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Abstract: Based on systems engineering principles, information modelling is seen as a central activity for the 
development and life cycle support of a product or system. It enables to reduce the costs derived from 
miscommunications and misconceptions normally occurring throughout the service system design, analysis 
and maintenance activities. Supporting the servitization of manufacturing and the evolution towards 
product-service systems or extended products, modelling and interoperability is becoming of utmost 
importance to ensure coherence among conceptual design phases at organizational levels down to 
technology development. Therefore, this paper explores the model-driven development and model-driven 
interoperability transformations principles to unify every step of the development of service systems, from 
its start at the application's business requirements, through the design of technology independent functions, 
to deployable services. 

1 INTRODUCTION 

The evolution from an economy of products towards 
an economy of services has been becoming 
important in manufacturing since the nineties. The 
“Servitization” concept, intrinsically linked to 
discussions on services and service provision, is 
loosely defined around the delivery of product-based 
services, and its most tangible effect is the 
development of Product Service Systems (PSS) and 
Extended Product (Vandermerwe & Rada, 1988; 
Baines et al., 2009; Thoben et al., 2001).  

Being the application of competence for the 
benefit of another, a service involves at least two 
entities to enable value co-creation (Spohrer et al., 
2007). This service orientation trend has been 
gaining momentum also in ICT to support the 
integration of products and services with customers. 
They are not just provided with products, but 
broader more tailored solutions based on the 
customer centricity paradigm (Baines et al., 2009). 
In fact, service-oriented architectures have 
modernized information systems towards that 
direction, providing powerful methods and tools to 
decompose complex systems in autonomous 
components, and supporting enterprise processes 

and workflows with simple orchestrations and 
compositions (Ducq, Doumeingts, et al., 2012). 

Embracing the servitization integrated view on 
PSS and extended products, services will concern 
physical products as well as the associated 
technology, people and knowledge (Chesbrough & 
Spohrer, 2006). Indeed, depending on the type and 
core competencies required to supply the associated 
services, it will be necessary to involve several 
business partners collaborating very closely towards 
a common goal, sharing risks and resources (Ducq, 
Chen, et al., 2012). This requires the integration of 
autonomous, geographically distributed and 
heterogeneous stakeholders in virtual organizations 
and business ecosystems, creating, sharing and 
reusing information across teams and enterprise 
boundaries (Zdravkovic et al., 2013).  

Therefore, to meet the above requirements, there 
is a need to apply modelling paradigms in order to 
support Service Systems (SS) development along the 
lifecycle of different organizational forms such as 
Virtual Manufacturing Enterprise (VME) (Ducq, 
Doumeingts, et al., 2012; Estefan, 2007). 
Nevertheless, developers need to take care of 
properties such as interoperability. Being directly 
related with the heterogeneity of modelling 
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languages, communication capabilities, databases 
and semantics, interoperability hides a great barrier 
in the path towards collaborative services 
development. In fact, since many organizations 
within VME’s and enterprise networks use software 
solutions based on their own needs, the cooperation 
with others is not a trivial activity (Jardim-
Goncalves et al., 2013). 

To solve this problem, the authors propose 
Model Driven Architecture (MDA) based 
technologies such as Model-Driven Development 
(MDD) and Model-Driven Interoperability (MDI) to 
unify every step of the development of service 
systems, from its start specifying application's 
business requirements, through the design of 
technology independent functions and behaviour, to 
deployable services. Based of these principles, and 
continuing the work of Ducq et al. (2012), this paper 
explores a methodology for service system design 
and implementation, and proposes a framework for 
the specification of mappings and execution of 
automatic transformations among different models 
and modelling levels. It enables to respond to the 
service lifecycle and VME dynamics, ensuring its 
sustainability along service (re)engineering and co-
design, i.e. changes that occur over time and could 
impact negatively the business ecosystem can be 
controlled, tuned and balanced to maximize 
servitization efficiency without jeopardizing 
interoperability. 

2 MODEL DRIVEN SERVICE 
SYSTEM ENGINEERING 

Service systems emphasize collaboration and 
adaptation in value co-creation, and establish a 
balanced and interdependent framework for systems 
of reciprocal service provision. Such systems may 
be business entities that survive, adapt, and evolve 
through mutual exchange and application of 
resources – particularly knowledge and skills 
(Spohrer et al., 2007). SS engage in exchange with 
others to enhance adaptability and survivability, co-
creating value for both. All these are issues related 
to the Enterprise Interoperability (EI) domain, thus 
some EI intensive concepts and methods, such as 
modelling, can be adapted to service systems 
engineering (Agostinho, Jardim-Goncalves, et al., 
2012; Jardim-Goncalves et al., 2012).  

Also, being a hot topic for the last couple of 
years, service management derived from product 
lifecycle management, aiming at handling all service 
data relating to its design, implementation, operation 

and final disposal (Garschhammer et al., 2001). 
Based on ISO 15704 (ISO TC184/SC5, 2000), the 
various service system engineering phases iterate 
among: (1) identification, (2) concept, (3) 
requirement, (4) design, (5) implementation, (6) 
operation and (7) decommission. A service could be 
re-engineered several times during its life, and 
feedback loops could happen in order to answer 
better to the requirements of the previous phase 
(Ducq, Doumeingts, et al., 2012).  

In this context, service modelling seeks to 
formalise the concept of a service, largely through 
definition on the participants in service value 
creation (providers and consumers). Proposed 
models include those by Garschhammer et al. 
(2001), and Kohlborn et al. (2009) generic business 
service management framework, form the early 
engineering phases, and follow model-driven 
principles to iterate through the different phases. 

2.1 Model Driven Engineering (MDE) 
and Architecture (MDA) 

MDE, sometimes also referred as model-driven 
development, is an emerging practice for developing 
model-driven applications. Popularized by the OMG 
MDA (OMG, 2003), it represents a promising 
software engineering approach to address systems 
complexity, by simplifying and formalizing the 
various activities and tasks that comprise an 
information system life cycle. MDE is meant to 
maximize compatibility between systems, 
simplifying the process of design, and promoting 
communication between teams working on the 
system (Selic, 2003; Agostinho, Černý, et al., 2012).  

MDD/MDE’s vision encourages the use of 
models at different levels of abstraction, from high-
level business models focusing on goals, roles and 
responsibilities down to detailed use-case and 
scenario models for business execution (Bézivin, 
2005; Frankel, 2003). These models are developed 
through extensive communication among product 
managers, designers, and members of the 
development team, and as they approach 
completion, enable a fast development of systems.  

An MDA system can be observed and analysed 
from different points of view, defining a hierarchy of 
models at three different levels of information 
abstraction (OMG, 2003): (a) Computation 
Independent Model (CIM), specifying the 
requirements and the environment where the system 
will operate. It is meant for the domain practitioners 
and is based on the vocabulary of the specific target 
domain; (b) Platform Independent Model (PIM), 
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formalising the structure and functionality of the 
system. This model focuses on operational details 
while hiding specific details of any particular 
platform in order to be suitable for use with several 
different platforms; and (c) Platform Specific Model 
(PSM) that combines the PIM model with 
implementation constructs that specify how the 
system uses a particular type of platform.  

Model transformation methods are used to 
automate the translation process from high level 
specifications (CIM) and formal descriptions of the 
systems (PIM), to the bottom levels (PSM) and 
implementation code, increasing speed, code 
optimization and avoiding errors in the engineering 
process (Frankel, 2003; Agostinho, Černý, et al., 
2012). 

2.2 Model-Driven Service Engineering 
Architecture (MDSEA) 

Based on the above MDA principles, the MDSEA 
architecture is being defined along the MSEE 
integrated project (www.msee-ip.eu/) to model and 
guide the transformation from the business 
requirements of the SS into detailed specifications of 
components that must be implemented to support the 
servitization process (Ducq, Chen, et al., 2012; 
Ducq, Doumeingts, et al., 2012).  

 

Figure 1: MDSEA (Ducq, Chen, et al., 2012). 

As illustrated in Figure 1 and in resemblance to the 
MDA’s CIM-PIM-PSM, this architecture defines 
several modelling levels to have a progressive 
specification of service system components at the 
business (Business Service Modelling - BSM), 
functional (Technology Independent Modelling - 
TIM), and technological (Technology Specific 
Modelling - TSM) levels. Extending the modelling 
approach of MDA with principles explored on EI’s 
enterprise modelling, technology related models 

integrate not only the IT part but also the 
requirements leading to the implementation of a 
solution in organization and physical domains. 

The approach implies that the different model, 
obtained via model transformation from the upper-
level ones, should use dedicated service modelling 
languages that represent the system with the 
appropriate level of description. GRAI Integrated 
Modelling (Chen & Doumeingts, 1996) and BPMN 
2.0 (OMG, 2011a) have been considered as a 
reference for the BSM and TIM levels, but further 
details on the analysis and selection of the most 
appropriate languages can be found in MSEE 
(2012); Ducq et al. (2012).  

3 METHODOLOGY 
FOR SERVICE SYSTEM 
DESIGN & IMPLEMENTATION  

In order to operationalize enterprises servitization 
using model-based engineering and interoperability 
concerns presented before, it is necessary to propose 
a precise method to implement the service system. 
Figure 2 illustrates a structured multi-step approach 
to-be implemented through various groups of actors 
belonging to the enterprises and organizations 
involved in the servitization process, as well as by 
external actors to support this process. 

 

Figure 2: MSEE Methodology for servitization system 
definition and implementation. 

The methodology begins at the strategic level of 
companies that want to evolve towards service-
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oriented business methods following the extended 
product stages introduced by Thoben et al. (2001), 
i.e. from a single product, to product with services, 
until product-as-a-service. Depending on their 
objectives, modelling and MDSEA vertical 
transformations are required to go from the desired 
strategy, a “to-be” business specific model (BSM 
level), towards a detailed functional definition 
(TSM) and practical implementation model (TSM). 
Moreover, since models can be shared to enable 
value co-creation (e.g. through collaborative process 
orchestration) among companies operating at several 
domains and using different technologies, horizontal 
transformations are also considered to ensure 
interoperability. In summary, the horizontal flow 
initializes the study to reach the “to-be”, while the 
vertical sequence allows to implement MDSEA and 
determine the components of the SS by domains. 

After the specification of the methodology, 
which contributed to the identification of concrete 
transformation requirements, the MDSEA 
architecture provided the building blocks for VME 
service development, scoping the work to be 
implemented: 
 The capability to transform a business specific 

model into a functional one that can then be 
complemented by a system architect; 
 The capability to transform a functional model into 

a technology specific one envisaging the 
generation of concrete software and services; 
 The capability to harmonize models specified by 

different enterprises, enabling interoperability and 
collaboration (e.g. process orchestration, service 
matching) within the ecosystem. 

4 MDSEA MODEL 
TRANSFORMATIONS 
FRAMEWORK 

The MSEE methodology applies the distinction 
between vertical and horizontal transformations, 
providing interoperability and portability at the same 
degree of relevance as the traceability features, 
linking requirements, design, analysis, and testing 
models of the several MDSEA levels. In this 
context, a framework for MDSEA transformations 
along 3 different axes is here proposed (Figure 3): 
 Axis 1 - Modelling levels. Defined according to 

the meta-modelling reference architecture 
proposed by OMG (OMG, 2011b), which 
envisages that real world data is modelled using 
four levels that go for data itself (M0) to the meta-

meta-model (M3). Following this axis, service 
models are described at the level M1 using the 
modelling language concepts and constructs 
defined at level M2. 
 Axis 2 - MDSEA levels. MDSEA enables service 

system modelling around the three abstraction 
levels summarized before in section 2.2. 
 Axis 3- VME integration. Starting from a 

minimum of two systems, this axis represents the 
integration among the multitude of systems part of 
the enterprise service ecosystem.  

 

Figure 3: MDSEA Transformations Framework. 

The transformations framework envisages a formal 
specification of models along the first axis to enable 
vertical transformations from BSM to TSM (axis 2) 
as well as horizontal ones to integrate different 
service systems (axis 3). Indeed, based on model 
transformations, the MDSEA transformations 
framework unifies every step of the service system 
development.  

4.1 Vertical and Horizontal 
Transformations 

Vertical transformations imply a change on the 
abstraction level of the resulting model, i.e. going 
from TIM to TSM implies a specialization 
transformation along the MDSEA axis. As in MDA 
vertical transformations, the amount of generated 
models depends on both the code generator and also 
the level of detail represented in the upper levels. 
Ideally, only small portions of missing knowledge 
should have to be added by the human in order to 
ensure that, at the TSM level, the generated code and 
auxiliary files are ready for compilation, linking and 
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deployment. 
In the case of horizontal transformations, the 

level of abstraction remains unchanged, leading to 
solutions for that enable collaborative activities at 
the VME axis. Greater interoperability benefits are 
expected with this type of transformations, but as 
studied by Agostinho et al. (2012), one might need 
to be concerned also with language-related 
specificities. In fact, different languages enable to 
describe the same objects with different details (e.g. 
properties, constraints). Thus, both input and output 
models must be an instance of a well defined meta-
model according to axis 1.  

4.2 Transformations Architecture 

Recalling the first axis of the framework, namely the 
relationship between the concepts of model and 
meta-model, when performing a model 
transformation (from ModelA to ModelB), one is 
converting instances of a source model to instances 
of another model, the target, and an explicit or an 
implicit mapping at the same meta-modelling level 
has to be performed. 

 

Figure 4: Generic Transformations Architecture - adapted 
from MDA Guide (OMG, 2003). 

As depicted in the generic transformations 
architecture, included in the framework (frontal pane 
of Figure 3) and highlighted in Figure 4, the idea is 
that when performing a transformation “τ(A,B)” at a 
certain level “i”, this transformation has (implicitly 
or explicitly) to be designed by taking into account 
mappings “θ(A,B)” at level “i+1”. Once the “i+1” 
level mapping is complete, executable languages 
such as the Atlas Transformation Language (ATL, 
www.eclipse.org/m2m/atl/), the Query View 
Transformation (QVT, www.omg.org/spec/QVT/), 
or the AToM (http://atom3.cs.mcgill.ca) can be used 
to implement the transformation itself, either 
vertically along axis 2 or horizontally along axis 3. 
 

4.3 Knowledge Management 
in the Transformation Process 

Simple type mappings are generally insufficient to 
specify a complete transformation (Truyen, 2006). 
Additional knowledge is frequently required to 
complement the mapping, specifying that certain 
concepts in the source model must be annotated 
(marked) in a specific way in order to produce the 
desired output in the target model. Sometimes, this 
extra information cannot be determined from the 
source model itself, and it might need to use 
knowledge from external models, e.g. ontologies. 
For these reasons, the generic transformations 
architecture adopted by MDSEA is complemented 
with a “knowledge” box on top of the meta-model 
mappings. 

Semantics are recognized as an important area 
for models alignment identified as one of the levels 
of interoperability to consider within an enterprise 
(Athena IP, 2006). However, a general observation 
shows that in traditional MDA/MDI transformations, 
semantic knowledge is often not exploited to 
improve interoperation automation. 

MSDEA transformations framework envisages 
to change that explicitly associating that semantic 
knowledge (e.g. annotations, mismatches, 
reconciliation rules, etc.) to models and mappings. It 
needs syntactic alignment as a pre-requisite, so that 
the approach for processing the information will be 
interpretable from a known structure. However, once 
the syntactical correctness has been verified, 
semantic interpretation, which goes beyond syntax 
or structure, must be understood and unambiguously 
defined based on the context of the mapping 
definition.  

5 APPLICATION 
IN AN INDUSTRIAL DOMAIN 

Figure 5 illustrates a scenario from the clothing 
industry (in the frame of MSEE project) indicating 
the steps taken as part of the service system 
implementation, namely the vertical transformation 
of a modelled online product configurator (BSM 
level) into a collaboration model (TIM level) that 
enables specific VME services at TSM level. 

More specifically, the scenario envisages to start 
representing of the BSM processes using the 
Extended Actigram Star (EA*) language 
(Doumeingts et al., 2006). Due to transformation 
requirements that model should be manually 
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decomposed (steps 1 and 2) into two separate 
models: user centred and system centred. 
Subsequently, automatic vertical transformation is 
applied to both (steps 3 and 4), and the result 
consists in two separate BPMN diagrams, which are 
also user and system centred. Then, the TIM models 
are merged for orchestration in order to represent the 
user-system interaction in one collaboration model 
(step 5). For simplification reasons, no horizontal 
transformation is required here. Later this diagram is 
enriched manually at the TIM level for a more 
detailed model and the vertical transformation 
continues down to the TSM level (step 6). 

 
Figure 5: Modelling and transformation scenario. 

Focusing on the paper contribution and due to space 
constraints, detailed technical examples are only 
taken at the transformation steps 3 and 4, helping to 
illustrate the mechanism. To note that this example 
is complying with a first priority specifications and 
no work with ontologies and knowledge annotation 
has yet been implemented for the knowledge 
management.  

5.1 MDSEA Axis Implementations: 
EA* to BPMN2.0 

Vertical transformations implemented along the 
MDSEA axis of the transformations framework 
require the definition of model mappings among 
MDSEA core concept meta-models (Ducq, 
Doumeingts, et al., 2012), as well as among selected 
languages at BSM, TIM, and TSM. Being a process 
modelling language, EA* language shares common 
direct or indirect concepts with BPMN2.0. As a 
result, a mapping is established from EA* concepts 
to BPMN2.0 concepts following specific conditions.  

In the mapping subset of Figure 6, it is possible to 
see that several conditions govern the mapping of 
“atomic” ExtendedActivity. These vary depending 
on the type of resource(s) supporting the activity: (1) 
if a Human resource is responsible for the realization 
of the Extended Activity, it is mapped to a 
UserTask; (2) if an IT resource is responsible for the 
realization of the Extended Activity, it is mapped to 
a ServiceTask. Full mapping is available in Bazoun 
et al., (2013). 

 

Figure 6: EA* and BPMN 2.0 Mapping Subset. 

For the implementation, ATL was elected. It is a 
largely used language to implement MDA based 
tools, having a specific development toolkit plug-in 
available in open source (Eclipse Modelling Project 
- http://www.eclipse.org/modeling/) (Jouault & 
Kurtev, 2007). The ATL rule mechanism provides 
developers with a convenient means to specify the 
way target model elements must be generated from 
source model elements. For this purpose, a matched 
rule enables to specify:  
 Which source element must be matched; 
 The number and the type of the generated target 

model elements; 
 The way these target model elements must be 

initialized from the matched source elements. 
 

 
Figure 7: Matched Rule. 

Figure 7 contains an example of a “matched rule” to 
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rule ExtendedActigramToDefinition{ 

  from s: EA!EaModel 

  to a: BPMN!Definitions ( 

    id <- s.name, 

targetNamespace <-'www.jboss.org/drools', 

expressionLanguage <- 'www.mvel.org/2.0', 

typeLanguage <- 'www.java.com/javaTypes', 

rootElements <- 

 thisModule.ProcessToProcess(s.process) 

  ) 

}
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transform an ExtendedActigram element to a 
Definition element. It is identified by its name, and 
is composed of two mandatory (the “from” and the 
“to” parts) and an optional (the do parts) sections. 
The “from” part represents the concept to be mapped 
from the Extended Actigram Star meta-model which 
is ExtendedActigram and the “to” part represents its 
corresponding concept in BPMN meta-model which 
is Definitions. The declarative block of the “to” part 
is used for assigning values to attributes.  

 
Figure 8: Lazy Rule. 

In our implementation, the ATL mechanism of “lazy 
rules” has also been used, called from match rules. 
They have the same structure but are applied only on 
the element passed as a parameter. “thisModule. 
ProcessToProcess(s.process)” from Figure 7 calls 
the lazy rule “ProcessToProcess” on the element 
“s.process”.  It is evident that the rule included in 
Figure 8 calls other rules, yet both “to” and “do” 
parts have been shortened (“…”) due to space 
constraints. 

Figure 9 illustrates graphically how the results of 
applying the transformation from an EA* model to a 
BPMN model looks like. 

6 CONCLUDING REMARKS, 
DISCUSSION AND FUTURE 
WORK 

Based on model transformations, MDSEA has the 
challenge to unify every step of the enterprise (or 
virtual enterprise) servitization. It answers to the 

requirements of service system re(engineering) 
while maintaining portability and interoperability, 
enabling value co-creation. 

The proposed methodology and transformations 
framework brings bi-dimensionality and  automation 
to the  servitization system. Having MDA/MDI as 
the enabling technology, vertical and horizontal 
dimensions are supported implementing a 
comprehensive transformations architecture that 
recognizes semantics as an important area for 
models alignment. Following the architecture and 
applying the mappings presented, some ATL 
transformations have been implemented and 
executed in the frame of an industrial scenario. 

From a user’s perspective, feedback has been 
received stating that modelling actually facilitates 
the requirement collection, and the model driven 
approach allows getting to code level more 
efficiently and robustly. Re-engineering is no longer 
seen as a problem. 

From a developer’s perspective, the mappings 
are time-consuming processes that once defined can 
be executed any number of times achieving the same 
results. Nevertheless, despite its robustness, the ATL 
technology represents models as meta-models and 
relates their properties through static rules. This 
means that each time that it is necessary to change 
relations between models, manual codification is 
required to recreate them. This behavior is a direct 
consequence of dynamism flaw. 

In this context, the application of communication 
mediation ontologies in the line of the work 
presented by Sarraipa et al., (2010) are considered 
relevant for the future work, and positive influencers 
for the success of MDSEA-based transformations. 
As parseable knowledge repositories, properly 
instantiated with domain data, they can support 
automation by enabling intelligent services to work 
on top of them and facilitate the intervention of the 
Human actor (both user and developer). 

Another line of future work concerns the 
simulation of models to evaluate the behaviour of 
the system regarding time and identify desired or 
undesired behaviour, including the respect of causal 
relations. Another step proposed for this research is 
to add one new transformation of BPMN models to 
DEVS models in the goal of running simulations. 
Some on-going works have started reusing, in the 
context of Service process modelling and simulation, 
already existing matching between Workflow and 
DEVS (Zacharewicz et al., 2008). 

 
 

lazy rule ProcessToProcess{ 

  from s: EA!EaProcess ( 

 s.oclIsTypeOf(EA!EaProcess) 

  ) 

  to a: BPMN!Process ( 

    id <- s.id, 

    name <- s.name, 

    flowElements <- s.flowElements.append(…), 

    laneSets <- thisModule.laneSet 

  ) 

  do { 

 thisModule.bpmnProcess <- a; 

 thisModule.bpmnProcess.flowElements <- 

thisModule.bpmnProcess.flowElements.union(this

Module.bpmnFlowElements); 

 thisModule.bpmnProcessRef <-a; 

 thisModule.eaStarProcessRef <- s; 

 …} 

} 
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Figure 9: Graphical example of mapping and transformation of models. 
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