
Using Artificial Intelligence Techniques to Enhance Traceability
Links

André Di Thommazo1,2, Rafael Rovina1, Thiago Ribeiro1, Guilherme Olivatto1, Elis Hernandes2,
Vera Wernek3 and Sandra Fabbri2

1IFSP - São Paulo Federal Institute of Education, Science and Technology, São Carlos, SP, Brazil
2LaPES - Software Engineering Research Lab, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil

3Informatics and Computer Science Department, Rio de Janeiro State University (UERJ), Rio de Janeiro, RJ, Brazil

Keywords: Requirements Management Techniques, Requirements Engineering, Software Engineering, Fuzzy Logic.

Abstract: One of the most commonly used ways to represent requirements traceability is the requirements traceability
matrix (RTM). The difficulty of manually creating it motivates investigation into alternatives to generate it
automatically. This article presents two approaches to automatically creating the RTM using artificial
intelligence techniques: RTM-Fuzzy, based on fuzzy logic and RTM-N, based on neural networks. They
combine two other approaches, one based on functional requirements entry data (RTM-E) and the other
based on natural language processing (RTM-NLP). The RTMs were evaluated through an experimental
study and the approaches were improved using a genetic algorithm and a decision tree. On average, the
approaches that used fuzzy logic and neural networks to combine RTM-E and RTM-NLP had better results
compared with RTM-E and RTM-NLP singly. The results show that artificial intelligence techniques can
enhance effectiveness for determining the requirement’s traceability links.

1 INTRODUCTION

Several authors highlight the importance of
requirements management to the software
development process (Zisman and Spanoudakis,
2004) (Cleland-Huang et al., 2012) (Sommerville,
2010). The majority of software errors found are
derived from errors in the requirements elicitation
and on keeping up with their evolution throughout
the software development process (Salem, 2006).

Research performed by the Standish Group
(1994) (2005) showed that the three most important
factors to define whether a software project was
successful or not are: user specification gaps,
incomplete requirements, and constant changes in
requirements. Notice that these factors are directly
related to requirements management, which has the
traceability feature as a key point.

One of the main elements to help the activities of
requirements traceability is the requirements
traceability matrix (RTM). The RTM is designed to
register the existing relationships among system
requirements. Due to its importance, it is the main
focus of much research. Sundaram and others
(2010), consider traceability determination and RTM

to be essential in many software engineering
activities, although it is a time consuming and error
prone task. The authors claim that this task can be
facilitated if computational support is given and the
use of such automatic tools can significantly reduce
effort and costs to elaborate and maintain
requirements traceability and the RTM. These
authors emphasize that such support is still very
limited in existing tools. According to Cleland-
Huang and others (2012), the research which has
recently addressed requirements traceability has
focused on the automatic traceability definition.

Among the ways to automate traceability, Wang
and others (2009) highlight that current research
makes use of three approaches:
 The spatial vector model (SVM): the work of

Hayes and others (2003), this approach will be
mentioned in Section 5.2.

 Semantic indexing: the work of Hayes and
others. (2006) uses the ideas proposed by
Deerwester and others (1990) from Latentic
Semantic Indexing (LSI) in order to also
automatically identify traceability. When LSI is
in use, not only is the word frequency taken into
consideration, but also the meaning and context

26 Di Thommazo A., Rovina R., Ribeiro T., Olivatto G., Hernandes E., Werneck V. and Fabbri S..
Using Artificial Intelligence Techniques to Enhance Traceability Links.
DOI: 10.5220/0004879600260038
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 26-38
ISBN: 978-989-758-028-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

used in its construction.
 The network probability model: the work of

Baeza-Yates and others (1999) uses ProbIR
(Probabilistic Information Retrieval) to create a
matrix in which the dependencies among the
terms are mapped in relation to the other
document terms.
Given the aforementioned context, this article

presents two approaches to automatically create the
RTM using artificial intelligence techniques: RTM-
Fuzzy based on fuzzy logic and RTM-N based on
neural networks. Both of them combine two other
approaches; RTM-E, that is based on functional
requirements (FRs) entry data and RTM-NLP, that is
based on natural language processing (NLP).

Fuzzy logic is being applied because as is
known, traceability determination involves many
uncertainties, and fuzzy logic has the ability to
handle them. Besides, to improve the effectiveness
of this approach genetic algorithms were used to
determine the best configuration of the fuzzy system
pertinence functions. Neural networks are being
used because they can store knowledge acquired
through examples and make inferences about new
ones, using examples during the training phase. In
our case, as we had executed some experimental
studies, there was much data available to train the
neural network, so motivating its use.

All these four approaches determine the level
(“no dependence”, “weak dependence” or “strong
dependence”) of the relationship between two FRs.
To help the definition of the ranges that determine
these levels generated by RTM-E and RTM-NLP a
decision tree was used (Artero, 2009; Coppin, 2004)
with the data obtained from previous experimental
studies (Di Thommazo et al., 2012).

The four approaches were evaluated by a new
experimental study to quantify the effectiveness of
each one. It is worth mentioning that the RTM-E and
RTM-NLP approaches had already provided
satisfactory results in two previous experimental
studies (Di Thommazo et al., 2012) (Di Thommazo
et al., 2013). To make all these experiments feasible,
the four RTM automatic generation approaches were
implemented in the COCAR tool (Di Thommazo
and others, 2007). COCAR tool supports some
activities of Requirements Engineering. It is possible
to store the description, processing, input data,
output data, constraints and stakeholders of each FR
of a system. The tool provides the generation of the
RTM according to four approaches that are
presented in this paper. Also, some reports on the FR
can be generated.

This article is organized as follows: in Section 2

requirements management, traceability and RMT are
introduced; Sections 3 and 4 present a brief
definition of fuzzy logic and neural networks,
respectively; in Section 5, the four RMT automatic
generation approaches are presented and exemplified
by using the COCAR tool; Section 6 shows the
experimental study performed to evaluate the
effectiveness of the approaches; conclusions and
future work are discussed in Section 7.

2 REQUIREMENTS
MANAGEMENT TECHNIQUES

Requirements management is an activity that should
be performed throughout the whole development
process, with the main objective of organizing and
storing all requirements as well as managing any
changes to them (Zisman and Spanoudakis, 2004)
(Sommerville, 2010).

As requirements are constantly changing,
managing them usually becomes a laborious and
extensive task, thus making relevant the use of
support tools to conduct it (Lai and Liu, 2009).

According to the Standish Group (2005), only
5% of all developed software makes use of any
requirements management tool, which can partially
explain the huge problems that software companies
face when implementing effective requirements
management and maintaining its traceability.
Various authors emphasize the importance of tools
for this purpose (Sommerville, 2010; Kannenberg
and Saiedian, 2009; Goknil et al., 2011). Zisman and
Spanoudakis (2004), for instance, consider the use of
requirements management tools to be the only way
for successful requirements management.

Two important concepts of requirements
management are requirements traceability and
traceability matrix, which are explained next.

2.1 Requirement Traceability

Requirements traceability concerns the ability to
describe and monitor a requirement throughout its
lifecycle (Guo et al., 2009). Such requirement
control must cover all its existence from its source –
when the requirement was identified, specified and
validated – through to the project phase and
implementation and ending at the product’s test
phase. Thus, traceability is a technique that allows
the identification and visualization of the
dependency relationship between one requirement
and the others, and/or the other artifacts generated

Using�Artificial�Intelligence�Techniques�to�Enhance�Traceability�Links

27

throughout the software’s development process. The
dependency concept does not mean, necessarily, a
precedence relationship between requirements but,
instead, how coupled they are to each other with
respect to data, functionality, or any other
perspective.

According to Guo and others (2009),
requirements traceability is an important
requirements management activity as it can provide
the basis for requirements evolutionary changes,
besides directly acting on the quality assurance of
the software development process.

Zisman and Spanoudakis (2004) consider two
kinds of traceability: horizontal traceability, when
the requirements’ relationship occurs between
different artifacts like the requirements document
(RD), models, source codes and, test artifacts; and
vertical traceability, the focus of this paper, in which
traceability is analyzed inside the same artifact, like
the RD for instance. Through this artifact’s FRs
analysis it is possible to identify their relationship
and generate the RTM.

2.2 Requirement Traceability Matrix—
RTM

According to Goknil and others (2011), despite the
various existing research treating traceability
between requirements and other artifacts (horizontal
traceability), only minor attention is given to the
requirements relationship between themselves, that
is, their vertical traceability. The authors also state
that this relationship influences various activities
within the software development process, such as
requirements consistency verification and change
management. A method of mapping such a
relationship among requirements is RTM creation.

In addition, Cuddeback and others (2010) assert
that an RTM supports many software engineering
validation and verification activities, like change
impact analysis, reverse engineering, reuse, and
regression tests. In addition, they state that RTM
generation is laborious and error prone, a fact that
means, in general, it is not generated or updated.

Overall, the RTM is constructed as follows: each
FR is represented in the i-th line and in the i-th
column of the RTM, and the dependency between
them is recorded in the cell corresponding to each
FR intersection (Sommerville, 2010).

Guo and others (2009), Goknil and others (2011)
and IBM (2012) have debated the importance and
need of the RTM in the software development
process, once such a matrix allows the prediction of
the impact that a change (or the insertion of a new

requirement) has on the system as a whole.
Sommerville (2010) emphasizes the difficulty of
obtaining such a matrix and goes further by
proposing a way to subjectively indicate not only
whether the requirements are dependent but how
strong such a dependency is.

3 FUZZY LOGIC

Fuzzy logic was developed by Zadeh (1965) and,
instead of simply using true or false, proposes the
use of a variation of values between a completely
false and an absolutely true statement.

In classic set theory there are only two pertinence
possibilities for an element in relation to a set as a
whole: the element pertains or does not pertain to a
set (Artero, 2009). In fuzzy logic, pertinence is given
by a function to which the real values pertain in a
closed interval between 0 and 1. The process of
converting a real number into its fuzzy
representation is called “fuzzyfication”. Another
important concept in fuzzy logic is related to the
rules that use linguistic variables in the execution of
the decision support process. The linguistic variables
are identified by names, have a variable content and
assume linguistic values, which are the names of the
fuzzy sets (Artero, 2009). In the context of this
work, the linguistic variables are the traceability
obtained by the three RTM generation approaches
and may assume the values (nebulous sets) “no
dependence”, “weak dependence” or “strong
dependence”, which will be represented by a
pertinence function.

4 NEURAL NETWORKS

Neural networks are inspired by the human brain
and are composed of several artificial neurons.
These neurons were created by McCulloch and Pitts
(1943). In a neural network each neuron receives a
number of input values. A function—called the
activation function—is applied to these input values
and the neuron activation level is generated as the
function result that corresponds to the output value
provided by the neuron. Neural networks are used to
model complex relationships between inputs and
outputs and have the ability to acquire knowledge
for pattern recognition (Coppin, 2004).

There are multiple classifications for neural
networks, depending on different characteristics:
 the number of layers or the type of connectivity:

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

28

fully connected or partially connected;
 the flow of the processed signals: feed-forward

or feed-back;
 the way the training is done: supervised (when

desired input and output data are presented to the
neural network) or unsupervised (when only the
input data are presented to the neural network
and it is in charge of setting the output values).
The training consists of presenting input patterns
to the network such that it can adjust their
weights. Thus, its outputs should present an
adequate response when the input data provided
are similar but not necessarily identical to those
used in training (Artero, 2009).
An important kind of neural network is a

multilayer perception (MLP) neural network. It is
composed of source nodes that represent the network
input layer, one or more intermediate layers, and an
output layer. Except for the input layer, the others
are composed of neurons. The MLP network
connectivity is feed-forward; that is, the output of
each neuron connects only to all the neurons of the
next layer, without the presence of feed-back loops.
Thus, the signal propagates in the network
progressively. To develop the RTM-N approach an
MLP neural network was used.

5 APPROACHES TO RTM
GENERATION

The four RTM automatic generation approaches
proposed in this work only take into consideration
the software FRs and establish the relationship
degree between each pair of them.

The RTM names were based on each taken
approach. The approach called RTM-E had its
traceability matrix named RTMe, the RTM-NLP
matrix was called RTMnlp, the RTM-Fuzzy matrix
was called RTMfuzzy, and the RTM-N matrix was
called RTMn.

The approaches are implemented in the COCAR
tool, which uses a template (Kawai, 2005) to store
all requirements data. After the template is
completed, the RD provides all the necessary data to
evaluate the approaches. The main objective of such
a template is to standardize the FR data, avoiding
inconsistencies, omissions and ambiguities.

One of the template fields (which makes the
RTM implementation feasible) is called Entry, and it
is used to store the FR’s data entry in a structured
and organized way. It is worth mentioning here the
work of Kannenberg and Saiedian (2009), which

considers the use of a tool to automate the
requirements recording task to be highly desirable.
In the following, the approaches are presented.

5.1 RMT-E Approach

RTM generation is based on the FR input data. The
dependency relationship between FRs is determined
by the percentage of common data between FR
pairs. This value is obtained through the Jaccard
Index calculation (Real and Vargas, 1996), which
compares the degree of similarity and/or diversity
between the data sets of each pair. Equation 1
represents this calculation.

(1)

The equation numerator is given by the quantity
of data intersecting both sets (A and B), and the
denominator corresponds to the quantity associated
to the union between those sets.

Considering FRa as the data set entries for a
functional requirement A and FRb the data set
entries for a functional requirement B, their
dependency level can be calculated by Equation 2.

(2)

Each position (i,j) of the traceability matrix
RTM(i,j) corresponds to values from Equation 3:

 (3)

As COCAR stores the requirements data in an
atomic way, once the data is inserted into a
requirement data set, it becomes available to be
inserted into the data set of another FR. This fact
avoids data ambiguity and data inconsistency.

It is worth noting that initiatives using FR data
entries to automatically determine the RTM were not
found in the literature. Similar initiatives do exist to
help determine traceability links between other
artifacts, mainly models (for UML diagrams) and
source codes, like those found in Cysneiros and
Zisman (2008).

The determination of the dependency levels (“no
dependence”, “weak dependence” and “strong
dependence”) was initially carried out based on three
RDs from applications of different domains. Such a
process was performed in an interactive and iterative
way, adjusting the values according to the detected
traceability for each one of the three RDs. The levels
obtained were: “no dependence” for values equal to
0%; “weak dependence” for values between 0% and
50%; and “strong dependence” for values above
50%. Adopting these intervals two experimental

Using�Artificial�Intelligence�Techniques�to�Enhance�Traceability�Links

29

studies (Di Thommazo et al., 2012; Di Thommazo et
al., 2013) were conducted. To improve the accuracy
of the approach we decided to use the decision tree
J48 (Coppin, 2004; Artero, 2009) aiming to detect
the best intervals to define the levels of dependency.
If we could be able to determine better intervals, the
approach would be more effective, classifying
correctly the relationship between two FRs. Decision
tree is a technique able of finding the best intervals
based on previous data (Artero, 2009). Hence, data
from all RDs used in the previous experimental
studies (Di Thommazo et al., 2012; Di Thommazo et
al., 2013) were applied as input data to generate the
decision tree.

As shown in Figure 1, based on the RDs, two
types of matrix were generated: the RTMe and the
RTMref, where this last was construed by specialists
as will be detailed in Section 6. The percentage
determined by the RTM-E approach (from 0 to
100% of dependence) and the correct level of each
relationship link determined in the RTM-Ref were
applied to create the decision tree. Hence, analyzing
the decision tree new intervals were defined.

5.2 RMT-NLP Approach

RTM generation is based on NLP which, in the
context of requirements engineering, does not aim
for text comprehension itself but, instead, aims to
extract embedded RD concepts (Deeptimahanti and
Sanyal, 2011). There are many initiatives that make
use of NLP to determine different traceability types
in the software development process. However, few
of them consider traceability inside the same artefact
(Goknil et al., 2011). In addition, the proposals
found in the literature do not use a requirements
description template nor determine dependency
levels as in this work. Hence, aiming to determine
the dependency level between two FRs, the
frequency vector and cosine similarity methods were
used (Salton and Allan, 1994). This method
determines a similarity percentage between two text
excerpts.

To improve the process efficiency, text pre-
processing is performed before applying the
frequency vector and cosine similarity methods in
order to eliminate all words that might be considered
irrelevant, like conjunctions articles and prepositions
(also called stopwords). For example: after this step
the excerpt “Allow warehouse users to check in/out
a set of inventory items”, becomes “Allow
warehouse users check set inventory items”. After
this, a process known as stemming is applied to
reduce all words to their original radicals, levelling

their weights in the text similarity determination.
Thus the phrase that we are using as example
becomes: “Allow warehouse user check set
inventory item”. After these two steps, the method
calculates the similarity between two FRs texts: each
excerpt is represented through a vector. The
occurrences in each vector are counted to determine
each word frequency. Both vectors are
alphabetically reorded. Vectors have their terms
searched for matches on the other and, when the
search fails, the word is included in the “faulting”
vector with 0 as its frequency. After this, it is
applied the Equation 4 to calculate the similarity.

(4)

As in the RTM-E approach, the dependency
level values had been defined according to the
decision tree (J48): “no dependence” from 0% to
37%; “weak dependence” from 37% to 67%; and
“strong dependence” for values above 67%.

5.3 RMT-Fuzzy Approach

The RTM generation is based on fuzzy logic. The
purpose of this approach is to combine, through a
fuzzy system, the two approaches previously
detailed. In this way, it is possible to consider both
features—the relationship between the entry data
manipulated by the FRs (RTM-E) and the text that
describes the FRs (RTM-NLP)—to create the RTM.

Note that RTM-E and RTM-NLP determine the
dependency levels (“no dependence”, “weak
dependence”, and “strong dependence”) between
two FRs according to the value generated by the
approaches. However, this method of calculating the
dependency level can be very imprecise.

For instance, if the RTM-NLP approach
generates a value of 56.5% for the dependency
between two FRs, according to Figure 1, the
dependency level would be “no dependence”,
whereas a value of 57.5% would indicate “weak
dependence”. Using the fuzzy logic, this problem is
minimized due to the possibility of working with a
nebulous level between those intervals through the
use of a pertinence function, as mentioned in Section
III. This conversion from absolute values to its fuzzy
representation is called fuzzification.

In the pertinence functions, the X axis represents
the dependency percentage between FRs (from 0%
to 100%), and the Y axis represents the pertinence
level, that is the probability of belonging to a certain
fuzzy set (“no dependence”, “weak dependence” or
“strong dependence”), which can vary from 0 to 1.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

30

Figure 1: Steps to determine the new intervals level.

Figure 2 depicts the adopted fuzzy system, where
RTM-E and RTM-NLP are the entry data. Table 1
indicates the rules created for the fuzzy system. Such
rules are used to calculate the output value, that is,
the RTMfuzzy determination. Initially, the values
used for creating the pertinence functions were
determined based on the experience of the authors of
this paper. However, aiming to improve these
functions, we used a genetic algorithm to reach
better values for them.

Figure 2: Fuzzy System.

The use of genetic algorithm to improve the
results os Fuzzy System has been used in literature
According with Herrera (2008) the automatic
definition of an fuzzy rule based system can be
supported by genetic algorithms.

Genetic algorithms are evolutionary algorithms
which generate solutions to optimization problems.
They are inspired by natural evolution and apply
concepts like selection, mutation and crossover
(Artero, 2009).

Another important concept is the concept of the
chromosome, which corresponds to a set of
properties of the “problem”. Hence, the first step in
using the genetic algorithm was to model the initial
parameters of the pertinence functions in a
chromosome. Figure 3 illustrates the chromosome
definition scenario.

Table 1: Rules used in Fuzzy system.

 Antecedent Consequent

if
RTM-E = “no dependence”
AND RTM-NLP = “no
dependence”

then
“no

dependence”

if
RTM-E = “weak” AND
RTM-NLP = “weak”

then “weak”

if
RTM-E = “no dependence”
AND RTM-NLP = “strong”

then “weak”

if
RTM-E = “strong” AND
RTM-NLP = “strong”

then “strong”

if
RTM-E = “no dependence”
AND RTM-NLP = “weak”

then
“no

dependence”

if
RTM-E = “weak” AND
RTM-NLP = “no
dependence”

then “weak”

if
RTM-E = “no dependence”
AND RTM-NLP = “strong”

then “weak”

if
RTM-E = “strong” AND
RTM-NLP = “weak”

then “strong”

if
RTM-E = “strong” AND
RTM-NLP= “no
dependence”

then “weak”

Each function of each linguistic variable is used
in the chromosome. As an example, considering the
RTM-E approach defined by this author, data from
the pertinence function “weak dependence” (Figure
3-A) was used to create the green part of the
chromosome. After using the genetic algorithm the
same pertinence function was modified as shown in
Figure 3-B. The genetic algorithm process is
summarized in Figure 4.

After the first chromosome creation (Figure 3),
the next step is the initialization phase, when a
generation of chromosomes is created. Thus, other
chromosomes are randomly generated, with new
values in some parts of the initial chromosome. In

Using�Artificial�Intelligence�Techniques�to�Enhance�Traceability�Links

31

this case, a population of 100 individuals was used.
The next step is the selection phase where

individuals that will continue in the next generation
are selected. In this phase the roulette wheel
selection algorithm was used, selecting 40% of the
original population, based on the fitness function.
This function evaluates the efficiency of each
chromosome in solving the traceability detection.

To do this, we used data from a previous
experimental study (Di Thommazo et al., 2012)
since the values of RTM-E, RTM-NLP and
reference RTM were known. The fitness function
was used to summarize how close each chromosome
was to the best solution.

After selecting the individuals that we will “keep
alive” in the next generation, the genetic operators
mutation and crossover were applied. When the
mutation operator was applied a chromosome value
(e.g. one cell of the green block) was randomly
chosen to be changed with a new value (also
randomly chosen). In the new population, 5% was
generated through the mutation operator. The other
individuals were generated using the crossover
operator. Applying the crossover operator means
that two chromosomes must be chosen to be crossed,
generating new ones.

The process was iteratively executed until the
termination phase was reached and the best
chromosome was found. As the stop criterion we
used 30 iterations. At the bottom of Figure 4 are the
initial values of the first chromosome that generated
the first population and the chromosome that
reached the best results in the last population.

5.4 RMT-N Approach

RTM generation is based on neural networks. The
purpose of this approach is to combine, through an
MLP neural network, the two first approaches—
RTM-E and RTM-NLP. An MLP neural network
was used to develop the RTM-N approach. The
process of training neural networks is detailed in
Figure 5. Data from a previous experimental study
(Di Thommazo et al., 2012) were used: the input
data were the values of the RTM-E and RTM-NLP
approaches and the output was the correct
relationship, marked in the reference RTM (RTM-
Ref). For example: considering the input values of
0.87 from RTM-E and 0.45 from RTM-NLP, it is
necessary to set in the neural network that the output
must be “strong dependence”, since this is the value
of the RTM-REF. This is achieved by setting the
value “1” to the neuron that represents “strong
dependence” and “0” to the two other neurons. After

setting these values, the neural network should be
trained, adjusting their weights to be able to detect
similar inputs of RTM-E and RTM-NLP and correct
results of dependence. If the input values were 0.42
from RTM-E and 0.58 from RTM-NLP, the neuron
that represents the “weak dependence” must be set
with “1” and the other with “0”. The knowledge of
patterns used to train the neural network came from
the previous experimental studies, represented in
Figure 5 by the DRs, RTMe, RTM-NLP and RTM-
Ref.

Once the neural network has been created and
trained, and it is provided with new input data
obtained by the RTM-E and RTM-NLP approaches,
the level of dependence between the involved FRs
can be automatically identified (Di Thommazo et al.,
2013).

To clarify the approaches it will be used the
application of them a real system developed for a
private aviation company (the full example is
available at Di Thommazo et al., 2012 and Di
Thommazo et al., 2013). To exemplify the RTM-E
consider the following two FRs: FR3 related to
products going in and out from a company’s stock
(warehouse) and FR5, related to an item transfer
from one stock location to another. How they have
some similar input data the RTM-E indicates a
“strong dependence” (66% of common data)
according to the Jaccard Index. The text of these two
FRs also have a high similarity (88%), generating a
“strong dependence” by RTM-NLP.
To exemplify the RTM-Fuzzy, consider the same
FR3, previously mentioned, and FR7, related to the
stock report generation. They do not have common
entry data and, therefore, there is “no dependency”
between them according to RTM-E. Despite this,
RTM-NLP indicates a “strong dependency” (75.3%)
between these FRs. This occurs because both FRs
deal with the same set of data (although they do not
have common entry data) and a similar scope, thus
explaining their textual similarity. The fuzzy logic
processing (presented in the Section 5.3), after
applying Mandami’s inference technique, generates
the the value 42.5 for these entries, that corresponds
to “weak dependence”. To exemplify the RTM-N
consider the same FR3 and FR5 already used in the
first example. After the neural network was trained
according to the process clarified in Section 5.4 it is
ready to classify the FRs relationship. As the
relationship between FR3 and FR5 generated by
RTM-E was 66% and generated by RTM-NLP was
88%, these values are used as input to the neural
network and the output indicates that the value of
this relationship between FR3 and FR5 is “strong
dependence”.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

32

Figure 3: Creation of chromosome to be used in genetic algorithm.

Figure 4: Steps of genetic algorithm.

6 EXPERIMENTAL STUDY

To evaluate the effectiveness of the proposed
approaches, an experimental study has been

conducted following the guidelines below:

Context: The experiment has been conducted in the
context of the Software Engineering class at IFSP—
Federal Institute of São Paulo—as a voluntary extra

Using�Artificial�Intelligence�Techniques�to�Enhance�Traceability�Links

33

Figure 5: Steps of training the neural networks.

activity. The experiment consisted of each pair of
students conducting requirements gathering on a
system involving a real stakeholder. The final RD
had to be created in the COCAR tool.

Objective: Evaluate the effectiveness of the RTM-E,
RTM-NLP, RTM-Fuzzy and RTM-N approaches in
comparison to a reference RTM (called RTM-Ref)
and constructed by the detailed analysis of the RD.
The RTM-Ref creation is detailed next.

Participants: 32 undergraduate students on the
Systems Development course at IFSP.

Artifacts utIlized: RD, with the following
characteristics:
 produced by a pair of students on their own;
 related to a real application, with the

participation of a stakeholder with broad
experience in the application domain;

 related to the information systems domain with
basic creation, retrieval, updating and deletion of
data;

 inspected by a different pair of students in order
to identify and eliminate possible defects;

 included in the COCAR tool after identified
defects were removed.

RTM-Ref:
 created from RD input into the COCAR tool;
 built based on the detailed reading and analysis

of each FR pair, determining the dependency
between them as “no dependence”, “weak
dependence”, or “strong dependence”;

 recorded in a spreadsheet so that the RTM-Ref
created beforehand could be compared to the
RTMe, RTMnlp and RTMfuzzy for each system;

 built by the DR authors with supervision of this
work’s authors. The students were always in
touch with the stakeholders whenever a
reservation was found.

Metric: the metric used was the effectiveness of the
three approaches with regard to the coincidental
dependencies found by each approach in relation to
the RTM-Ref. Effectiveness is calculated by the
relation between the quantity of dependencies
correctly found in each approach, against the total of
all dependencies that can be found between the FRs.
Considering a system consisting of n FRs, the total
quantity of all possible dependencies (T) is given by
Equation 5:

(5)

Therefore, the effectiveness rate is given by
Equation 6:

(6)

Results: The results of the comparison between the
data of RTMe, RTMnlp, RTMfuzzy and RTMn are
presented in Table 2. The first column contains the
name of the specified system; the second column
contains the FR quantity; and the third provides the
total number of possible dependencies between pairs
of FRs. These values were calculated through
Equation 5. The fourth, sixth, eighth and tenth
columns contain the total number of coincidental
dependencies between the respective approach and
the RTMref. For example: if the RTM-Ref has

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

34

Table 2: Experimental study results.

 RTM-E RTM-NLP RTM-Fuzzy RTM-N

System
Req
Qty

of possible
dependencies

correct effect. correct effect. correct effect. correct effect.

Medical 17 136 115 85% 106 78% 124 91% 122 90%
Car Rental 23 253 204 81% 190 75% 215 85% 217 86%

Sales 18 153 122 80% 121 79% 130 85% 133 87%
Clothing Store 17 136 103 76% 105 77% 117 86% 119 88%

Cars 16 120 97 81% 93 78% 107 89% 107 89%
Habitation 16 120 103 86% 93 78% 110 92% 110 92%
Book Store 21 210 167 80% 157 75% 177 84% 180 86%

Pizza Delivery 16 120 95 79% 86 72% 104 87% 106 88%
Sales 22 231 195 84% 186 81% 213 92% 206 89%

Administration 17 136 103 76% 101 74% 113 83% 117 86%
Movies 17 136 103 76% 93 68% 112 82% 114 84%
Games 18 153 119 78% 118 77% 130 85% 131 86%
Food 19 171 134 78% 132 77% 144 84% 145 85%

Student 17 136 102 75% 94 69% 114 84% 117 86%
Computer Store 15 105 82 78% 78 74% 91 87% 91 87%

Ticket 20 190 159 84% 155 82% 169 89% 171 90%

determined a “strong dependence” in a cell and the
RTM-E approach also defined the dependency as
“strong dependence” in the same position, a correct
relationship is determined. The fifth, seventh, ninth
and eleventh columns represent the effectiveness of
the RTMe, RTMnlp, RTMfuzzy and RTMn
approaches, respectively, calculated by the relation
between the quantity of correct dependencies found
by the approach and the total number of
dependencies that could be found (third column).

Results Analysis: Statistical analysis was been
conducted using SigmaPlot software. Applying the
Shapiro-Wilk test it could be verified that the data
followed a normal distribution, and the results
shown next are in the format: average ± standard
deviation. To compare the effectiveness of the
proposed approaches (RTM-E, RTM-NLP, RTM-
Fuzzy and RTM-N) variance analysis (ANOVA) has
been used for post-test repeated measurements using
the Holm-Sidak method. The significance level
adopted was 5%. The RTM-N approach was found
to be the most effective with (87.3% ± 2.18),
whereas the RTM-Fuzzy approach offered (86.6% ±
3.1) the RTM-E approach offered (79.6% ± 3.5), and
the RTM-NLP obtained an effectiveness level of
(75.7% ± 3.7). Based on these data it is possible to
observe that the RTM-N and RTM-Fuzzy
approaches (that combine the other two approaches
through artificial intelligence) were more effectives
on traceability detection than the RTM-E and RTM-
NLP approaches singly.

In this experimental study, the results obtained
by the RTM-E approach were similar to those
obtained in two previous studies (Di Thommazo et

al., 2012) (Di Thommazo et al., 2013), despite the
fact that, in the first study, the RTM-NLP only
presented an effectiveness level of 53%, which led
us to analyze and modify this approach. In the
second experimental study (Di Thommazo et al.,
2013) this approach had an effectiveness level of
75%, very similar to that obtained in this
experimental study. Even with such improvements,
the approach still generates false positive cases, that
is, non-existing dependencies between FRs.
According to Sundaram and others (2010) the
occurrence of false positives is an NLP characteristic,
although this type of processing can easily retrieve
the relationship between FRs.In the RTM-E data
analysis, there were very few false positives. In most
cases, the dependencies found, even the weak ones,
did exist. The errors influencing this approach were
due to relationships that should have been counted as
“strong” being counted as “weak”. As previously
mentioned, if a relation was found to be “strong” in
RTM-Ref and the proposed approach indicated that
the relation was “weak”, an error in the experiment’s
traceability was counted. In the case of relationships
indicating only “dependence” or “no dependence”,
that is, without using the “no dependence”, “weak
dependence” or “strong dependence” labels, the
effectiveness determined would be higher. In such a
case the precision and recall metrics could be used,
given that such metrics only take into account the
fact that a dependency exists and not its level
(“weak” or “strong”) (Cleland-Huang et al., 2012).

In relation to the RTM-Fuzzy approach, the
results generated by it were always higher than the
results found by the RTM-E and RTM-NLP

Using�Artificial�Intelligence�Techniques�to�Enhance�Traceability�Links

35

approaches alone.
A previous study with RTM-Fuzzy had an

effectiveness level of 83%. To improve this result in
this study, the approach was improved with the use
of genetic algorithms, as detailed in Section 5. With
the new fuzzy system pertinence functions, better
results were found (86%).

In relation to the RTM-N approach the generated
results were also always higher than the results found
by the RTM-E and RTM-NLP approaches alone.

The experimental study herein presented has
some threats to its validity. One of them is related to
the students’ inexperience in eliciting the
requirements from the stakeholders. In an attempt to
minimize this risk, known domain systems were used
as well as RD inspection activities. The inspection
was conducted based on a defect taxonomy
commonly adopted in this context and which
considers inconsistencies, omissions, and
ambiguities, among others. Another risk is related to
the correctness of the RTM-Ref. To minimize errors
in this artifact the authors of this paper helped the
students with this task and the stakeholder was
contacted whenever there was any doubt about the
relationship.

6 CONCLUSIONS AND FUTURE
WORK

This article presents two approaches to
automatically create the RTM using artificial
intelligence techniques. RTM-Fuzzy is based on
fuzzy logic and RTM-N is based on neural networks.
They combine two other approaches: RTM-E, which
is based on the percentage of entry data that two FRs
have in common, and RTM-NLP, which uses NLP to
determine the level of dependency between pairs of
FRs.

Fuzzy logic was used to treat the uncertainties
that might negatively interfere in the requirements
traceability determination. Thus, RTM-Fuzzy uses
the results presented in two other approaches but
adds a diffuse treatment in order to perform more
flexible RTM generation. Hence, RTM determination
is a difficult task, even for specialists, and using the
uncertainties treatment provided by fuzzy logic has
been shown to be a good solution for automatically
determining traceability links with enhanced
effectiveness. To improve this approach, genetic
algorithms were used to determine the pertinence
function. Compared with a previous experimental
study, after the use of this technique, the
effectiveness improved from 83% to 86%.

Neural networks were used due to the possibility
of using the knowledge from previous experimental
studies conducted to detect the traceability links with
RTM-E and RTM-NLP. With the data from these
experimental studies a neural network was trained
such that it was able to detect the traceability
automatically. The results of the experimental study
show that combining the other approaches through a
neural network is a promising solution to
automatically create the RTM.

From the four approaches here presented, it is
worth noting that there are already some reported
proposals in the literature using NLP for traceability
link determination, mainly involving different
artifacts (requirements and models, models and
source code, or requirements and test cases). Such a
situation is not found in RTM-E, for which no similar
attempt was found in the literature. Comparing the
four approaches presented in this paper with the
others initiatives in the literature it is possible to say
that, while the other approaches are limited to
establish if “there is” or “there is no” dependence
between two FRs, the approaches presented in this
paper determine the level of dependence: “no
dependence”, “strong” or “weak”. This feature
allows a development team give a special attention to
the “strong dependencies” if there is any constraint of
resources in the project (people, time, money) in
case, for example, during a maintenance activity. In
addition, the major initiatives, according to Wang
and others (2009) - LSI and VSM, ProbIR - are
focused on NLP, which implies in a large number of
false positives (Sundaram et al., 2010). To minimize
this problem, the approaches RTM-Fuzzy and RTM-
N combine the RTM-NLP with the RTM -E
presented in this paper, minimizing the number of
false positives and increasing the effectiveness of the
approaches, as shown by the experimental study.

The four approaches were implemented in the
COCAR environment, so that experimental study
could be performed to evaluate the effectiveness of
each approach. The results showed that RTM-Fuzzy
and RTM-N presented superior effectiveness
compared to the others. The disadvantage of the
approaches is that they are restrict to FRs.

The results motivate the continuity of this
research, as well as further investigation into how
better to combine the approaches for RTM creation
using fuzzy logic. The main contributions of this
particular work are the incorporation of the COCAR
environment, which corresponds to the automatic
relationship determination between FRs. This
facilitates the evaluation of the impact that a change
in a requirement can generate on the others. New

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

36

studies are being conducted to improve the
effectiveness of the approaches. As future work, it is
intended to improve the NLP techniques. Another
investigation to be undertaken relates to how an
RTM can aid the software maintenance process, ,
offering support for regression test generation.

REFERENCES

Artero, A. O. 2009. Artificial intelligence - theory and
practice. , 1st ed., São Paulo: Livraria Fisica.

Baeza-Yates, R., Berthier, A., Ribeiro-Neto, A. 1999.
Modern Information Retrieval. 1st ed. New York:
ACM Press / Addison-Wesley.

Cleland-Huang, J., Gotel, O., Zisman, A. 2012. Software
and Systems Traceability. 1st ed., London: Springer.

Coppin, B. 2004. Artificial Intelligence Illuminated, 1st
ed. Burlington: Jones and Bartlett Publishers.

Cuddeback, D., Dekhtyar, A., Hayes, J.H. (2010).
Automated requirements traceability: the study of
human analysts. In 18th IEEE International
Requirements Engineering Conference, RE. Sydney,
Australia, Sep.: IEE Computer Society. 231-241.

Cysneiros, Zisman, A. (2008). Traceability and
completeness checking for agent oriented systems. In
ACM Symposium on Applied Computing, Fortaleza,
Brasil, New York: ACM Digital Library. 71-77.

Deeptimahanti, D. K., Sanyal, R. (2011). Semi-automatic
generation of UML models from natural language
requirements. In India Software Engineering Conf..
Kerala, India, Feb. New York: ACM Digital Library.
165-174.

Deerwester, S., Dumais, S.T., Furnas, G. W., Landauer,
T.K., Harshman, R. 1990. Indexing by latent semantic
analysis. Journal of the American Society for
Information Science, 41(6), 391–407.

Di Thommazo, A., Martins, M. D. C., Fabbri, S.C.P.F.
(2007). Requirements management in COCAR
environment (in portuguese). In Requirements
Engineering Workshop, WER, Toronto, Canada, May.
Rio de Janeiro: PUC-Rio. 11-23.

Di Thommazo, A., Malimpensa, G., Olivatto, G., Ribeiro
T., Fabbri, S. (2012). Requirements traceability
matrix: automatic generation and visualization. In 26th
Brazilian Symposium on Software Engineering, Natal,
Brazil. May.: IEE Computer Society. 101-110.

Di Thommazo, A., Ribeiro, T., Olivatto, G., Rovina, R.,
Werneck, V., Fabbri, S. (2013). Detecting traceability
links through neural networks. In 25th International
Conference on Software Engineering and Knowledge
Engineering, SEKE, Boston, USA. July. Illinois:
Knowledge Systems Institute, 2013. 36-41.

Goknil, A., 2011. Semantics of trace relations in
requirements models for consistency checking and
inferencing. Software and Systems Modeling, 31-54.

Guo, Y, Yang, M., Wang, J., Yang, P., Li, F. (2009). An
ontology based improved software requirement
traceability matrix. In 2nd International Symposium on

Knowledge Acquisition and Modeling, KAM, China,
Dec. Los Alamitos: IIEE Computer Society. 160-163.

Hayes, J. H., Dekhtyar, A., Osborne, J. (2003). Improving
requirements tracing via information retrieval. In 11th
International IEEE Requirements Engineering
Conference, Monterey, CA, Sep. Los Alamitos: IEE
Computer Society. 138-147.

Hayes, J. H., Dekhtyar, A., Sundaram, S. 2006. Advancing
candidate link generation for requirements tracing: the
study of methods. IEEE Transactions on Software
Engineering, 32(1), 4–19.

Herrera F. 2008. Genetic fuzzy systems: taxonomy,
current research trends and prospects. Evolutionary
Intelligence , Volume 1, Issue 1 , pp 27-46 DOI
10.1007/s12065-007-0001-5.

IBM, Ten Steps to Better Requirements Management.
[Online]. Available at: http://public.dhe.ibm.com/
common/ssi/ecm/en/raw14059usen/RAW14059USEN
.PDF. [20 May 2012].

Kannenberg, A., Saiedian, A. 2009. Why software
requirements traceability remains a challenge:
CrossTalk. The Journal of Defense Software
Engineering, 14-19.

Kawai, K. K., 2005. Guidelines for preparation of
requirements document with emphasis on the
functional requirements (in Portuguese). Master
degree thesis. São Carlos, Brazil: Universidade
Federal de São Carlos.

McCulloch , W. S., Pitts, W. 1943. A logical calculus of
the ideas imminent in nervous activity. The Bulletin of
Mathematical Biophysics, 5(4), 115-133.

Real , R., Vargas, J. M. 1996. The probabilistic basis of
Jaccard's index of similarity. Systematic Biology,
[Online]. 45(3), 380-385. Available at:
http://sysbio.oxfordjournals.org/content/45/3/380.full
[Accessed 31 July 2013].

Salem, A. M., (2006). Improving software quality through
requirements traceability models. In 4th ACS/IEEE
International Conference on Computer Systems and
Applications, AICCSA, .Dubai, Sharjah, March, Los
Alamitos: IEE Computer Society. 1159-1162.

Salton, G., Allan, J. (1994). Text retrieval using the vector
processing model. In 3rd Symposium on Document
Analysis and Information Retrieval, Univ.of Nevada,

Sommerville, I. 2010. Software Engineering. 9th ed. New
York: Addison Wesley.

Standish Group, CHAOS Report 2005, 2005. [Online].
Available at: http://www.standishgroup.com/sample
_research/PDFpages/q3-spotlight. [Accessed 20 July
2013].

Standish Group, CHAOS Report 1994, 1994. [Online].
Available at: http://www.standishgroup.com/sample
_research/chaos_1994_2.php. [Accessed 20 July
2013].

Sundaram, S. K. A. Hayes, J. H. B., Dekhtyar, A. C.,
Holbrook, E. A. D., (2010). Assessing traceability of
software engineering artifacts. In 18th International
IEEE Requirements Engineering Conference, Sydney,
Australia, Sep.: IEE Computer Society. 313-335.

Zadeh, L. A. 1965. Fuzzy sets. Information Control, 8(1),

Using�Artificial�Intelligence�Techniques�to�Enhance�Traceability�Links

37

338–353.
Zisman, A., Spanoudakis, G. 2004. Software Traceability:

Past, Present & Future, Requirenautics Quarterly, 13,
Newsletter of the Requirements Engineering Specialist
Group of the British Computer Society, Sep.

Wang, X., Lai, G., Liu, C. 2009. Recovering relationships
between documentation and source code based on the
characteristics of software engineering. Electronic
Notes in Theoretical Computer Science, 243(1),

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

38

