�for�Secure�Systems�Engineering

11


