
Information Models and Transformation Principles Applied
to Servitization of Manufacturing and Service Systems Design

Carlos Agostinho1, Hassan Bazoun2, 3, Gregory Zacharewicz2, Yves Ducq2 and Hadrien Boye3
1Centre of Technology and Systems, CTS, Uninova, 2829-516, Caparica, Portugal

2University of Bordeaux – IMS/LAPS, 33405, Talence Cedex, France
3Hardis Ouest, 44800, Saint Herblain, France

Keywords: MDA, MDE, Enterprise Interoperability, Model Transformations, MDSEA, Manufacturing Servitization.

Abstract: Based on systems engineering principles, information modelling is seen as a central activity for the
development and life cycle support of a product or system. It enables to reduce the costs derived from
miscommunications and misconceptions normally occurring throughout the service system design, analysis
and maintenance activities. Supporting the servitization of manufacturing and the evolution towards
product-service systems or extended products, modelling and interoperability is becoming of utmost
importance to ensure coherence among conceptual design phases at organizational levels down to
technology development. Therefore, this paper explores the model-driven development and model-driven
interoperability transformations principles to unify every step of the development of service systems, from
its start at the application's business requirements, through the design of technology independent functions,
to deployable services.

1 INTRODUCTION

The evolution from an economy of products towards
an economy of services has been becoming
important in manufacturing since the nineties. The
“Servitization” concept, intrinsically linked to
discussions on services and service provision, is
loosely defined around the delivery of product-based
services, and its most tangible effect is the
development of Product Service Systems (PSS) and
Extended Product (Vandermerwe & Rada, 1988;
Baines et al., 2009; Thoben et al., 2001).

Being the application of competence for the
benefit of another, a service involves at least two
entities to enable value co-creation (Spohrer et al.,
2007). This service orientation trend has been
gaining momentum also in ICT to support the
integration of products and services with customers.
They are not just provided with products, but
broader more tailored solutions based on the
customer centricity paradigm (Baines et al., 2009).
In fact, service-oriented architectures have
modernized information systems towards that
direction, providing powerful methods and tools to
decompose complex systems in autonomous
components, and supporting enterprise processes

and workflows with simple orchestrations and
compositions (Ducq, Doumeingts, et al., 2012).

Embracing the servitization integrated view on
PSS and extended products, services will concern
physical products as well as the associated
technology, people and knowledge (Chesbrough &
Spohrer, 2006). Indeed, depending on the type and
core competencies required to supply the associated
services, it will be necessary to involve several
business partners collaborating very closely towards
a common goal, sharing risks and resources (Ducq,
Chen, et al., 2012). This requires the integration of
autonomous, geographically distributed and
heterogeneous stakeholders in virtual organizations
and business ecosystems, creating, sharing and
reusing information across teams and enterprise
boundaries (Zdravkovic et al., 2013).

Therefore, to meet the above requirements, there
is a need to apply modelling paradigms in order to
support Service Systems (SS) development along the
lifecycle of different organizational forms such as
Virtual Manufacturing Enterprise (VME) (Ducq,
Doumeingts, et al., 2012; Estefan, 2007).
Nevertheless, developers need to take care of
properties such as interoperability. Being directly
related with the heterogeneity of modelling

657Agostinho C., Bazoun H., Zacharewicz G., Ducq Y. and Boye H..
Information Models and Transformation Principles Applied to Servitization of Manufacturing and Service Systems Design.
DOI: 10.5220/0004875206570665
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MDSE-2014), pages 657-665
ISBN: 978-989-758-007-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

languages, communication capabilities, databases
and semantics, interoperability hides a great barrier
in the path towards collaborative services
development. In fact, since many organizations
within VME’s and enterprise networks use software
solutions based on their own needs, the cooperation
with others is not a trivial activity (Jardim-
Goncalves et al., 2013).

To solve this problem, the authors propose
Model Driven Architecture (MDA) based
technologies such as Model-Driven Development
(MDD) and Model-Driven Interoperability (MDI) to
unify every step of the development of service
systems, from its start specifying application's
business requirements, through the design of
technology independent functions and behaviour, to
deployable services. Based of these principles, and
continuing the work of Ducq et al. (2012), this paper
explores a methodology for service system design
and implementation, and proposes a framework for
the specification of mappings and execution of
automatic transformations among different models
and modelling levels. It enables to respond to the
service lifecycle and VME dynamics, ensuring its
sustainability along service (re)engineering and co-
design, i.e. changes that occur over time and could
impact negatively the business ecosystem can be
controlled, tuned and balanced to maximize
servitization efficiency without jeopardizing
interoperability.

2 MODEL DRIVEN SERVICE
SYSTEM ENGINEERING

Service systems emphasize collaboration and
adaptation in value co-creation, and establish a
balanced and interdependent framework for systems
of reciprocal service provision. Such systems may
be business entities that survive, adapt, and evolve
through mutual exchange and application of
resources – particularly knowledge and skills
(Spohrer et al., 2007). SS engage in exchange with
others to enhance adaptability and survivability, co-
creating value for both. All these are issues related
to the Enterprise Interoperability (EI) domain, thus
some EI intensive concepts and methods, such as
modelling, can be adapted to service systems
engineering (Agostinho, Jardim-Goncalves, et al.,
2012; Jardim-Goncalves et al., 2012).

Also, being a hot topic for the last couple of
years, service management derived from product
lifecycle management, aiming at handling all service
data relating to its design, implementation, operation

and final disposal (Garschhammer et al., 2001).
Based on ISO 15704 (ISO TC184/SC5, 2000), the
various service system engineering phases iterate
among: (1) identification, (2) concept, (3)
requirement, (4) design, (5) implementation, (6)
operation and (7) decommission. A service could be
re-engineered several times during its life, and
feedback loops could happen in order to answer
better to the requirements of the previous phase
(Ducq, Doumeingts, et al., 2012).

In this context, service modelling seeks to
formalise the concept of a service, largely through
definition on the participants in service value
creation (providers and consumers). Proposed
models include those by Garschhammer et al.
(2001), and Kohlborn et al. (2009) generic business
service management framework, form the early
engineering phases, and follow model-driven
principles to iterate through the different phases.

2.1 Model Driven Engineering (MDE)
and Architecture (MDA)

MDE, sometimes also referred as model-driven
development, is an emerging practice for developing
model-driven applications. Popularized by the OMG
MDA (OMG, 2003), it represents a promising
software engineering approach to address systems
complexity, by simplifying and formalizing the
various activities and tasks that comprise an
information system life cycle. MDE is meant to
maximize compatibility between systems,
simplifying the process of design, and promoting
communication between teams working on the
system (Selic, 2003; Agostinho, Černý, et al., 2012).

MDD/MDE’s vision encourages the use of
models at different levels of abstraction, from high-
level business models focusing on goals, roles and
responsibilities down to detailed use-case and
scenario models for business execution (Bézivin,
2005; Frankel, 2003). These models are developed
through extensive communication among product
managers, designers, and members of the
development team, and as they approach
completion, enable a fast development of systems.

An MDA system can be observed and analysed
from different points of view, defining a hierarchy of
models at three different levels of information
abstraction (OMG, 2003): (a) Computation
Independent Model (CIM), specifying the
requirements and the environment where the system
will operate. It is meant for the domain practitioners
and is based on the vocabulary of the specific target
domain; (b) Platform Independent Model (PIM),

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

658

formalising the structure and functionality of the
system. This model focuses on operational details
while hiding specific details of any particular
platform in order to be suitable for use with several
different platforms; and (c) Platform Specific Model
(PSM) that combines the PIM model with
implementation constructs that specify how the
system uses a particular type of platform.

Model transformation methods are used to
automate the translation process from high level
specifications (CIM) and formal descriptions of the
systems (PIM), to the bottom levels (PSM) and
implementation code, increasing speed, code
optimization and avoiding errors in the engineering
process (Frankel, 2003; Agostinho, Černý, et al.,
2012).

2.2 Model-Driven Service Engineering
Architecture (MDSEA)

Based on the above MDA principles, the MDSEA
architecture is being defined along the MSEE
integrated project (www.msee-ip.eu/) to model and
guide the transformation from the business
requirements of the SS into detailed specifications of
components that must be implemented to support the
servitization process (Ducq, Chen, et al., 2012;
Ducq, Doumeingts, et al., 2012).

Figure 1: MDSEA (Ducq, Chen, et al., 2012).

As illustrated in Figure 1 and in resemblance to the
MDA’s CIM-PIM-PSM, this architecture defines
several modelling levels to have a progressive
specification of service system components at the
business (Business Service Modelling - BSM),
functional (Technology Independent Modelling -
TIM), and technological (Technology Specific
Modelling - TSM) levels. Extending the modelling
approach of MDA with principles explored on EI’s
enterprise modelling, technology related models

integrate not only the IT part but also the
requirements leading to the implementation of a
solution in organization and physical domains.

The approach implies that the different model,
obtained via model transformation from the upper-
level ones, should use dedicated service modelling
languages that represent the system with the
appropriate level of description. GRAI Integrated
Modelling (Chen & Doumeingts, 1996) and BPMN
2.0 (OMG, 2011a) have been considered as a
reference for the BSM and TIM levels, but further
details on the analysis and selection of the most
appropriate languages can be found in MSEE
(2012); Ducq et al. (2012).

3 METHODOLOGY
FOR SERVICE SYSTEM
DESIGN & IMPLEMENTATION

In order to operationalize enterprises servitization
using model-based engineering and interoperability
concerns presented before, it is necessary to propose
a precise method to implement the service system.
Figure 2 illustrates a structured multi-step approach
to-be implemented through various groups of actors
belonging to the enterprises and organizations
involved in the servitization process, as well as by
external actors to support this process.

Figure 2: MSEE Methodology for servitization system
definition and implementation.

The methodology begins at the strategic level of
companies that want to evolve towards service-

Organisation
Human
Domain

Physical
means
Domain

IT
Domain

Business Services Models (BSM)

Technology Independent Models (TIM)

Technology Specific Models(TSM)

Services in virtual enterprises
(IT Applications, Processes, Products,

Services, Organisation/Human, Physical
Means(machine, robots), etc…)

Generation of “components”
(IT_ Organisation/Human_Physical means

1. Defini on
of strategy

2. AS‐IS
Modelling

 (for evalua on and
diagnosis)

3. TO‐BE
Modelling
(to accomplish

strategy)

4. Business
Specific
Model

(refinement)

5. Detailed
Model

6.
Implementa
on Model

Business
Specific
Model

 Detailed
Model

Implementa
on Model

Enterprise A Enterprise B

Modelling

Ver cal
Transforma on

Horizontal Transforma on

Information�Models�and�Transformation�Principles�Applied�to�Servitization�of�Manufacturing�and�Service�Systems�Design

659

oriented business methods following the extended
product stages introduced by Thoben et al. (2001),
i.e. from a single product, to product with services,
until product-as-a-service. Depending on their
objectives, modelling and MDSEA vertical
transformations are required to go from the desired
strategy, a “to-be” business specific model (BSM
level), towards a detailed functional definition
(TSM) and practical implementation model (TSM).
Moreover, since models can be shared to enable
value co-creation (e.g. through collaborative process
orchestration) among companies operating at several
domains and using different technologies, horizontal
transformations are also considered to ensure
interoperability. In summary, the horizontal flow
initializes the study to reach the “to-be”, while the
vertical sequence allows to implement MDSEA and
determine the components of the SS by domains.

After the specification of the methodology,
which contributed to the identification of concrete
transformation requirements, the MDSEA
architecture provided the building blocks for VME
service development, scoping the work to be
implemented:
 The capability to transform a business specific

model into a functional one that can then be
complemented by a system architect;
 The capability to transform a functional model into

a technology specific one envisaging the
generation of concrete software and services;
 The capability to harmonize models specified by

different enterprises, enabling interoperability and
collaboration (e.g. process orchestration, service
matching) within the ecosystem.

4 MDSEA MODEL
TRANSFORMATIONS
FRAMEWORK

The MSEE methodology applies the distinction
between vertical and horizontal transformations,
providing interoperability and portability at the same
degree of relevance as the traceability features,
linking requirements, design, analysis, and testing
models of the several MDSEA levels. In this
context, a framework for MDSEA transformations
along 3 different axes is here proposed (Figure 3):
 Axis 1 - Modelling levels. Defined according to

the meta-modelling reference architecture
proposed by OMG (OMG, 2011b), which
envisages that real world data is modelled using
four levels that go for data itself (M0) to the meta-

meta-model (M3). Following this axis, service
models are described at the level M1 using the
modelling language concepts and constructs
defined at level M2.
 Axis 2 - MDSEA levels. MDSEA enables service

system modelling around the three abstraction
levels summarized before in section 2.2.
 Axis 3- VME integration. Starting from a

minimum of two systems, this axis represents the
integration among the multitude of systems part of
the enterprise service ecosystem.

Figure 3: MDSEA Transformations Framework.

The transformations framework envisages a formal
specification of models along the first axis to enable
vertical transformations from BSM to TSM (axis 2)
as well as horizontal ones to integrate different
service systems (axis 3). Indeed, based on model
transformations, the MDSEA transformations
framework unifies every step of the service system
development.

4.1 Vertical and Horizontal
Transformations

Vertical transformations imply a change on the
abstraction level of the resulting model, i.e. going
from TIM to TSM implies a specialization
transformation along the MDSEA axis. As in MDA
vertical transformations, the amount of generated
models depends on both the code generator and also
the level of detail represented in the upper levels.
Ideally, only small portions of missing knowledge
should have to be added by the human in order to
ensure that, at the TSM level, the generated code and
auxiliary files are ready for compilation, linking and

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

660

deployment.
In the case of horizontal transformations, the

level of abstraction remains unchanged, leading to
solutions for that enable collaborative activities at
the VME axis. Greater interoperability benefits are
expected with this type of transformations, but as
studied by Agostinho et al. (2012), one might need
to be concerned also with language-related
specificities. In fact, different languages enable to
describe the same objects with different details (e.g.
properties, constraints). Thus, both input and output
models must be an instance of a well defined meta-
model according to axis 1.

4.2 Transformations Architecture

Recalling the first axis of the framework, namely the
relationship between the concepts of model and
meta-model, when performing a model
transformation (from ModelA to ModelB), one is
converting instances of a source model to instances
of another model, the target, and an explicit or an
implicit mapping at the same meta-modelling level
has to be performed.

Figure 4: Generic Transformations Architecture - adapted
from MDA Guide (OMG, 2003).

As depicted in the generic transformations
architecture, included in the framework (frontal pane
of Figure 3) and highlighted in Figure 4, the idea is
that when performing a transformation “τ(A,B)” at a
certain level “i”, this transformation has (implicitly
or explicitly) to be designed by taking into account
mappings “θ(A,B)” at level “i+1”. Once the “i+1”
level mapping is complete, executable languages
such as the Atlas Transformation Language (ATL,
www.eclipse.org/m2m/atl/), the Query View
Transformation (QVT, www.omg.org/spec/QVT/),
or the AToM (http://atom3.cs.mcgill.ca) can be used
to implement the transformation itself, either
vertically along axis 2 or horizontally along axis 3.

4.3 Knowledge Management
in the Transformation Process

Simple type mappings are generally insufficient to
specify a complete transformation (Truyen, 2006).
Additional knowledge is frequently required to
complement the mapping, specifying that certain
concepts in the source model must be annotated
(marked) in a specific way in order to produce the
desired output in the target model. Sometimes, this
extra information cannot be determined from the
source model itself, and it might need to use
knowledge from external models, e.g. ontologies.
For these reasons, the generic transformations
architecture adopted by MDSEA is complemented
with a “knowledge” box on top of the meta-model
mappings.

Semantics are recognized as an important area
for models alignment identified as one of the levels
of interoperability to consider within an enterprise
(Athena IP, 2006). However, a general observation
shows that in traditional MDA/MDI transformations,
semantic knowledge is often not exploited to
improve interoperation automation.

MSDEA transformations framework envisages
to change that explicitly associating that semantic
knowledge (e.g. annotations, mismatches,
reconciliation rules, etc.) to models and mappings. It
needs syntactic alignment as a pre-requisite, so that
the approach for processing the information will be
interpretable from a known structure. However, once
the syntactical correctness has been verified,
semantic interpretation, which goes beyond syntax
or structure, must be understood and unambiguously
defined based on the context of the mapping
definition.

5 APPLICATION
IN AN INDUSTRIAL DOMAIN

Figure 5 illustrates a scenario from the clothing
industry (in the frame of MSEE project) indicating
the steps taken as part of the service system
implementation, namely the vertical transformation
of a modelled online product configurator (BSM
level) into a collaboration model (TIM level) that
enables specific VME services at TSM level.

More specifically, the scenario envisages to start
representing of the BSM processes using the
Extended Actigram Star (EA*) language
(Doumeingts et al., 2006). Due to transformation
requirements that model should be manually

Information�Models�and�Transformation�Principles�Applied�to�Servitization�of�Manufacturing�and�Service�Systems�Design

661

decomposed (steps 1 and 2) into two separate
models: user centred and system centred.
Subsequently, automatic vertical transformation is
applied to both (steps 3 and 4), and the result
consists in two separate BPMN diagrams, which are
also user and system centred. Then, the TIM models
are merged for orchestration in order to represent the
user-system interaction in one collaboration model
(step 5). For simplification reasons, no horizontal
transformation is required here. Later this diagram is
enriched manually at the TIM level for a more
detailed model and the vertical transformation
continues down to the TSM level (step 6).

Figure 5: Modelling and transformation scenario.

Focusing on the paper contribution and due to space
constraints, detailed technical examples are only
taken at the transformation steps 3 and 4, helping to
illustrate the mechanism. To note that this example
is complying with a first priority specifications and
no work with ontologies and knowledge annotation
has yet been implemented for the knowledge
management.

5.1 MDSEA Axis Implementations:
EA* to BPMN2.0

Vertical transformations implemented along the
MDSEA axis of the transformations framework
require the definition of model mappings among
MDSEA core concept meta-models (Ducq,
Doumeingts, et al., 2012), as well as among selected
languages at BSM, TIM, and TSM. Being a process
modelling language, EA* language shares common
direct or indirect concepts with BPMN2.0. As a
result, a mapping is established from EA* concepts
to BPMN2.0 concepts following specific conditions.

In the mapping subset of Figure 6, it is possible to
see that several conditions govern the mapping of
“atomic” ExtendedActivity. These vary depending
on the type of resource(s) supporting the activity: (1)
if a Human resource is responsible for the realization
of the Extended Activity, it is mapped to a
UserTask; (2) if an IT resource is responsible for the
realization of the Extended Activity, it is mapped to
a ServiceTask. Full mapping is available in Bazoun
et al., (2013).

Figure 6: EA* and BPMN 2.0 Mapping Subset.

For the implementation, ATL was elected. It is a
largely used language to implement MDA based
tools, having a specific development toolkit plug-in
available in open source (Eclipse Modelling Project
- http://www.eclipse.org/modeling/) (Jouault &
Kurtev, 2007). The ATL rule mechanism provides
developers with a convenient means to specify the
way target model elements must be generated from
source model elements. For this purpose, a matched
rule enables to specify:
 Which source element must be matched;
 The number and the type of the generated target

model elements;
 The way these target model elements must be

initialized from the matched source elements.

Figure 7: Matched Rule.

Figure 7 contains an example of a “matched rule” to

TSM

BSM
BSM

BSM 2 TIM

TIM

EA*: Configurator

EA*: Buy a product online :
User Process

EA*: Buy a product online :
System Process

BPMN: Buy a product online :
User Process

BPMN: Buy a product online :
System Process

Manual
decomposi on

Manual
decomposi on

Automa c model
Transforma on

Automa c model
Transforma on

BPMN: Buy a product online :
Collabora on

BPMN: Provide Configurator
« as a Service »

Manual Enrichment Manual Enrichment

1 2

3 4

5

TIM 2 TSM Automa c model
Transforma on

‐‐‐‐

6

‐‐‐‐

EA* Condition BPMN2.0

Model Definitions

Process Pool, Process, and Participant

Extended
Activity

Structural

Activity

Sub Process

Atomic

It is supported by Human UserTask
It is supported by IT (no
human interaction)

ServiceTask

LogicalOperator

DivergingOr

Gateway

Diverging Exclusive
Gateway

ConvergingOr Converging
Exclusive Gateway

DivergingAnd Parallel Gateway
ConvergingAnd Parallel gateway

Resource

Material Data Object
Human Responsible for Lane

Participates in Resource (added to the list of
resources of a task)

IT Responsible for Lane

Participates in Resource (added to the list of
resources of a task)

rule ExtendedActigramToDefinition{

 from s: EA!EaModel

 to a: BPMN!Definitions (

 id <- s.name,

targetNamespace <-'www.jboss.org/drools',

expressionLanguage <- 'www.mvel.org/2.0',

typeLanguage <- 'www.java.com/javaTypes',

rootElements <-

 thisModule.ProcessToProcess(s.process)

)

}

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

662

transform an ExtendedActigram element to a
Definition element. It is identified by its name, and
is composed of two mandatory (the “from” and the
“to” parts) and an optional (the do parts) sections.
The “from” part represents the concept to be mapped
from the Extended Actigram Star meta-model which
is ExtendedActigram and the “to” part represents its
corresponding concept in BPMN meta-model which
is Definitions. The declarative block of the “to” part
is used for assigning values to attributes.

Figure 8: Lazy Rule.

In our implementation, the ATL mechanism of “lazy
rules” has also been used, called from match rules.
They have the same structure but are applied only on
the element passed as a parameter. “thisModule.
ProcessToProcess(s.process)” from Figure 7 calls
the lazy rule “ProcessToProcess” on the element
“s.process”. It is evident that the rule included in
Figure 8 calls other rules, yet both “to” and “do”
parts have been shortened (“…”) due to space
constraints.

Figure 9 illustrates graphically how the results of
applying the transformation from an EA* model to a
BPMN model looks like.

6 CONCLUDING REMARKS,
DISCUSSION AND FUTURE
WORK

Based on model transformations, MDSEA has the
challenge to unify every step of the enterprise (or
virtual enterprise) servitization. It answers to the

requirements of service system re(engineering)
while maintaining portability and interoperability,
enabling value co-creation.

The proposed methodology and transformations
framework brings bi-dimensionality and automation
to the servitization system. Having MDA/MDI as
the enabling technology, vertical and horizontal
dimensions are supported implementing a
comprehensive transformations architecture that
recognizes semantics as an important area for
models alignment. Following the architecture and
applying the mappings presented, some ATL
transformations have been implemented and
executed in the frame of an industrial scenario.

From a user’s perspective, feedback has been
received stating that modelling actually facilitates
the requirement collection, and the model driven
approach allows getting to code level more
efficiently and robustly. Re-engineering is no longer
seen as a problem.

From a developer’s perspective, the mappings
are time-consuming processes that once defined can
be executed any number of times achieving the same
results. Nevertheless, despite its robustness, the ATL
technology represents models as meta-models and
relates their properties through static rules. This
means that each time that it is necessary to change
relations between models, manual codification is
required to recreate them. This behavior is a direct
consequence of dynamism flaw.

In this context, the application of communication
mediation ontologies in the line of the work
presented by Sarraipa et al., (2010) are considered
relevant for the future work, and positive influencers
for the success of MDSEA-based transformations.
As parseable knowledge repositories, properly
instantiated with domain data, they can support
automation by enabling intelligent services to work
on top of them and facilitate the intervention of the
Human actor (both user and developer).

Another line of future work concerns the
simulation of models to evaluate the behaviour of
the system regarding time and identify desired or
undesired behaviour, including the respect of causal
relations. Another step proposed for this research is
to add one new transformation of BPMN models to
DEVS models in the goal of running simulations.
Some on-going works have started reusing, in the
context of Service process modelling and simulation,
already existing matching between Workflow and
DEVS (Zacharewicz et al., 2008).

lazy rule ProcessToProcess{

 from s: EA!EaProcess (

 s.oclIsTypeOf(EA!EaProcess)

)

 to a: BPMN!Process (

 id <- s.id,

 name <- s.name,

 flowElements <- s.flowElements.append(…),

 laneSets <- thisModule.laneSet

)

 do {

 thisModule.bpmnProcess <- a;

 thisModule.bpmnProcess.flowElements <-

thisModule.bpmnProcess.flowElements.union(this

Module.bpmnFlowElements);

 thisModule.bpmnProcessRef <-a;

 thisModule.eaStarProcessRef <- s;

 …}

}

Information�Models�and�Transformation�Principles�Applied�to�Servitization�of�Manufacturing�and�Service�Systems�Design

663

Figure 9: Graphical example of mapping and transformation of models.

ACKNOWLEDGEMENTS

Authors would like to acknowledge the European
funded Project MSEE (FP7 284860) that supported
the development of various ideas, concepts and use
case presented in this paper.

REFERENCES

Agostinho, C., Černý, J. & Jardim-goncalves, R. (2012)
MDA-Based Interoperability Establishment Using
Language Independent Information Models. In: M.
van Sinderen, P. Johnson, X. Xu, & G. Doumeingts
eds. 4th International IFIP Working Conference on
Enterprise Interoperability (IWEI 2012). Harbin,
China, Springer, pp.146–160.

Agostinho, C., Jardim-Goncalves, R., Sarraipa, J.,
Lampathaki, F., Koussouris, S., Charalabidis, Y.,
Psarras, J., Assogna, P., Missikoff, M., Popplewell, K.,
Silva, E. & Ferreira, J. (2012) Deliverable D2.4: EISB
Models & Tools Report. ENSEMBLE CSA Project
(FP7-ICT-257548).

Athena IP (2006) ATHENA Interoperability Framework
(AIF) (Internet). Available from: < http://
athena.modelbased.net > (26 Nov 2013).

Baines, T. S., Lightfoot, H. W., Benedettini, O. & Kay, J.
M. (2009) The servitization of manufacturing: A

review of literature and reflection on future challenges.
Journal of Manufacturing Technology Management,
20 (5), pp.547–567.

Bazoun, H., Zacharewicz, G., Ducq, Y. & Boye, H. (2013)
Transformation of Extended Actigram Star to
BPMN2.0 in the frame of Model Driven Service
Engineering Architecture. In: Symposium on Theory of
Modeling and Simulation (TMS/DEVS 2013). San
Diego, CA, USA.

Bézivin, J. (2005) Model Driven Engineering: An
Emerging Technical Space. In: Generative and
Transformational Techniques in Software
Engineering, International Summer School (GTTSE
2005). Braga, Portugal.

Chen, D. & Doumeingts, G. (1996) The GRAI-GIM
reference model, architecture and methodology. In: P.
Bernus, L. Nemes, & T. J. Williams eds. Architectures
for Enterprise Integration. London, UK, Chapman &
Hall.

Chesbrough, H. & Spohrer, J. (2006) A research manifesto
for services science. Communications of the ACM, 49
(7), p.35.

Doumeingts, G., Vallespir, B. & Chen, D. (2006) GRAI
GridDecisional Modelling. In: P. Bernus, K. Mertins,
& G. Schmidt eds. Handbook on Architectures of
Information Systems. Springer Berlin Heidelberg,
pp.321–346.

Ducq, Y., Chen, D. & Alix, T. (2012) Principles of
Servitization and Definition of an Architecture for
Model Driven Service System Engineering. In: 4th

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

664

International IFIP Working Conference on Einterprise
Interoperability (IWEI 2012). Harbin, China,
Springer.

Ducq, Y., Doumeingts, G., Lieu, C., Chen, D., Alix, T. &
Zacharewicz, G. (2012) Deliverable D11.2: Service
concepts, models and method: Model Driven Service
Engineering (M12 issue). MSEE IP Project (FP7 FoF-
ICT 284860).

Estefan, J. A. (2007) Survey of Model-Based Systems
Engineering (MBSE) Methodologies. INCOSE. From:
<www.omgsysml.org/MBSE_Methodology_Survey_
RevB.pdf> (Accessed 7 September 2011).

Frankel, D. (2003) Model Driven Architecture – Applying
MDA to Enterprise Computing. 1st edit. OMG Press.

Garschhammer, M., Hauck, R., Hegering, H.-G., Kempter,
B., Radisic, I., Rolle, H., Schmidt, H., Langer, M. &
Nerb, M. (2001) Towards generic service management
concepts a service model based approach. In: 2001
IEEE/IFIP International Symposium on Integrated
Network Management Proceedings. pp.719–732.

ISO TC184/SC5 (2000) Industrial Automation Systems—
Requirements for Enterprise-reference Architectures
and Methodologies (ISO 15704:2000).

Jardim-Goncalves, R., Agostinho, C. & Steiger-Garcao, A.
(2012) A reference model for sustainable
interoperability in networked enterprises: towards the
foundation of EI science base. International Journal of
Computer Integrated Manufacturing, 25 (10), pp.855–
873.

Jardim-Goncalves, R., Grilo, A., Agostinho, C.,
Lampathaki, F. & Charalabidis, Y. (2013)
Systematisation of Interoperability Body of
Knowledge: the foundation for Enterprise
Interoperability as a science. Enterprise Information
Systems, 7 (1), pp.7–32.

Jouault, F. & Kurtev, I. (2007) On the interoperability of
model-to-model transformation languages. Science of
Computer Programming, 68, pp.114–137.

Kohlborn, T., Korthaus, A. & Rosemann, M. (2009)
Business and software lifecycle management. In: 2009
Enterprise Distributed Object Computing Conference
(EDOC ’09).

OMG (2011a) Business Process Model and Notation
(BPMN) - version 2.0 (formal/2011-01-03). Available
from: <http://www.omg.org/spec/BPMN/2.0/PDF/>.

OMG (2003) MDA Guide Version 1.0.1 (omg/2003-06-
01). Object Management Group. Available from:
<http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf>
[Accessed 7 September 2011].

OMG (2011b) OMG Unified Modeling LanguageTM
(OMG UML), Infrastructure - version 2.4.1. From
<www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/>

Sarraipa, J., Jardim-Goncalves, R. & Steiger-Garcao, A.
(2010) MENTOR: an enabler for interoperable
intelligent systems. International Journal of General
Systems, 39 (5), pp.557–573.

Selic, B. (2003) The pragmatics of model-driven
development. IEEE Software, 20 (5), pp.19–25.

Spohrer, J., Maglio, P., Bailey, J. & Gruhl, D. (2007)
Steps Toward a Science of Service Systems.

Computer, 40 (1), pp.71–77.
Thoben, K., Eschenbächer, J. & Jagdev, H. (2001)

Extended Products: Evolving Traditional Product
Concepts. In: 7th International Conference on
Concurrent Enterprising. Bremen, Germany.

Truyen, F. (2006) (White Paper) The Fast Guide to Model
Driven Architecture: The Basics of Model Driven
Architecture. Available from: <http://www.omg.org/
mda/mda_files/Cephas_MDA_Fast_Guide.pdf>.

Vandermerwe, S. & Rada, J. (1988) Servitization of
business: adding value by adding services. European
Management Journal, 6 (4), pp.314–324.

Zacharewicz, G., Frydman, C. & Giambiasi, N. (2008) G-
DEVS/HLA Environment for Distributed Simulations
of Workflows. SIMULATION, 84 (5), pp.197–213.

Zdravkovic, M., Panetto, H. & Trajanovic, M. (2013)
Semantic Interoperability for Dynamic Product-
Service. In: International Conference on Information
Systems and Technology (ICIST 2013). Kopaonik,
Serbia.

Information�Models�and�Transformation�Principles�Applied�to�Servitization�of�Manufacturing�and�Service�Systems�Design

665

