Extending UML Testing Profile Towards Non-functional Test Modeling

Federico Toledo Rodriguez'®, Francesca Lonetti?, Antonia Bertolino?, Macario Polo Usaola®

Keywords:

Abstract:

and Beatriz Pérez Lamancha®
1 Abstracta, Montevideo, Uruguay
2CNR-ISTI, Pisa, Italy
3Alarcos Research Group, UCLM, Ciudad Real, Spain

Model-based Testing, Non-functional Test Cases, UML-TP.

The research community has broadly recognized the importance of the validation of non-functional properties
including performance and dependability requirements. However, the results of a systematic survey we car-
ried out evidenced the lack of a standard notation for designing non-functional test cases. For some time, the
greatest attention of Model-Based Testing (MBT) research has focused on functional aspects. The only excep-
tion is represented by the UML Testing Profile (UML-TP) that is a lightweight extension of UML to support
the design of testing artifacts, but it only provides limited support for non-functional testing. In this paper
we provide a first attempt to extend UML-TP for improving the design of non-functional tests. The proposed
extension deals with some important concepts of non-functional testing such as the workload and the global
verdicts. As a proof of concept we show how the extended UML-TP can be used for modeling non-functional

test cases of an application example.

1 INTRODUCTION

In modern software systems the validation of non-
functional properties, such as performance and de-
pendability, becomes more and more important, so
that a variety of automated approaches and tools for
verification and assurance of non-functional require-
ments are being proposed. The main aim of these
approaches is to evaluate the system performance in
terms of responsiveness and stability under a partic-
ular workload or to assess other quality attributes of
the system, such as scalability, dependability and re-
sources usage.

Concerning the modeling of non-functional prop-
erties, numerous profiles have been proposed to al-
low easy and accurate design of performance and
dependability aspects of modern software systems.
Among them, MARTE (OMG, 2011) extends UML
(OMG, 1997) by providing a rich framework of con-
cepts and constructs to model non-functional proper-
ties of real-time and embedded systems and defines
annotations to augment models with information re-
quired to perform quantitative predictions and analy-
sis of time-related aspects, such as schedulability and
performance.

An important role in the software validation pro-

cess is played by Model-Based Testing (MBT) (Ut-
ting and Legeard, 2007), which contributes to test au-
tomation by pushing the application of model-based
design techniques to software testing. It involves the
development of models that describe test cases, test
data and the test execution environment, and the ap-
plication of automated facilities for generating exe-
cutable test cases from these models. A key element
involved in MBT is the modeling language used for
defining a test model from the informal system re-
quirements or the design models. For testing pur-
poses, it is important to have a test model that is easy
to verify, modify and manipulate without losing all
the information needed to generate test cases.

The authors of (Dias Neto et al., 2007) present a
systematic literature review on MBT. A result of this
review is that by adopting models developed from the
analysis of the abstract behavior of the System Under
Test (SUT), MBT has been traditionally used for gen-
erating functional test cases, but has missed to address
non-functional requirements.

The first contribution we present in this paper is
a systematic survey on MBT approaches for non-
functional requirements. However, as a result of this
review, we noticed a lack of a standard and common
language for designing non-functional test cases. The

488 Toledo Rodriguez F., Lonetti F., Bertolino A., Polo Usaola M. and Pérez Lamancha B..

Extending UML Testing Profile Towards Non-functional Test Modeling.
DOI: 10.5220/0004878204880497

In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 488-497

ISBN: 978-989-758-007-9

Copyright ¢ 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Extending UML Testing Profile Towards Non-functional Test Modeling

only proposal in this direction is the UML Testing
Profile (UML-TP) (Baker et al., 2007), a standard no-
tation to support the design, visualization, analysis
and documentation of the artifacts involved in testing.
However, UML-TP provides only limited support for
non-functional testing and we noticed that it does not
allow specifying some important concepts of perfor-
mance testing such as the workload and the definition
of a global verdict for concurrent executions.

This paper aims to overcome this limitation by
providing insights about the design of non-functional
aspects with UML-TP. Specifically, the main ad-
dressed issues deal with the representation of the
workload and the verdict definition involved into non-
functional validations. For the first one, we introduce
a new stereotype called “Workload”, which can spec-
ify among others, the amount of concurrent execu-
tions, the intensity of the execution, the test duration
and the ramp-up. Concerning the non-functional vali-
dation, we propose to extend UML-TP with the ability
to express global verdicts, considering also the aver-
age (or percentage) of the response times of all the
executions of a given test case in a workload simula-
tion. To illustrate the usefulness of our proposal, we
provide an application example in which we define
some non-functional requirements and show how to
apply the extended UML-TP for designing test cases
for such requirements.

The remainder of this paper in organized as fol-
lows. Section 2 contains the results of a systematic
survey addressing model-based testing approaches
for non-functional requirements. Section 3 gives an
overview of the current version of UML-TP outlining
its limitations for designing performance and depend-
ability tests. Section 4 presents some insights for ex-
tending UML-TP whereas Section 5 shows their ap-
plication for defining a load test modeling example.
Finally, Section 6 concludes the paper, also hinting at
future work.

2 SYSTEMATIC SURVEY

To know the state of the art about model-driven ap-
proaches for non-functional validation we performed
a systematic literature review. This survey has been
conducted following the guidelines for systematic re-
view in software engineering research proposed by
Kitchenham (Kitchenham, 2004). These guidelines
cover three aspects of a systematic review: planning
the review, conducting the review and reporting re-
sults. Below we briefly present first the research
method and then the obtained results.

2.1 Research Method

In the planning phase of our systematic survey we

identified the following research question (RQ):
RQ: what approaches have been proposed for non-

functional test modeling and automatic gener-
ation of non-functional test cases with model-

driven approaches?
According to this research question we defined the

following search string:

((test or verification or testing or
validation)
AND
(performance or "non-functional" or
nonfunctional or dependability)
AND
(model or metamodel or "meta model™ or
"model-driven" or "model-based'))

We searched by title in the IEEE Xplore, ACM
Digital Library, SCOPUS, WEB OF KNOWLEDGE
databases, and selected “English papers” from 1990
to 2013 (30 July):

From this automatic search we obtained 411 pa-
pers (157 in IEEE Xplore, 67 in ACM Digital Library,
103 in SCOPUS, 84 in WEB OF KNOWLEDGE), re-
duced to 25 after reading the title, keywords and ab-
stract, and finally reduced to 24 papers after reading
the full text.

2.2 Results

For the sake of space we do not present here the over-
all results of the systematic survey but we focus on the
most relevant works about model-driven validation
approaches of non-functional properties. We classi-
fied them according to four main research directions:
benchmark generation; performance tests generation;
models to predict performance and Software Perfor-
mance Engineering (SPE); search-based testing for
non-functional properties.

We refer to (Rodriguez et al., 2013) for a more
complete report about the systematic survey results.

Benchmark Generation. There are a large num-
ber of code generation techniques that can be used in
benchmark suite generation. The aim of the work in
(Zhu et al., 2007) is to automate the generation of a
complete benchmark suite from a UML-based design
description, along with a load testing suite modeled
in the UML-TP. The authors have tailored UML-TP
to represent a workload including some tagged val-
ues such as the number of process the load genera-
tor should start, the number of threads that each pro-
cess spawns, the maximum length of time in millisec-

489

MODELSWARD 2014 - International Conference on Model-Driven Engineering and Software Development

onds that each process should run for, the time in-
terval between starting up or stopping new processes,
etc. Thus, the main result of the approach is the auto-
mated generation of the application under test includ-
ing a complete test harness with the load to execute
and some facilities to automatically collect monitor-
ing information. However, differently from our work,
the effort of the authors is more focused on automated
benchmark generation than on test modeling. They
are merely concerned on representing load tests using
the tailored profile in order to produce a configuration
file containing all the tagged values and derive a de-
fault implementation of the model including both test
logic and test data.

In (Cai et al., 2004) a performance test-bed gen-
erator for industrial usage is proposed. The test bed
is modeled indicating interactions between client and
server that have to be simulated. The model is used
to generate the code of a performance test bed able
to run the specified performance tests. Differently
from our proposal, this approach does not focus on
the load test modeling, but it aims at solving some
challenges of performance test bed generation includ-
ing the extension of the open-source ArgoUML tool
to provide UML-like architecture modeling and XMiI-
derived model representation capabilities.

Performance Tests Generation. A recent research
direction in performance testing is the model-based
generation of test-beds for assessing that the applica-
tion meets its performance requirements. In partic-
ular, the approach in (de Oliveira et al., 2007) takes
as input a performance specification using the UML
2.0 SPT Profile, and derives a modified Stochastic
Petri Net from which a realistic test scenario in JMe-
ter (Apache, 2001) is generated. It also has a result
interpreter to give a verdict. The main difference with
our proposal is that this approach tries to generate the
test code directly from the requirements specification
without having a test model that is the objective of our
work. Another solution in this context is presented in
(da Silveira et al., 2011) in which the authors propose
to include five stereotypes in the system UML mod-
els (use cases and activity) to express performance in-
formation that will be used for generating test scripts
for a commercial tool called LoadRunner (Mercury,
2001). Specifically, these stereotypes include: PA-
population representing the number of users and the
host where the application is executed, PAprob rep-
resenting the probability of execution for each exist-
ing activity, PAtime representing the expected time to
perform a given use case, PAthinktime that is the time
between two different user actions and PAparameters
representing the input data to be provided to the appli-

490

cation when running the test scripts. The main limita-
tion of this approach is that it addresses the issues of a
specific performance testing tool that is LoadRunner.

An attempt to model the workload for perfor-
mance test generation is in (Krishnamurthy et al.,
2006). It provides a tool for generation of a synthetic
workload characterized by sessions of interdependent
requests. From requests logs of a system under test,
the approach automatically creates a synthetic work-
load that has specified characteristics and maintains
the correct inter-request dependencies. The main dif-
ference of this approach with respect to our proposal
is that it pays much attention to the scripts generation
and the definition of how to take data (from an ex-
ternal file of from the previous response) than to the
workload specification.

Finally, another performance tool is proposed in
(Abbors et al., 2012; Abbors et al., 2013). This tool
aims to evaluate the performance of a system and
monitor different key performance indicators (KPI)
such as the response time, the mean time between
failures, the throughput, etc. The tool accepts as in-
put a set of models expressed as probabilistic timed
automata, the target number of virtual users, the du-
ration of the test session and will provide a test report
describing the measured KPIs. The main contribution
of the paper is that the load applied to the system is
generated in real time from the models.

Moreover, four metamodels related with perfor-
mance testing are presented in (Pozin and Galakhov,
2011). They are: metamodel of requirements, meta-
model of the system, metamodel of the load, meta-
model of measurements. The use of these metamod-
els in planning a new load testing experiment make it
possible to automate the configuration of automated
testing tools for the parameters of a specific load ex-
periment.

Models to Predict Performance and Software Per-
formance Engineering (SPE). An orthogonal re-
search direction to our work is represented by model-
based software performance prediction. An exten-
sive survey on methodological approaches for inte-
grating performance prediction in the early phases of
the software life cycle is presented in (Balsamo et al.,
2004). This survey gives some indications concern-
ing the software system specification and the perfor-
mance modeling. For software specification, most of
the analyzed approaches use standard practice soft-
ware artifacts like UML diagrams whereas Queueing
Network Model and its extensions are candidate as
performance models since they represent an abstract
and black box notation allowing easier model com-
prehension. However, a performance model inter-

Extending UML Testing Profile Towards Non-functional Test Modeling

change format (PMIF) (Smith et al., 2010) has been
proposed as a common representation of system per-
formance modeling data. Finally, (Bennett and Field,
2004) presents a performance engineering methodol-
ogy that addresses the early stages of the development
process. Is is based on UML sequence diagrams an-
notated with performance information using the Pro-
file for Schedulability, Performance and Time.

These approaches for model-based software per-
formance prediction are far from our proposal since
they are conceived for internal analysis of the perfor-
mance of the system and not for testing. Indeed, the
main purpose of these works is not the test cases mod-
eling as in our proposal, but the representation of the
internal structure of the system and the simulation of
its behavior with model analysis, to predict the per-
formance results.

Search-based Testing for Non-functional Proper-
ties. Search-based software testing deals with the
application of metaheuristic search techniques to gen-
erate software tests. In the last years these techniques
have been also applied to testing non-functional prop-
erties. McMinn (McMinn, 2004) provides a compre-
hensive survey about the application of metaheuris-
tics in white-box, black-box and grey-box testing.
This survey also addresses non-functional testing ev-
idencing the application of metaheuristic search tech-
niques for checking the best case and worst case ex-
ecution times of real-time systems. An extension
of this survey is presented in (Afzal et al., 2009)
in which the authors show that metaheuristic search
techniques have been applied for testing of the exe-
cution time, quality of service, security, usability and
safety. These techniques are totally different from our
proposal since they are mainly based on genetic algo-
rithms, grammatical evolution, genetic programming
and swarm intelligence methods.

3 UML-TP

The Unified Modeling Language (UML) (OMG,
1997) is a widely known and applied standard no-
tation used along the software development process.
The most common and practical way to extend the
expressiveness of UML is by the use of profiles. The
UML Profile mechanism includes the ability to tai-
lor the UML metamodel defining domain specific lan-
guages by means of stereotypes, tag definitions, and
constraints which are applied to specific model el-
ements. The UML-TP (OMG, 2004) (Baker et al.,
2007) is the OMG standard for test modeling, imple-
mented as a UML Profile. UML-TP is mainly used

to perform functional testing whereas its application
for specifying non-functional test cases is quite lim-
ited since it lacks facilities able to address specific
non-functional concepts. In the next sections we first
provide an overview of UML-TP and then present the
limitations of the current standard version for defining
test cases to measure performance and dependability
properties.

3.1 Current UML-TP Standard Version

UML-TP is a lightweight extension of UML with spe-
cific concepts (stereotypes) for testing, grouped into:
i) test architecture; ii) test data; iii) test behavior; and
iv) test time. This extension fills the gap between sys-
tem design and testing, allowing the users to have a
unified model for both aspects of the development of
a software product. The test architecture provides all
the elements that are needed to define the test cases.
Specifically, it includes the set of concepts to specify
the structural aspects of the test. Among them, there
are:- i)-.the Test Context, which groups the Test Cases,
and ii) the Test Components, which are responsible of
the communication with the SUT.

The main constructor is the Test Case whose be-
havior can be described by sequence diagrams, state
machines or activity diagrams. In UML-TP, the Test
Case is an operation of a Test Context that specifies
how a set of Test Components cooperates with the
SUT to achieve the Test Objective, and to provide a
Verdict. The behavior can be enriched with timer re-
strictions which are not part of the UML standard,
and are included in UML-TP. Finally, another impor-
tant aspect of the test specification is the test data.
It is possible to model different Data Partitions that
are obtained from a Datapool through Data Selector
methods. Also, it is possible to enrich these defini-
tions with the use of Wildcards and Coding Rules.

Generally, a UML-TP model is presented through
different diagrams. Mainly, there is a UML package
diagram representing the test architecture, and show-
ing how the test package uses a test data package and
includes the SUT model in order to allow the test el-
ements to access the different elements under test. A
class diagram could be used to show the structure
of the test package, showing how the Test Context is
related to the different Test Components, Datapools,
and SUT components that are going to be exercised
in the test. This class diagram should also model the
Test Cases as methods of the different Test Contexts,
representing in this way the complete test suite. There
could be also a composite structure diagram of the
Test Context class to show its Test Configuration, de-
scribing the relationships between the SUT and the

491

MODELSWARD 2014 - International Conference on Model-Driven Engineering and Software Development

Test Components for this Test Context. Finally, each
Test Case behavior is presented with any kind of UML
behavior diagram, such as State Machine Diagram,
Sequence Diagram or Activity Diagram.

UML-TP provides a mechanism of “default” be-
haviors, for example for the Arbiter and for the Test
Scheduler. If the modeler/tester wants a different be-
havior for them, it is also necessary to provide an ex-
tra behavior diagram, mentioned in the standard as
“user-defined behavior”.

3.2 Limitations of the Current Version

In this section we show the main limitations of the
current UML-TP standard version for modeling per-
formance and dependability test cases. Specifically,
experimenting with UML-TP for trying to model
some real load testing scenarios, we realized that:

i) it does not provide support for modeling the work-
load concept;

ii) it does not include the most common valida-
tion facilities for performance and dependability,
mainly based on the average or percentage of the
response times values or the amount of pass and
fail verdicts.

In load testing it is important to model the work-
load that is usually required from any load simulation
tool. The workload defines how many operations can
be concurrently executed on the SUT into an interval
time. As part of testing design the tester should for
instance define how the different test cases can be ex-
ecuted concurrently into a load testing scenario, what
data they use, what is the delay between different test
executions and how the test is going to reach the simu-
lated load goal, namely the ramp-up of each test case.

As we already said, there is no workload concept
defined in the UML-TP standard. However, using the
UML-TP concepts provided in the standard and ac-
cording to the UML-TP examples in (OMG, 2004;
Baker et al., 2007), it is possible to derive a partial
and tricky way to model the workload. To illustrate
it, we have created an example (see Figure 1) to show
how a simple workload composed by one test case
(“testcase_1") executed by 150 users during a certain
time, can be modeled.

In this example the workload is considered as a
test case in the Test Context and the Test Component
executes concurrently the different stimulus on the
SUT for a certain time. As showed in the figure, the
Test Context includes a test case “testcase_1”, and an-
other special test case “testcase_workload” that is in
charge of the concurrent execution. The behavior of
this special test case is modeled with a sequence di-

492

_«TestContext»
{—| TestContext

{2 testease 1 ()
{2, testcase_workload (maxUsers : Integer)

|- | testcase_workload (maxUsers : Integer)

El sur

I; testComponent

> timerl (testduration)

b ref
testcase_1

— \timerZ (dp.lgeﬂnterval ()

|47\(timer2 |
| |

fat—5>C timerl

Arbitration

Figure 1: Workload test model from the current UML-TP
specification.

agram where the Test Component executes the “test-
case_1" inside a loop. To set the total test execution
time a timer “timerl” is added. The amount of users
for the test case that we want to simulate is speci-
fied in a generic parameter of the sequence diagram
(“maxUsers™), but it is not clear how to set it. In addi-
tion, for the distribution of the executions (think times
between executions), it is necessary to store the values
in a Datapool, and give them to the timer (“timer2”)
that establishes a pause in the loop after the execution
of the test case. The main problem of this workload
representation is that it is very tricky and incomplete
since it does not allow to specify different and concur-
rent test cases (it is not clear how to represent more
than one test case in that way) and other important
concepts such as for instance the ramp-up of the test
case.

Other examples presented in the standard specifi-
cation of UML-TP (OMG, 2004), in order to repre-
sent the workload, include two concepts that are: the
“background load”, useful to generate a certain stress
on the system, and the “foreground load” that includes
the test cases that the user is interested to measure.
These examples show that the test cases are executed
in parallel, but there is no way to see clearly how

Extending UML Testing Profile Towards Non-functional Test Modeling

the workload is defined. Specifically, the limitations
of the provided examples are: i) it is not evidenced
which load should be executed against the SUT in
order to verify the non-functional properties; ii) the
amount of users executing the “background load” is
not represented; iii) the amount of executions, the de-
lay between executions (presented as a datapool) and
the ramp-up for each test case of the workload are not
clearly defined.

Another attempt to represent a workload with
UML-TP is presented in (Zhu et al., 2007). In
this work the authors use the UML-TP in a non-
conventional way in order to model a load test by
specifying in the datapool the percentage of users ex-
ecuting each test case. Also this workload represen-
tation is limited since the semantic of the workload
representation is not in the model, it is'in the way the
authors interpret the content of a generic datapool.

Another important aspect that, in our opinion, is
not well-covered by the UML-TP standard, is related
to validation, namely how to define the verdict when a
non-functional property (performance or dependabil-
ity) related to a set of test cases needs to be verified.
In these cases, the arbiter should be capable to ex-
press global validations in an easy way, taking into
account for instance the average of the different re-
sponse times of all the executions of a test case, or
considering the verdicts of all the test cases execu-
tions, in order to compute the percentage of the passed
test cases.

In the aforementioned book (Baker et al., 2007)
and in the UML-TP standard (OMG, 2004), some ex-
amples are presented in which the global arbiter gives
the verdict according to the percentage of “pass” test
cases. However, it is necessary to express how to
calculate this percentage in order to set the verdict.
Figure 2 shows a possible representation of a user-
defined behavior for an arbiter (according to the ex-
amples of the standard) asking for certain percentage
of the responses to be “pass”. Since this kind of vali-
dation is much common in performance and depend-
ability testing, it is important to have a simple way to
represent it.

On the other hand, and still in line with non-
functional validations, the current UML-TP standard
allows us to determine the minimum and maximum
accepted response time values, specifying that all the
response times should be within a certain range of
values. We claim that these time restrictions are
not enough to represent the most typical validations
that usually are performed in a load simulation test,
namely the average or percentage of the response
times being under certain boundary.

("* Arbitration

@ numPassed = |0; numOther = 0

setVerdict (result)[result == pass

@ numPassed ++

) { ‘

setVerdict (result)[result == fail
@ numOther ++

L &3 Running

setVerdict (result)%&sult == finished]

[numPassed / (numPassed | numOthers) < expected]

[numPassed / { numPassed + numOthers) > = expected]

I & fail

|
| 1

—

Figure 2: Arbitration to accept certain percentage of correct
responses.

For both cases (performance and dependability
validations) a limitation is given by the default be-
havior of the arbiter that has an only-get-worse pol-
icy. This means that if one test case reports a failure,
the whole test suite fails. In our proposal we want to
take into account all the test executions and provide a
global verdict for the test suite according to a different

policy.

4 PROPOSAL FOR EXTENDING
UML-TP

In this section we present some insights for improving
the expressiveness of UML-TP in the design of non-
functional test cases, focusing on performance and
dependability. Specifically, in the following sections
we show our proposal for improving mainly two as-
pects: the workload specification and the verdict def-
inition involved into non-functional validations. The
proposed concepts allow for modeling a wider vari-
ety of test cases with different test goals in one sin-
gle UML model. It is also important to mention that
the need for extension of the UML-TP to design non-
functional tests and the ideas we propose in this paper
have undergone detailed and useful discussions with
some members of the UML-TP development team.

4.1 Workload Information
An important lack of the UML-TP standard is the rep-

resentation of the workload. Workload modeling is
one of the most important aspects of the performance

493

MODELSWARD 2014 - International Conference on Model-Driven Engineering and Software Development

testing activity. Designing a performance workload
model very similar to the SUT environment is one of
the core activities in performance testing. The test
case design should define the workload including a
list of parameters (load distribution, number of con-
current users, etc.) that are necessary for an accu-
rate simulation in order to reach the test objective.
Our proposal is to introduce into UML-TP standard
the concept of WORKLOAD as a new stereotype with
some tagged values in order to model all the param-
eters of performance testing. The stereotype would
be applicable to Test Cases (to operations of a Test
Context that already have a Test Case stereotype ap-
plied). With this new stereotype we can for instance
specify test suites (or Test Context) with an associ-
ated workload that specifies the number of concurrent
users. This information is necessary in order to verify
non-functional properties.

Conceptually, the “workload” stereotype applies
to the relation between the Test Context and the Test
Case (see Figure 3). The different tagged values
(stereotype properties) we propose to model into the
workload are:

concurrentExecutions: also known as virtual
users, refers to the number of concurrent execu-
tions of the test case that are going to be consid-
ered in the load simulation;

executionTime: represents the total execution
time, namely for how long the test case is going
to be executed;

thinkTime: represents the delay between itera-
tions, also known as think times, determines the
pause between different executions of the test case
for each virtual user;

rampupTime: determines the initial time to reach
the expected load, when the virtual users are in-
creasing in the system progressively;

startUpDelay: defines the time when the vir-
tual users executing the test case are going to be
started, relative to the beginning of the whole test
suite;

expectedDependability: represents the expected
percentage of executions that should pass in order
to consider the test case as passed, more details
about this property are in Section 4.2.

The Test Scheduler is in charge to take into account
(in its default behavior) the above parameters speci-
fied into the workload.

4.2 Non-functional Validations

With the time restrictions provided by the UML-TP
standard we can only define a local verdict, namely

494

I; Test Context
¢ Workload

[Eg; concurrentExecutions : Integer
* =) executionTime : Time
| B thinkTime : Time
[Eg rampupTime : Time
[Eg startUpDelay : Time
[5f expectedDependability : Integer

*

g Test Case

Figure 3: UML-TP extension relative to the workload con-
cept.

if the test case takes more time than the defined re-
strictions, it is considered-to be failed. On the other
hand, the default behavior of the arbiter has the only-
get-worse policy, what means that once it gets a fail
result it never can get better than that.

Two typical situations in performance and de-
pendability testing that are not covered by the above
time restrictions and. verdict definition are: i) it is
needed to give the verdict according to the average
of the execution times; and ii) it is needed to verify
that a certain amount of the executions pass, so tak-
ing into account a policy different from the only-get-
WOrSe one.

In the current UML-TP standard version it is only
possible to model the maximum and minimum ac-
ceptable values. Then it is not possible to report a
failure according to the average or a percentage of
the response times of all executions of the test case
in the test context. To address this issue and improve
the UML-TP time restrictions we propose the addition
of new constructors that are average and percentage.
The former gives the verdict considering the average
of the response times, and the latter gives the verdict
according to the percentage of the response times that
are under the expected value.

Figure 4 shows an example of the new UML-TP
Time Restrictions. In this figure “average” has a range
as a parameter (0..10), and “percentage” has an ex-
tra parameter (95) indicating which percentage of the
times should be in the range (we want in this case to
validate that at least the 95% of the response times are
in the range 0..10).

B stest Hsut B itest Bisut

1: message 1: message

average { 0.10 } percentage { 95, 0.10}

Figure 4: UML-TP Extended Time Restrictions.

Extending UML Testing Profile Towards Non-functional Test Modeling

On the other hand, we want to provide the tester
with the capability to model that a test case is con-
sidered acceptable (with a pass verdict) if there is a
certain percentage of the responses with pass verdict.
For this, we consider that two changes are needed to
be done on the standard profile. Firstly, we propose
to add an extra property to the “Workload” stereo-
type, indicating the level of tolerance that we have
for failures. We call this attribute “expectedDepend-
ability” referring to the expected percentage of exe-
cutions that should pass in order to consider the test
case as passed. However, the test execution has only
one arbiter associated to the Test Context, which has
the only-get-worse policy. We propose to add a “par-
tial” arbiter to each test case, in order to give a ver-
dict for each test case considering all its executions.
Those arbiters should not have the only-get-worse be-
havior, instead, they should give the verdict consid-
ering the level of tolerance for the corresponding test
case. Then, the main arbiter associated to the Test
Context is notified of each verdict and provides the fi-
nal verdict as pass only if all partial arbiters returned
pass. It is important to note that the UML-TP user
would only need to model the “expectedDependabil-
ity”, and let the default arbiter to be in charge of giv-
ing the final verdict.

From our point of view, this representation is a
proposal to model the most common performance test
scenarios and their typical validations. If it is neces-
sary to calculate the verdict into another way, it is al-
ways possible to describe this behavior with another
UML diagram. It is evident that the proposed exten-
sion allows to represent in a simpler way not only the
same but also more information. Including these ex-
tensions into the standard UML-TP increases the ex-
pressiveness of the meta-model, consequently the re-
sulting models are easier to develop and understand.

In the following section we present a load test
modeling example to show the expressiveness of the
proposed UML-TP extensions.

5 MODELING EXAMPLES WITH
THE EXTENDED UML-TP

In this section we provide a load test modeling exam-
ple using the extended UML-TP. We first give a short
overview of the SUT and the load simulation that we
want to test, and finally we show the test artifacts.
The system under test we consider as applica-
tion example is an online bookstore system offering
a books’ catalog to the user. Basically, the system
allows the users to search different books and buy
them. After a market analysis and sales forecast, it

has been defined that, in a peak hour, it is possible to
have continuously about 500 concurrent users search-
ing a book, while other 100 are buying a book. It was
analyzed that between one execution and another one
typically a user waits around 5 seconds. We want to
assure that when the system is under this load situa-
tion, it is able to keep good response times and low
error rates. For this, we defined the following non-
functional requirements: i) the average of the dura-
tion of the search operation should be less than 15
seconds (only considering server time that is the time
for having the system answer, excluding user time);
ii) at least the 95% of the total amount of the buying
process and the 90% of the search operation should
be correctly processed by the system.

In the following subsections we present how a
tester could model this common load test using the
insights about UML-TP presented in this paper.

One of the proposed UML-TP extensions is about
the workload. This extension allows to model in a
clear and easy way the workload of the above appli-
cation example. As showed in Figure 5, we model
the test suite as a Test Context including two test
cases, one for the search operation and one for the
buying operation. To each test case a workload def-
inition is associated including all parameters related
to the users’ concurrent executions. Specifically, the
stereotype “Workload”, includes some parameters set
according to the load test definition and other ones
set according to the tester experience. The former
involve: i) the number of concurrent users, repre-
sented by concurrentExecutions value that is equal to
500 for workload_Search and equal to 100 for work-
load_Buying respectively; ii) the time between two
different executions, named thinkTime, its value is
equal to 5 sec for both test cases workload. The latter
involve: i) the total time execution (executionTime),
equal to one hour; ii) the way the test is going to reach
the simulated load goal (rampupTime) that is set to 10
minutes in order to initiate the load test progressively,
because it is not realistic to start 600 users at the same
time; iii) the start-up time (startupDelay) that is set to
0 in order to start the execution of both test cases at
the beginning of the load test.

In Section 4.2 we presented our idea of extending
UML-TP to cope with non-functional validation and
global arbiter definition. We show here how to use
this extension to validate both non-functional require-
ments presented above.

Concerning the first requirement (the average of
the duration of the search operation should be less
than 15 seconds), we model the behavior of the test
case “search” as showed in the sequence diagram pre-
sented in Figure 6. This model includes a time restric-

495

MODELSWARD 2014 - International Conference on Model-Driven Engineering and Software Development

g ‘Workload_Search

= concurrentExecutions = 500
= executionTime = 60 min
[Eg thinkTime = 5 sec

= rampupTime = 10 min

= startUpDelay = 0

= expectedDependability = 90%

_«TestContext»
| LoadTestsuite
Eg testComponent : TestComponent
=} globalArbiter : Arbiter
=] «DataPool» dp : BooksData

I;i Workload_Buying
Eg concurrentExecutions = 100
= executionTime = 60 min
[E thinkTime = 5 sec
=) rampupTime = 10 min
= startupDelay = 0
= expectedDependability = 95%

Figure 5: Test architecture with the extended workload
stereotype.

|~ | «<<TestCase> > Search (dp : BooksData)

r EH sut

I;i ‘testComponent

\ \
1 1: serchBook (bookld = dp.getBookld ()) 1
‘ v

averag:;e{U..]._%}

Figure 6: Test behavior of the search operation with the
extended time restriction.

tion specifying that the average of the response times
of the search operation should be less than 15 sec-
onds. This defined time restriction allows the arbiter
to give a global verdict summarizing all the response
times and verifying that the average of the response
times obtained from the different executions of the
test case must be compliant with the expected value.
By means of this global verdict it is possible to ver-
ify that the constraints expressed in the requirements’
model are reached.

For validating the second non-functional require-
ment above defined, namely “at least the 95% of the
total amount of the buying process and the 90% of
the search operation should be correctly processed by
the system”, we indicated in the “Workload” stereo-
type of Search and Buying test cases what is the ex-
pected amount of correct responses (the expectedDe-
pendability value is set equal to 90 and 95 respec-
tively). Then the arbiter can give a global verdict
according to the specified expectedDependability that
represents the defined tolerance to failures.

This simple application example evidences that
using our insights for extending UML-TP it is pos-
sible to model in a simple and clear way the elements
of a common load test scenario.

496

6 CONCLUSIONS AND FUTURE
WORK

This paper focuses on model-based testing for non-
functional requirements and specifically on the mod-
eling languages used for defining a test model. We
briefly presented the results of a systematic survey
on model-driven non-functional validation that evi-
denced the lack of a standard and common language
for designing non-functional test cases, apart from
the UML-TP that per se provides only limited sup-
port for non-functional testing. We proposed in this
paper some insights for extending UML-TP to repre-
sent the workload concept and the global verdict def-
inition involved into non-functional validations. We
also validated our proposal by presenting an applica-
tion example of an online bookstore system, for which
we defined two non-functional requirements and we
showed how to apply the extended UML-TP for de-
signing test cases for such requirements. In future
work, we plan to further extend the UML-TP specifi-
cation by including timing concepts of MARTE pro-
file (OMG, 2011) and by focusing on other issues of
non-functional testing such as the resource usage and
the variable load during the time. In the meanwhile,
we want also to include in the standard other model-
ing facilities specifically conceived for other kinds of
non-functional testing such as stress testing or peak
testing. Furthermore, we want also to investigate
other research directions of model-based testing that
are the derivation of an integrated test model includ-
ing functional and non-functional aspects and the gen-
eration of executable test cases from this model.

ACKNOWLEDGEMENTS

This work has been partially funded by the Agen-
cia Nacional de Investigacion e Innovacion (ANII,
Uruguay) and by the GEODAS project (TIN2012-
37493-C03-01, Spain).

The authors wish to thank the leaders of the UML-
TP development team, Ina Schieferdecker and Marc-
Florian Wendland, for their suggestions and useful
discussions.

REFERENCES

Abbors, F., Ahmad, T., Truscan, D., and Porres, I. (2012).
MBPeT: a model-based performance testing tool. In
Proc. of the Fourth International Conference on Ad-
vances in System Testing and Validation Lifecycle
(VALID), pages 1-8.

Extending UML Testing Profile Towards Non-functional Test Modeling

Abbors, F., Ahmad, T., Truscan, D., and Porres, 1. (2013).
Model-Based Performance Testing in the Cloud Using
the MBPeT Tool. In Proc. of the 4th ACM/SPEC In-
ternational Conference on Performance Engineering
(ICPE), pages 423-424.

Afzal, W., Torkar, R., and Feldt, R. (2009). A systematic
review of search-based testing for non-functional sys-
tem properties. Information and Software Technology,
51(6):957-976.

Apache (2001). Jmeter. http://jmeter.apache.org/.

Baker, P., Dai, Z. R., Grabowski, J., Haugen, O., Schiefer-
decker, 1., and Williams, C. (2007). Model-Driven
Testing: Using the UML Testing Profile. Springer-
Verlag New York, Inc.

Balsamo, S., Di Marco, A., Inverardi, P., and Simeoni, M.
(2004). Model-based performance prediction in soft-
ware development: A survey. IEEE Transactions on
Software Engineering, 30(5):295-310.

Bennett, A. J. and Field, A. J. (2004). Performance engi-
neering with the UML profile for schedulability, per-
formance and time: a case study. In Proc. of the 12th
IEEE Annual International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecom-
munications Systems (MASCOTS), pages 67—75.

Cai, Y., Grundy, J., and Hosking, J. (2004). Experiences
integrating and scaling a performance test bed gen-
erator with an open source CASE tool. In Proc. of
the 19th IEEE International Conference on Automated
Software Engineering (ASE), pages 36-45.

da Silveira, M. B., Rodrigues, E. d. M., Zorzo, A. F,, Costa,
L. T., Vieira, H. V., and de Oliveira, F. M. (2011).
Generation of scripts for performance testing based
on UML models. In Proc. of the Twenty-Third In-
ternational Conference on Software Engineering and
Knowledge Engineering (SEKE), pages 258-263.

de Oliveira, F. M., Menna, R. d. S., Vieira, H. V., and Ruiz,
D. D. (2007). Performance testing from UML mod-
els with resource descriptions. In Proc. of 1st Brazil-
ian Workshop on Systematic and Automated Software
Testing, pages 1-8.

Dias Neto, A. C., Subramanyan, R., Vieira, M., and Travas-
sos, G. H. (2007). A survey on model-based testing
approaches: a systematic review. In Proc. of the 1st
ACM International Workshop on Empirical Assess-
ment of Software Engineering Languages and Tech-
nologies (WEASELTech), in conjunction with the 22nd
IEEE/ACM International Conference on Automated
Software Engineering, pages 31-36.

Kitchenham, B. (2004). Procedures for performing system-
atic reviews. In Joint Technical Report, Keele Univer-
sity Technical Report TR/SE-0401 and NICTA Techni-
cal Report 0400011T.1.

Krishnamurthy, D., Rolia, J. A., and Majumdar, S. (2006).
A synthetic workload generation technique for stress
testing session-based systems. |EEE Transactions on
Software Engineering, 32(11):868-882.

McMinn, P. (2004). Search-based software test data gener-
ation: a survey: Research articles. Softw. Test. Verif.
Reliab., 14(2):105-156.

Mercury, H. (2001). Loadrunner. http://wwws8.
hp.com/us/en/software-solutions/software.html?comp
URI=1175451.

OMG (1997). Unified Modeling Language. http://
www.uml.org/.

OMG (2004). UML 2.0 Testing Profile Specification.
http://utp.omg.org/.

OMG (2011). UML Profile for Modeling and Analy-
sis of Real-Time and Embedded systems (MARTE).
http://lwww.omgmarte.org/.

Pozin, B. A. and Galakhov, I. V. (2011). Models in perfor-
mance testing. Programming and Computer Software,
37(1):15-25.

Rodriguez, F. T., Lonetti, F., Bertolino, A., Usaola, M. P,
and Lamancha, B. P. (2013). Extending the Non-
Functional Modeling of UML-TP. Technical Report.
http://pumalab.isti.cnr.it/index.php/en/.

Smith, C. U., Llado, C. M., and Puigjaner, R. (2010). Per-
formance Model Interchange Format (PMIF 2): A
comprehensive approach to Queueing Network Model
interoperability. Performance Evaluation, 67(7):548—
568.

Utting, M. and Legeard, B. (2007). Practical Model-Based
Testing: A Tools Approach. Morgan Kaufmann Pub-
lishers Inc.

Zhu, L., Bui, N. B, Liu, Y., and Gorton, I. (2007). MD-
ABench: customized benchmark generation using
MDA. Journal of Systems and Software, 80(2):265—
282.

497

