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At present, research on reconstruction and coloring of 3D models is growing rapidly due to increasing avail-
ability of low-cost 3D sensing systems. In this paper, we explore coloring of triangular mesh models with
multiple color images by employing a multi-view texture mapping approach. The fusion of depth and color
vision data is complicated by 3D modeling and multi-viewpoint registration inaccuracies. In addition, the
large amount of camera viewpoints in our scenes requires techniques that process the depth and color vision
data efficiently. Considering these difficulties, our primary objective is to generate high-quality textels that
can also be rendered on a standard hardware setup using texture mapping. For this work, we have made
three contributions. Our first contribution involves the application of a visibility map to efficiently identify
visible faces. The second contribution is a technique to reduce ghosting artifacts based on a confidence map.
The third contribution yields high-detail textels by adding the mean color and color histogram information
to the sigma-outlier detector. The experimental results show that our multi-view texture mapping approach

efficiently generates high-quality textels for colored 3D models, while being robust to registration errors.

1 INTRODUCTION

With the growing availability of low-cost depth sens-
ing devices, 3D scanning platforms are rapidly be-
coming broadly accepted in the consumer market.
This trend has accelerated research and development
in the area of serious gaming, 3D printing and photo-
realistic 3D models. The most popular 3D scanning
device nowadays is the Kinect depth sensor, which
can create reasonably accurate 3D models despite its
low cost. To build a color 3D model of the sur-
roundings, a common approach is to employ multiple
color images that are captured at various viewpoints
and map parts of these images onto the depth signal
(range) generated by this sensor. This fusion of range
and color vision data to provide colored 3D models
is a challenging task due to various undesirable er-
rors. First of all, textures are usually of low-quality,
caused by the limited camera resolution, slight motion
blur and lens distortion. Secondly, it is difficult to ob-
tain perfect intrinsic and extrinsic camera calibration
due to modeling and related algorithmic inaccuracies.
Thirdly, the obtained 3D model contains modeling in-
accuracies because of the limitations in sensor quality
and scanning procedures.

Bearing these errors in mind, we aim at exploring
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a multi-view texture mapping (Heckbert, 1986) ap-
proach, where textures from various viewpoints are
blended to create a photo-realistic textured model
of indoor environments. We have adopted the re-
ferred texture mapping, since it is a well-known tech-
nique in computer graphics supported by hardware-
accelerated processing. Specifically, this technique
assigns a texture patch (textel) to every polygon (face)
by defining a one-to-one mapping from the 2D im-
age to the 3D (TIN) model (mesh). For meshes with
large-sized polygons, such mapping efficiently cre-
ates textured models. Unfortunately, the separation
between geometry and appearance complicates the
reuse of color information for other processing tasks,
such as object segmentation and classification. There-
fore, other methods have been developed to obtain a
colored model with more flexibility by directly asso-
ciating colors to the geometry. Point-based render-
ing (Zwicker et al., 2001; Sainz and Pajarola, 2004)
and mesh colors (Yuksel et al., 2010) are two recent
techniques that associate colors to the vertices. In
the case of mesh colors, also color samples are in-
terpolated for edges and faces such that their appear-
ance can be better presented even with large triangles.
However, both techniques require much denser ver-
tices than the referred texture mapping to yield a high-
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quality visualization.

At present, high-quality visualization based on
texture mapping is obtained mostly for small objects
and/or manually registered images from a few camera
viewpoints. It is our objective to create high-quality
mapping for large indoor environments with auto-
matic camera pose estimation. In literature, multi-
view texture mapping consist of two major steps.
First, the visible faces are determined for each view.
Then, for each face a texture patch is generated by
weighted blending of the available views. The multi-
view texture mapping approaches in (Rocchini et al.,
1999; Rocchini et al., 2002; Alshawabkeh and Haala,
2005; Grammatikopoulos et al., 2007) selects first a
master image for each face using the smallest inter-
section angle between the face normal and the image
ray. Faces that are partly projected onto different im-
ages are blended to reduce the discontinuity in color
differences of the images. The image views are man-
ually registered to the 3D model, so that registration
errors are rather small. To test the visibility of faces
ray-casting (Whitted, 2005) or Z-buffering (Catmull,
1974) is used.

For 3D reconstruction in larger spaces, the liter-
ature is limited. For example, Whelan et al (Whe-
lan et al., 2012) and Bondarev et al (Bondarev and
Heredia, 2013) employ the Kinect depth sensor to
scan a (large) room. In their process, color images
are captured from various viewpoints (25-33 views)
and automatically registered to the 3D model. For
further improvements towards photo-realism, our ap-
proach need to handle many more views with larger
registration errors. In addition, in contrast to render-
ing small objects, rendering 3D indoor scenes shows
background/foreground ghosting. Furthermore, since
the light conditions of the viewpoints are severely dif-
ferent from each other, it is not possible to employ a
master image. Given these difficulties, the major is-
sues that now need to be addressed are (1) the selec-
tion of visible faces for each viewpoint, (2) the color
bleeding especially at object boundaries due to reg-
istration errors and (3) the photo-realistic blending of
the multiple viewpoints. Our experimental results will
show that visually appealing colored models can be
obtained by employing efficient Z-buffering and ap-
plying simple outlier selection using only the geomet-
ric and color properties of the faces.

The remainder of this paper is organized as fol-
lows. Section 2 gives an overview of our off-line
multi-view texture mapping approach which consists
of the visibility test and the texture blending proce-
dure. In Section 3, we describe our visibility test with
Z-buffering and introduce the confidence map which
is used as a weight during the texture blending. In
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(b) Multi-view textures (6 samples out of 33 in total).

Figure 1: Example of input data (Basement) for our system.

Section 4, we analyze the selection procedure for each
face and the texture blending process. The experi-
mental results are visually presented in Section 5 and
finally, Section 6 discusses the conclusions and rec-
ommendations for improving the multi-view texture
mapping of indoor environments.

2 OVERVIEW SYSTEM

In this work, we assume that the input of our multi-
view texture mapping consists of a triangular mesh
and a set of multi-view textures with calibration pa-
rameters. Fig. 1 depicts an example of an input
dataset. To color the 3D model, we generate for
each face an appropriate texture patch (textel) from
the multi-view textures and store it in a larger tex-
ture image. For high-quality model generation, the
textels must be such that the effects of registration er-
rors are less visible and that the 3D textured model is
contiguous and contains no seams. Since each face is
processed individually and the visual registration er-
rors are small, the smoothing between adjacent faces
is not performed explicitly. Our proposed multi-view
texture mapping approach is depicted in Fig. 2 and
consists of three stages. In the first stage, the visi-
ble faces for each camera view are identified by ex-
ploiting a visibility map using Z-buffering. Within
the same process, we create a confidence map, which
serves as a weighting during texture blending. In the
second stage, we select the most reliable views for
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Figure 2: Multi-view texture mapping approach with processing stages and principal functions enclosed.

blending from the visible faces using outlier detec-
tion. ldeally, faces have a large projected area size,
having a small angle with respect to the camera ray, so
that more details are available and less texture distor-
tion exists. In the final stage, the remaining views af-
ter outlier selection are blended using the confidence
as a weight. The previous aspects and functions are
captured as principal functions and listed in each pro-
cessing stage within Fig. 2. In the next Sections, these
functions are described in more detail.

3 FACE VISIBILITY AND
WEIGHT LABELING WITH
Z-buffering

To color the 3D model, the faces are projected onto
the 2D image and color values are extracted from it.
To prevent background or occluded faces from being
projected onto the 2D image, the visibility of each
face needs to be determined for each camera view. A
very effective method is to employ Z-buffering. This
entails the creation of a depth map by projecting the
depth values of the faces to the camera viewpoint.
When multiple 3D points are projected onto the same
2D coordinates, we only keep the nearest value to the
camera, thereby creating a so-called Z-buffer for that
camera view. To this end, we have implemented an ef-
ficient algorithm to identify visible faces, extract pro-
jected area sizes of faces and create a confidence map
using Z-buffering.

To determine the visibility of a face, we could test
if this face resides on the surface of the depth map.
However, this is a costly process, since we would
have to iterate through multiple faces and compare
the depth values of the vertices of the face with the
depth map. Instead, we adopt an approach to create a
visibility map in parallel to the depth map, by writing
the face number into the image. Having this visibility
map, it is only required to iterate through every pixel
of the map. If a face number exists on the visibility
map, we label this face as visible for this camera view.
This method is definitely more efficient, because the
number of pixels is usually much lower than the num-
ber of faces. Moreover, the test whether a face resides
on the surface of the depth map can be fully omitted.

As a bonus, the projected area size of each visible face
can be easily determined by simply accumulating the
number of pixels of each visible face.

From the visible faces, new textels need to be gen-
erated. Since not every projected face is equally reli-
able, we need to assign a weight value to each face.
We consider a face as reliable when (1) it has a large
projected area size, and (2) if its angle (q) with respect
to the camera ray is small. A smaller g usually re-
sults in less texture distortion. For assigning weights
to visible faces efficiently, we create a confidence map
similar to the visibility map, by using the Z-buffer as a
guide. Instead of depth values, we append the value of
cos(q) of each face to this map as a unity-interval re-
liability indication. Since the camera viewpoints have
registration errors, it is desirable to lower the weight
of the faces that are projected near object boundaries.
This is performed by dilating the confidence map with
a structural element of 7 7 pixels. In Fig. 3 an ex-
ample of the depth, visibility and confidence map are
depicted. The values are scaled to [0-255] gray val-
ues. The depth map (Fig. 3(a)) represents the visi-
ble surface. The visibility map (Fig. 3(b)) is used to
identify visible faces and to extract the area size of
those faces. The confidence map (Fig. 3(c)) is used
to assign weights to faces. We can clearly observe
that faces projected to objects boundaries are assigned
lower weights (darker), as is desired. To extract the
weight for a particular face, we project this face on to
the 2D image and calculate the average value of the
projected face in the confidence map.

4 VIEW SELECTION AND
TEXTURE BLENDING

In the previous section, we have identified the visi-
ble faces for each view and extracted their geometric
properties such as the projected area size and weight
(angle). However, due to registration and 3D model-
ing inaccuracies, not all visible faces are projected to
the correct position in the 2D image. Therefore, we
purposely select for each face a set of reliable views
from the set of views in which this face is visible. We
first use the projected area size as the selection metric.
In the following step, we add the color information to
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Figure 3: Example of depth, visibility and confidence
map for the ‘Desk’ scene.

our selection process.

Let us now describe our two-step selection proce-
dure in more detail. In the first step, we use a sigma-
outlier detection (Hodge and Austin, 2004) to remove
small faces. With this approach a value is identified
as outlier if it is clearly outside a predetermined in-
terval about the mean, i.e. the mean n the stan-
dard deviation of that variable. Small faces contain
less details and/or are distorted due to a small angle
(9). Therefore, the use of these faces for generating
a texture patch results in more blurring and distor-
tion artifacts during rendering. In the second step, the
color information of the faces is applied for outlier
detection, considering that blending faces with sim-
ilar visual appearances results in less blurring. We
employ two methods for color outlier detection. The
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first outlier detection method uses the mean color of
the face (Cp). Similar to the first step, we employ
a sigma-outlier but now with the mean C,, within
predetermined interval of the criterion. For the sec-
ond outlier detection, we extract the color histogram
(Chist) for each projected face. Then for all his-
tograms of the visible faces, we calculate the distance
between each histogram and the average histogram
(Chist.avg)- For the calculation of the distance of two
histograms (Chist_gist), We have experimented with the
correlation coefficient (Imamura et al., 2011), the
chi-square (Pele and Werman, 2010) and the Bhat-
tacharyya distance (Bhattacharyya, 1943).

Ideally, the view selection procedure provides for
each face a set of reliable views. However, due to
different lighting conditions of the camera views, the
color values can vary greatly. In addition, variations
in the area size of the selected faces result in texture
patches with different levels of detail. To reduce the
variance in color and detail, we apply weighted av-
eraging. Most previously mentioned multi-view tex-
ture mapping approaches use the projected area size
of a face as a weight. This is logical, considering
that a larger projected area size contains more detail.
However, this approach does not consider the registra-
tion and 3D modeling errors which occur when per-
forming automated camera pose estimation. Our ap-
proach employs the confidence map to assign weights
to faces, as described in the previous section. The
angle q serves equally well in comparison to the pro-
jected area size, since cos(q) is proportional to the
area size. In addition, using the confidence map,
color bleeding between background and foreground
will be reduced considerably due to the lower weights
of faces near boundary objects. With the selected
faces and their weights, we now can generate the new
textel for each face. Given N valid color patches, the
blending function is defined by

Now G

C= %‘WI'; (1)
i=1 Wi

where wj denotes the weight extracted from the confi-
dence map and C represents the (R; G;B) color patch.
With this blending function, we assume that a color
patch is more reliable when the local surface is more
orthogonal to the viewpoint and not near an object
boundary. Since the projected patches of the cam-
era views vary in size and position, it is necessary
to generate a new textel on a pixel by pixel basis.
This can be easily achieved with barycentric coordi-
nates (Bradley, 2007). In our implementation, Equa-
tion (1) is performed for every pixel of the textel and
the color value C; of each camera view is retrieved us-
ing barycentric transformation. To reduce blurring, it
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is attractive to upper bound the number of valid cam-
era views for blending. Once a new textel is gener-
ated, we store this textel in a larger texture file where
they are packed in ascending face number.

5 EXPERIMENTAL RESULTS

To evaluate our multi-view texturing approach for in-
door environments, we have performed a series of ex-
periments on three scenes which differ in complex-
ity and number of camera views. The input datasets
are acquired from an extended RGB-D (Whelanet al.,
2012; Bondarev and Heredia, 2013) reconstruction
system with a Kinect sensor, which provides a trian-
gular mesh and a set of 640 480-pixels textures with
calibration parameters. In the first series of experi-
ments, we have generated textels using only geomet-
ric properties of the scene. To show the effectiveness
of our confidence map, we have compared rendered
views (using software rendering) with the projected
area size as a weight, against rendered views with a
confidence value as a weight. Fig. 4(c) shows that
employing a confidence map reduces ghosting errors.
However, blurring and ghosting artifacts are still no-
ticeable.

In the second series of experiments, we have sup-
plied the color information to our outlier detector and
the confidence term is used as a weight for texture
blending. Let us now examine these rendering results
and compare them with the previous results. From
Fig. 5, we can observe that by adding color informa-
tion the ghosting errors are reduced drastically. We
have also found that the rendered views are sharper,
giving the impression of more details. The usage
of color histograms (5(b)) instead of the mean color
value (5(a)) yields a slightly sharper image. However,
the perceptual improvements are marginal. This can
be readily understood, since the projected area size of
the average face is very small, consisting of only a
few pixels. For such small faces, the outlier detector
for histograms and mean values have almost identi-
cal performance. From the previous experiments and
results, we can distinguish three ways of textel gen-
eration: (1) using only geometric properties, (Rgeo),
(2) using outlier detection of the mean color value
(Rrgb) and (3) using outlier detection of the color his-
togram (Rnist) with three variations in histogram dis-
tance measurement. In Fig. 6, these three ways of
textel generation are compared side by side, for the
‘Couch’ scene. We can observe that the differences
in textel generation methods show a similar trend to
that of the ‘Desk’ scene. Textures from the Rpist
method (Fig. 6(c)) contain more detail than the other

(a) reference view, camera 4

(c) rendered view with confidence value as weight

Figure 4. Comparison of rendered views for the ‘Desk’
scene (29 camera views) using only geometric properties.

two methods. However, this method also introduces
slightly more noise (left side of the couch). In Table 1,
we have summarized the average PSNR quality of the
three scenes using Rgeo, Rrgh and Rpist. The average
PSNR is obtained by first rendering the views at the
identical position as the reference camera views and
then calculate the average PSNR over all the views.
We can observe that the three methods for calculat-
ing the histogram distance perform (almost) equally
well. The overall obtained average PSNR quality is
relatively low, which is explained by the distributed
amounts of blurring and the 3D modeling and reg-
istration errors. By inspecting the depth maps and
color images of the individual scenes more closely,
we have observed that the ‘Couch’ scene contains the
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Table 1: Average PSNR quality measured for three scenes and various metrics.

Scene # faces #Views | Rgeo (dB) | Regh (dB) | Rupist (dB) | Rnist (dB) | Rnist (dB)

correlation | chi-square | Bhattach.
Desk 500,000 29 20.1 20.0 19.5 19.8 19.7
Couch 2,109,558 25 24.9 24.8 24.4 24.7 22.5
Basement | 1,634,591 33 20.4 20.4 19.8 20.2 20.0

least amount of registration errors. This results in
a higher average PSNR score compared to the other
two scenes. The relatively low PSNR values also in-
dicate that the realism of the scene is deteriorated.
This could be expected in advance because the view-
dependent color values of each camera are replaced
by the weighted average values. The 3D visualization
of the three scenes using meshlab is illustrated in In
Fig. 7. We can clearly observe that our colored mod-
els give natural appearance representations.

(b) rendered view with Chjst and correlation coefficient

Figure 5: Comparison of rendered views for the ‘Desk’
scene with Cp, and Chjsgt.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we have explored the problem of gener-
ating colored 3D models of indoor scenes using multi-
view texturing, with a focus on inexpensive recon-
struction platforms. We have developed algorithms
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(b) rendered view using Rrgp

(c) rendered view using Rpjst and correlation coefficient

Figure 6: Comparison of rendered views for the ‘Couch’
scene w/o color information.

for colored 3D models of indoor scenes that: (a) can
effectively process a large number of camera views,
(b) are robust to multi-viewpoint registration errors
and 3D modeling inaccuracies. Our contribution is
threefold. Firstly, we have applied a visibility map
to efficiently identify and extract the visible faces.
Secondly, a confidence map is employed to assign
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(a) “Desk’ scene with Rrgy

(b) *Couch’ scene with Rrgp

(c) ‘Basement” scene with Rgp

Figure 7: Meshlab 3D visualization using method Rygp.

weights to faces with an additional function to re-
duce ghosting errors at object boundaries. Thirdly,
color histograms are used in combination with sigma-
outlier detectors to remove unreliable generation is
obtained with high details, so that this leads to a
sharper rendering quality. However, from the over-
all low PSNR quality we can conclude that the tex-
tel quality is highly dependent on the 3D modeling
and registration errors. For our scenes, the visual
difference of textel quality between the use of color
histogram and mean color .is minimal, because. the
average projected area size of a face is rather small
(a few pixels). For such scenes, the benefit of em-
ploying color histograms does not out weight the in-
volved extra computational costs. To improve textel
quality, we could explore the concept of super resolu-
tion (Goldluecke and Cremers, 2009), employ a dis-
tributed weighting scheme (Wang and Kang, 2001) or
perform local matching of the faces (Rocchini et al.,
2002). For improving registration and thereby re-
ducing blurring originated from registration errors,
image-based camera calibration prior to textel gener-
ation is recommended.
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