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Abstract: In this paper we propose the combination of several techniques into an agile formal development process:
model-based testing, formal models, refinement of models, model checking, and test-driven development.
The motivation is a smooth integration of formal techniques into an existing development cycle. Formal
models are used to generate abstract test cases. These abstract tests are verified against requirement properties
by means of model checking. The motivation for verifying the tests and not the model is two-fold: (1) in a
typical safety-certification process the test cases are essential, not the models, (2) many common modelling
tools do not provide a model checker. We refine the models, check refinement, and generate additional test
cases capturing the newly added details. The final refinement step from a model to code is done with classical
test-driven development. Hence, a developer implements one generated and formally verified test case after
another, until all tests pass. The process is scalable to actual needs. Emphasis can be shifted between formal
refinement of models and test-driven development. A car alarm system serves as a demonstrating case-study.
We use Back’s Action Systems as modelling language and mutation analysis for test case generation. We
define refinement as input-output conformance (ioco). Model checking is done with the CADP toolbox.

1 INTRODUCTION

Test-Driven Development (TDD) (Beck, 2003) places
test cases at the centre of the development process.
The test cases serve as specification, hence they have
to be written before implementing the functionality.
Furthermore, the functionality is only gradually in-
creased, implementing test case after test case. The
proposed development cycle is (1) write a test case
that fails, (2) write code such that the test case passes,
(3) refactor the code and continue with Step 1. It has
been reported that TDD is able to reduce the defect
rate by 50% (Maximilien and Williams, 2003).

However, experience over time shows that these
test cases become part of the code-base and need to be
maintained and refactored as well. “With time TDD
tests will be duplicated which will make management
and currency of tests more difficult (as functionality
changes or evolves). Taking time to refactor tests is a
good investment that can help alleviate future releases
development frustrations and improve the TDD test
bank.” (Sanchez et al., 2007) Therefore, we propose
the use of abstract test cases, that are less exposed to
changes in the interface. Only the test adaptor map-
ping the abstract test cases to the (current) interface

should be changed.
However, when functionality changes even the ab-

stract test cases need updates. Instead of manually
editing hundreds of test cases, we propose their au-
tomatic regeneration from updated models. This is
what model-based testing adds to our process (Utting
and Legeard, 2007). Hence, we propose to keep the
test-driven programming style, but use abstract test
models and model-based test-case generation to over-
come the challenge of maintaining large sets of con-
crete unit-tests. Models are in general more stable to
changes than implementations. Furthermore, the ab-
stract models of the system under test (SUT) serve
as oracles, specifying the expected observations for
given input stimuli.

When using models for generating test cases, the
models are critical. In model-based testing, wrong
models lead to wrong test cases. Therefore, it is im-
portant to validate and/or verify the models against
the expected properties. A prerequisite for this
are formal models with a precise semantics. We
use Back’s Action Systems (Back and Kurki-Suonio,
1983) for modelling embedded systems under test.

For industrial users a translator from UML state
machines to Action Systems exists (Krenn et al.,

626 Aichernig B., Lorber F. and Tiran S..
Formal Test-Driven Development with Verified Test Cases.
DOI: 10.5220/0004874406260635
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MBAT-2014), pages 626-635
ISBN: 978-989-758-007-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



2009), but in this work we will limit ourselves to Ac-
tion Systems. The Action Systems are extended with
parametrised labels and interpreted as labelled tran-
sition systems (LTS). For testing, the labels are par-
titioned into controllable (input), observable (output)
and internal actions.

Since most model-based testing tools do not pro-
vide a model checker, we propose a pragmatic ap-
proach for checking the validity of models: we gener-
ate a representative set of test cases from the model,
import these test cases as a model into a model
checker in which we verify the required properties
of the SUT. For example, we check if a given safety
property is satisfied in the generated test cases. If this
is not the case, this reflects a problem with the model,
assuming that the test case generation works correctly.
This approach places the test cases in the centre of
formal development. The models are a means for test
case generation.

As a further formal technique, we propose refine-
ment techniques to develop a series of partial models
into a refined more detailed model. In this work our
notion of refinement is Tretmans’ (Tretmans, 1996)
input-output conformance relation (ioco). The partial
models shall capture different functional aspects of a
system, contributing to test cases focusing on the dif-
ferent functionality. More refined models, will gener-
ate test cases focusing on more subtle behaviour. A
refined model may combine the partial models into a
single model and possibly add new behaviour. The
conformance relation ioco supports this kind of re-
finement (in contrast to, e.g., trace inclusion).

Our testing technique is regression based, in the
sense that we only generate tests for new aspects in
the refined models. Via automated refinement check-
ing we ensure that the original properties of the ab-
stract models are preserved.

Implementation follows an agile style via test-
driven development. As soon as the first tests from
the small partial models have been generated and ver-
ified in the model checker, the developers implement
test after test incrementally.

This approach is based on the tool Ulysses (Aich-
ernig et al., 2011; Aichernig et al., 2010; Brandl
et al., 2010). Ulysses is an input-output confor-
mance checker for Action Systems. In case of non-
conformance between two models, a test case is gen-
erated that shows their different behaviour. Ulysses
has been designed to support model-based mutation
testing. In this scenario, we generate a number of
faulty models from an original reference model. The
faulty models are called mutants. Then, Ulysses
checks the conformance between the original and the
mutants producing test cases as counter-examples for

conformance. We say that these tests cover the in-
jected faults. Hence, our coverage criterion is fault-
based. The generated test cases are then executed
on the SUT. This method represents a generalisation
of the classical mutation testing technique (Hamlet,
1977; DeMillo et al., 1978; Jia and Harman, 2011) to
model-based testing. The testing technique has been
presented before (Aichernig et al., 2011), here we ex-
tend it to a formal test-driven development process.

Note that Ulysses allows non-deterministic mod-
els, in which case adaptive test cases are generated.
An adaptive test case has a tree-like shape, branching
when several possible observations for one stimulus
are possible.

We see our contributions as follows: (1) a new
formal test-driven development process that is agile,
(2) the idea to verify model-based test cases if direct
verification of the model is impossible, (3) a new test
case generation technique with mutation analysis un-
der step-wise refinement of test models.

Structure. In the following Section 2 we present
our case-study of a car alarm system. It will serve
as a running example. Then, in Section 3 we give a
detailed overview of our formal test-driven develop-
ment process. The empirical results of our case study
are presented and discussed in Section 4. Finally, we
draw our conclusions in Section 5.

2 RUNNING EXAMPLE: A CAR
ALARM SYSTEM

A car alarm system (CAS) serves as our running ex-
ample. The example is inspired from Ford’s automo-
tive demonstrator within the past EU FP7 project MO-
GENTES1. The list of user requirements for the CAS
is short:
Requirement 1: Arming. The system is armed 20

seconds after the vehicle is locked and the bonnet,
luggage compartment and all doors are closed.

Requirement 2: Alarm. The alarm sounds for 30
seconds if an unauthorised person opens the door,
the luggage compartment or the bonnet. The haz-
ard flasher lights will flash for five minutes.

Requirement 3: Deactivation. The anti-theft alarm
system can be deactivated at any time, even when
the alarm is sounding, by unlocking the vehicle
from outside.

The system is highly underspecified and a variety of
design decisions have to be considered. Furthermore,

1http://www.mogentes.eu
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the timing requirements make the example interest-
ing.

In the following section, we give an overview of
our development process and refer to the example
where appropriate.

3 A FORMAL TEST-DRIVEN
DEVELOPMENT PROCESS

3.1 Initial Phase

At the beginning of the test-driven development pro-
cess, we fix the testing interface of the system under
development. First, the system boundaries are deter-
mined. It must be clear what kind of functionality
belongs to the system under test and what belongs to
the environment. At the most abstract level, we enu-
merate the controllable and observable events. The
controllable actions represent stimuli to the system.
The observable actions are reactions from the system
and are received by the environment. The test driver
will emulate this environment. The abstract test cases
are expressed in terms of these abstract controllable
and observable actions. Actions can have parameters.

Example 3.1. For the CAS we identified the follow-
ing controllable events: Close, Open for closing and
opening the doors, and Lock, and Unlock for locking
and unlocking the car.

The observables are ArmedOn, ArmedOff for sig-
nalling that the CAS is arming and disarming. In the
real car, a red LED will blink to signal the armed state.
Furthermore, we can observe the triggering of the
sound alarm, SoundOn, SoundOff, and flash alarm,
FlashOn, FlashOff.

In addition, we parametrise each event by time.
For a controllable event c(t) this means that the event
should be initiated by the tester after t seconds since
the last event. An observable event o(t) must occur
after t seconds. These hard deadlines can be relaxed
in the test driver. For example, the observable Arme-
dOn(20) denotes our expectation that the CAS will
switch to armed after 20 seconds. �

Second, the test interface at the implementation
level has to be fixed. For each abstract controllable
event, a concrete stimulus has to be provided by the
system under test. In addition, the test driver has to
provide an interface for the actual observations.

Next, the test driver is implemented. It takes an
abstract test case as input and runs the tests as fol-
lows: (1) the abstract controllables are mapped to
concrete input stimuli, (2) the concrete input is exe-
cuted on the system under test, (3) the actual output is
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Figure 1: Three abstract test cases for the CAS based on the
first partial model.

mapped back to the abstract level and compared to
the expected outputs. This is classical offline test-
ing (Utting et al., 2011). Note that we allow non-
determinism in both the models and the systems under
test. Hence, our test cases may be adaptive, i.e. they
may have a tree-like shape (Hierons, 2006). The test
driver may issue three different verdicts: pass, f ail
and inconclusive. The latter is used to stop an adap-
tive test run, if a given test purpose cannot be met.

The abstract test cases are represented in the Alde-
baran format of the CADP toolbox2 . This is a simple
graph notation for labelled transition systems.
Example 3.2. For our experiment we implement the
CAS in Java. Hence, the test driver maps control-
lable events to method calls to the SUT. The observ-
ables are realised via callbacks to the test driver. With
respect to timing we opted for simulated time. The
test driver sends tick events to the SUT, signaling the
elapse of one second.

Figure 1 shows three abstract test cases that can be
executed by the test driver. This graph representation
of the test cases is automatically drawn with CADP.
�

Here, we want to point out the advantage of split-
ting the test cases into abstract test cases and a test

2http://www.inrialpes.fr/vasy/cadp/
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Figure 2: The labelled transition system semantics of the
partial model of Figure 4.

driver. When we change the interface of an imple-
mentation, only the test driver needs to be updated.
For example, when changing the CAS implementa-
tion from simulated time to real-time, the abstract test
cases remain valid. In contrast, any concrete JUnit
test case with timing properties would need adapta-
tion.

After this initial phase, we enter the iterative phase
of our agile process. The cycle is shown in Figure 3.
First, a small partial model is created. This model
captures some basic functionality that should be im-
plemented first. Then, a set of abstract test cases is
generated from the model. Next, we verify the test
cases with respect to temporal properties. Then, the
test cases are implemented in a test-driven fashion.
Finally, the implementation is refactored. After this
cycle, a different aspect of the system is modelled or
a given model is refined and the cycle starts again. In
the following, we present the techniques supporting
this process.
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Figure 3: The formal test-driven development cycle.

3.2 Model

The used formal modelling notation is a version
of Object-Oriented Action Systems (OOAS) (Bon-
sangue et al., 1998), an object-oriented extension of
Back’s classical Action Systems (Back and Kurki-
Suonio, 1983). However, in this paper we will not
make use of the object-oriented features.

A classical Action System consists of a set of
variables, an initial state and one loop over a non-
deterministic choice of actions. An action is a
guarded command that updates the state, if it is en-
abled. The action system iterates as long as a guard is
enabled and terminates otherwise. In case of several
enabled guards, one is chosen non-deterministically.

In the used version of Action Systems, actions
may be sequentially or non-deterministically com-
posed as well as nested. For testing, each action
has been instrumented with a parametrised label.
These labels represent the abstract events. Hence, ac-
tions are categorised into controllable and observable
events. In addition, internal actions are allowed.
Example 3.3. Figure 4 shows a partial Action Sys-
tem model of the CAS. Its purpose is to express the
arming and disarming behaviour. After two basic
type definitions (Line 2-3) the Action System class
is defined. Its initialisation is expressed in the sys-
tem block at the bottom (Line 36). Here, several
objects could be assembled via composition opera-
tors. Three Boolean variables define the state space
of the Action System (Line 8-9). Next, we present
three actions (Line 11-25). The controllable action
Close(t) is only enabled in the state ”disarmed and
doors open”. Furthermore, it must happen immedi-
ately (Line 13). The action sets the variable closed
to true. Similarly the controllable Lock(t) is defined
(Line 16-19). The observable ArmedOn(t) happens
after 20 seconds, if the car is locked and doors are
closed (Line 21-25). The remaining three actions fol-
low the same style and are omitted for brevity. Fi-
nally, in the do-od block (Line 28-33) the actions are
composed via non-deterministic choice. �

The operational semantics of an action system is
defined by a labelled transition system (LTS) with
transition relation T as follows: if in a given state s
an action with label l is enabled, resulting in a post
state s0, then (s; l;s0) 2 T .
Example 3.4. Figure 2 shows the LTS of the Action
System of Figure 4. �

3.3 Generate Test Cases

In this phase a model-based testing tool generates the
test cases from the partial models. Different strate-
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1 t y p e s
2 TimeSteps = f I0 =0 , I20 =20 , I30 =30 , I270 =270g ;
3 I n t = i n t [ 0 . . 2 7 0 ] ;
4 AlarmSystem = a u t o c o n s system
5 j [
6 var
7 c l o s e d : boo l = f a l s e ;
8 l o c k e d : boo l = f a l s e ;
9 armed : boo l = f a l s e

10 a c t i o n s
11 c t r Close ( w a i t t i m e : I n t ) =
12 r e q u i r e s n o t armed and n o t c l o s e d and
13 w a i t t i m e = 0 :
14 c l o s e d := t rue
15 end ;
16 c t r Lock ( w a i t t i m e : I n t ) =
17 r e q u i r e s n o t armed and n o t l o c k e d and
18 w a i t t i m e = 0 :
19 l o c k e d := t rue
20 end ;
21 obs ArmedOn ( w a i t t i m e : I n t ) =
22 r e q u i r e s ( w a i t t i m e = 20 and n o t armed and
23 l o c k e d and c l o s e d ) :
24 armed := t rue
25 end ;
26 . . .
27 do
28 var t : T imeSteps : C lose ( t ) [ ]
29 var t : T imeSteps : Open ( t ) [ ]
30 var t : T imeSteps : Lock ( t ) [ ]
31 var t : T imeSteps : Unlock ( t ) [ ]
32 var t : T imeSteps : ArmedOn ( t ) [ ]
33 var t : T imeSteps : ArmedOff ( t )
34 od
35 ] j
36 system AlarmSystem

Figure 4: Partial model describing the arming of the CAS.

gies for generating the test cases from models exist.
We use the test case generator Ulysses which supports
random test case gneration and model-based muta-
tion testing from Action Systems (Brandl et al., 2010;
Aichernig et al., 2011).

Random generation produces long unbiased test
cases but has no stopping criterion. Mutation testing
adds a fault-centred approach. The goal is to cover as
many possible faults as anticipated in the model. In
the following we concentrate on the mutation testing
approach.

Ulysses is realised as a conformance checker for
Action Systems. It takes two Action Systems, an orig-
inal and a mutated one, and generates a test case that
kills the mutant. Killing a mutant means that the test
case can distinguish the original from the mutated
model. The mutated models, i.e. the mutants, are
automatically generated by so-called mutation opera-
tors. They inject faults into a given model, in our case
one fault per mutant.

Ulysses expects the actions being labelled as con-
trollable, observable and internal actions. For deter-
ministic models, the generated test case is a sequence
of events leading to the faulty behaviour in the mu-
tant. For non-deterministic models an adaptive test
case with inclonclusive verdicts is generated. Ulysses
explores both labelled Action Systems, determinizes
them, and produces a synchronous product modulo
the ioco conformance relation of Tretmans (Tretmans,
1996). The ioco relation supports non-deterministic,
partial models. Ulysses is implemented in Sicstus
Prolog exploiting the backtracking facilities during
the model explorations.

Different strategies for selecting the test cases
from this product are supported: linear test cases to
each fault, adaptive test cases to each fault, adaptive
test cases to one fault. Ulysses also checks if a given
or previously generated test case is able to kill a mu-
tant. Only if none of the test cases in a directory can
kill a new mutant, a new test case is generated. Fur-
thermore, as mentioned, Ulysses is able to generate
test cases randomly. Our experiments showed that
for complex models it is beneficial to generate first
a number of long random tests for killing the most
trivial mutants. Only when the randomly generated
tests cannot kill a mutant, the computationally more
expensive product calculation is started. The differ-
ent strategies for generating test cases are reported in
(Aichernig et al., 2011).

Example 3.5. Our mutation tool produces 114 mu-
tants out of the partial model of Figure 4. Ulysses
generates 12 linear test cases killing all of these mu-
tants. These test cases ensure that none of the 114
faulty versions will be implemented. �

Next, we discuss how we run additional verifica-
tion on the test cases before implementing them.

3.4 Verify Test Cases

In this phase, we verify different temporal properties
of the generated test cases. This ensures that the gen-
erated test cases satisfy our original requirements. If
wrong tests have been generated due to modelling er-
rors, this would be detected. This provides the neces-
sary trust in the test cases required for safety certifi-
cation. The advantage of this method is that a special-
purpose test case generator and a model checker can
be combined without integrating them into a tool set.
The mapping from abstract test cases into a model
checker language is trivial.

We use the model checker of CADP, a toolbox
for the design of communication protocols and dis-
tributed systems. It offers a wide set of functionality
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for the analysis of labelled transition systems, rang-
ing from step-by-step simulation to massively parallel
model-checking.

Ulysses is able to generate the test cases as la-
belled transition systems in one of CADP’s input for-
mats, namely the Aldebaran format. These are text
files describing the vertices and edges in a labelled
directed graph. These test cases in could already be
processed by the model checker without conversion.
For checking safety properties this would already be
sufficient. However, if we merge all test cases, we
can additionally define properties to ensure that cer-
tain scenarios are covered by the test suite. In the fol-
lowing, we discuss how we merge the set of generated
test cases into a single model.

Merging of Test Cases. The merging of the test
cases into a model for analysis comprises three steps.

First, we copy all test cases in one single file and
rename the vertices in order to keep unique identifiers.
The only exception are the start vertices that share the
same identifier. This joins all test cases in the start
state. After this syntactic joining the file is converted
into a more efficient binary representation (BCG for-
mat).

Second, we use the CADP Reductor tool to sim-
plify the joint test cases via non-deterministic au-
tomata determinisation. This determinisation follows
a classical subset construction and is initiated with the
traces option. The determinisation merges the com-
mon prefixes of test cases.

Third, the CADP Reductor tool is applied again.
This time we run a simplification that merges states
that are strongly bisimilar (option strong)3.

Example 3.6. Figure 5 shows the 12 merged test
cases of Figure 4. The common end state of this
model is the pass state of all test cases. �

This simplification is actually not necessary for
the following verification process. However, the elim-
ination of redundant parts facilitates the visual in-
spection of the behaviour defined by the test cases.
Furthermore, we observed that the visualisation of
the simplified model provides an insight into the re-
dundancy of the test cases: the simpler the result-
ing model, the more redundant were the original test
cases.

Verification of Test Cases. CADP provides the
Evaluator tool, an on-the-fly model checker for la-
belled transition systems. Evaluator expects temporal
properties expressed as regular alternation-free mu-
calculus formula (Mateescu and Sighireanu, 2003). It

3Note that our test cases have no internal transitions,
hence, strong and weak bisimulation are equivalent.
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Figure 5: The LTS after merging the 12 test cases generated
from Figure 4.

is an extension of the alternation-free fragment of the
modal mu-calculus with action predicates and regular
expressions over action sequences.

Example 3.7. We checked several safety properties
related to our requirements. For example, the follow-
ing temporal Property P1 is satisfied by our test cases.
[(not ’ctr Lock.*’)* . ’ctr Close.*’ . (P1)
(not ’ctr Open.*’)* . ’ctr Lock.*’ .
(not (’obs ArmedOn(20)’ or ’ctr .*(.)’ or
’ctr .*(1.)’ or ’obs pass’))] false

It partly formalises Requirement 1 and says that
if the doors are closed and locked it must not happen
(expressed by the false at the end) that any control-
lable with more than 20 seconds as parameter or any
other observable than the activation of the alarm sys-
tem occurs. Note that in mu-calculus the states are
expressed via event histories. Here, the state closed
and locked is expressed via a sequence of events: the
doors had been first closed and not later opened etc.
�

We can also check for test case completeness in
the sense that we verify that certain traces are in-
cluded in our test cases.

Example 3.8. For example the next Property P2
checks if a trace with first locking and then closing
the doors leading to an armed state is included:
<true*><’ctr Lock.*’> (P2)
<(not ’ctr Unlock.*’)*> <’ctr Close.*’>
<(not ’ctr Unlock.*’ and not ’ctr Open.*’)*>
<’obs ArmedOn(20)’> true

Here the diamond operator <.> is used to express the
existence of traces. �

Our integration with the CADP toolbox also al-
lows us to check if certain scenarios are included in a
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test suite by checking if certain test purposes are cov-
ered by the test cases. A test purpose is a specification
for test cases expressing a certain test goal.

Example 3.9. The next Property P3 was imple-
mented to guarantee the inclusion of a scenario in
which the alarm is turned off. Which of the two
alarms is turned off first is underspecified. Hence, it
allows both scenarios.

(<true*> <’obs SoundOff.*’> (P3)
<’obs FlashOff.*’> true) or
(<true*> <’obs FlashOff.*’>
<’obs SoundOff.*’> true)

�

3.5 Implementation and Refactoring

Once the test cases are formally checked, we imple-
ment them. Here, the partial models serve to group
them into functional units. Alternatively, for larger
models, the test purposes may serve to categorise the
test cases. A negated test purpose property will report
the test case to be implemented next. In general, the
developer starts with the shortest test cases and adds
functionality until all tests pass.

As in common test-driven development, after a
(set of) tests pass, the implementation is refactored.
Hence, the code is simplified and rechecked against
the existing test cases.

Next Iteration. After this phase, the development
cycle starts again with either (1) a further partial
model, capturing a different aspect of the system,
or (2) a refined model adding details to existing
models. Our refinement relation is the input-output
conformance (ioco) relation. Hence, we can check
the refinement of our models with the ioco-checker
Ulysses. In the following, we discuss the empirical
results of this process for the CAS.

4 EMPIRICAL RESULTS

In the following, we report the results of develop-
ing the CAS over several development cycles. We
implemented in Java. By definition of TDD all test
cases pass our implementation. Therefore, in order
to evaluate the quality of our generated test cases, we
run a mutation analysis on the implementation level.
For this we use 38 faulty Java implementations of the
CAS already used in previous work (Aichernig et al.,
2011). The novelty in this paper is that we analyse
how the mutation score develops under refinement.
The mutation score is the number of killed mutants

divided by the total number of mutants. We elimi-
nated equivalent mutants.

For test case generation, we used the strategy A5
reported in (Aichernig et al., 2011): With this lazy
strategy, Ulysses first checks whether any of the pre-
viously created test cases is able to kill the mutated
model before a new test case is generated. We have
also taken the eight test purposes used in (Aichernig
et al., 2011) and analysed at what refinement step they
are satisfied by the generated test cases.

Iteration 1. The first iteration in our development
process covers the partial model of Figure 4. The first
line of Table 1 (CAS1) summarises the results.

As already mentioned, we generated 114 model
mutants from which Ulysses generated 12 test cases.
These tests were able to kill 81% of the implementa-
tion mutants. The tests passed our 18 safety checks,
but were neither complete nor did they cover all test
purposes. This is obvious, since only a part of the
functionality was captured in the model and our prop-
erties required full functionality.

Iteration 2. In the second iteration, the triggering
of the sound and flash alarm was modelled. Figure 6
shows the LTS of this Action System model. This
model is not input-output conform to CAS1, since it
includes only one trace arming the system. The sec-
ond line of Table 1 shows the results of this iteration
(CAS2). This model produces a high number of mu-
tants (1889), but they result in 17 test cases only. The
reason is that we selected all mutation operators in our
tool. The low number of test cases generated indicates
that we could have done with a smaller subset. These
17 test cases kill 73% of the Java mutants. Note that
this model already satisfies all test purposes.

The test cases of both models together (CAS1+2)
already kill 97% of all faulty implementations. Fur-
thermore, all required completeness properties of the
test case are satisfied.

Iteration 3. In the third iteration, we merged the be-
haviour of the first two iterations into one Action Sys-
tem model. Figure 7 presents the corresponding LTS
semantics. We checked with Ulysses that this inte-
grated model input-output conforms to the two pre-
vious ones. Hence, we formally verified that the new
model is a refinement of both partial models. Note the
different use of Ulysses. Previously, we used the con-
formance checker to generate test cases by comparing
a model with mutated version. Here, we first checked
a complete model against a partial model to show that
we did not introduce unwanted behaviour.
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Table 1: Quality check of the test cases over the iterations, measured in mutation score on the faulty implementations and by
model checking of the merged test cases.

# Mutants # Test cases Mutation Score Safety Completeness Purposes
CAS1 114 12 81% 18/18 10/25 3/8
CAS2 1889 17 73% 18/18 24/25 8/8
CAS1+2 2003 29 97% 18/18 25/25 8/8
CAS3 2179 53 100% 18/18 25/25 8/8
CAS1+2+3 2179 54 100% 18/18 25/25 8/8

The fourth line of Table 1 (CAS3) shows that
the integrated model adds value. The combined be-
haviour leads to 176 new mutants (2179�2003). The
number of test cases has increased, too. The result is a
mutation score of 100%. Hence, all of 38 faulty Java
implementations have been detected with these 53 test
cases. We argue that this maximal mutation score pro-
vides a high trustworthiness in our test suite. Hence,
we implemented these test cases in a test-driven style
and stopped the iterative development at this point.

The results of a further experiment are shown
in the bottom line of Table 1 (CAS1+2+3). Again,
Ulysses takes the CAS3 model and its 2179 mutants
as input. The difference here is the test case gener-
ation. Ulysses starts with the given 29 test cases of
the previous two iterations. Hence, for every mutant
Ulysses first checks, if it can be killed by the given
tests. This is a kind of regression test case generation
under model refinement. The results are very similar,
except that in total one more test case has been gener-
ated. The reason is that the test cases of Iteration 1 are
very short and longer tests subsuming them are added
during the process. Currently, we do not post process
the test cases in order to minimise their number. Nei-
ther do we order the given test cases, which would be
beneficial. This is future work.

4.1 Discussion

In the following, we discuss some of the pros and cons
of this approach as experienced in the case study.

Benefits. The proposed development process com-
bines the advantages of three disciplines: (1) model-
based testing, (2) test-driven development, and (3)
formal methods. Classical test-driven development is
ad-hoc, in the sense that the implementation will be
as good as the test designer: manually designed tests
may be incorrect and/or incomplete. Consequently,
the implementation may be incorrect and/or incom-
plete. Our approach guarantees a correct and com-
plete test suite. Generating the test cases systemati-
cally from a model gives a certain kind of coverage.
In our case it is a fault coverage. However, the model
may be incorrect. Therefore, it has to be checked

against the requirements. Our approach allows to do
so even if the modelling tool does not support model
checking. The importing of abstract test cases into
a model checker is easy. This allows us to check
certain safety invariants indirectly. We can also add
manually designed abstract test cases, or combine test
cases from different tools. The incompleteness issue
is checked via completeness properties and test pur-
poses. The latter links the test cases to the require-
ments, although the model does not refer to them.
Traceability is an important aspect. Negating a test
purpose property and checking it, will immediately
report a test case that covers this test purpose.

The iterative process with refinement adds more
and more functionality to the models. However,
in contrast to classical refinement from an abstract
model to the implementation code, we immediately
start coding in the first iteration. This combines the
advantages of a formal process with agile iterative

17

0

1

2

3

4

5

6

78

9

10

11

12

13

14

15

16

obs FlashOn(0)

ctr Unlock(0)

obs SoundOn(0)

ctr Close(0)

ctr Unlock(0)
obs SoundOff(30)

obs FlashOff(0)

obs FlashOff(0)

ctr Lock(0)

obs SoundOff(0)

obs FlashOff(0)

obs FlashOff(270)

obs SoundOff(0)

obs SoundOff(270)

obs ArmedOn(20)

obs SoundOff(0)

ctr Unlock(0)

ctr Unlock(0)

ctr Open(0)

ctr Close(0)

obs ArmedOff(0)

obs ArmedOn(0)

obs ArmedOff(0)

obs FlashOn(0)
obs SoundOn(0)

Figure 6: The second partial model of the CAS capturing
only one trace to the armed state and all the traces after-
wards.
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methods.
The mutation analysis is not the main point of this

paper, but it provided a coverage on the abstract mod-
elling level as well as on the implementation level.
We could show that the test cases covering all fault-
models in the Action Systems, were sufficient to cover
all faulty Java implementations. This adds a second,
fault-centred, perspective to the completeness check
of our test cases.

Limitations. It is obvious, that model checking test
cases is not the same as verifying an implementation
model. Many test cases may be required to capture the
subtle cases of concurrent interleavings. Therefore,
we have added the test purposes and completeness
properties. In future, we may apply model-learning
(Shahbaz and Groz, 2009) to merge the test cases into
more concise models.

A further limitation concerns our mutation ap-
proach. Our new mutation tool for Action Systems
produced far too many mutants. This leads to ex-
tremely long test case generation times. The 114
model mutants of CAS1 could be processed in less
than a minute. However, CAS2 took almost 8 hours to
process the 1889 mutants, and CAS3 run 22 hours. In
future, we will apply mutation avoidance techniques
in order to reduce the number of mutants (Jia and Har-
man, 2011). Fortunately, the situation is not as se-
vere as it might look like. The regression strategy of
CAS1+2+3 saved over 2 hours generation time. Fur-
thermore, Ulysses continuously produces test cases
while analysing the mutants. For example, after 10
seconds of analysing CAS2 4 test cases are available,
after 1 minute 6, after 10 minutes 8, after 1 hour
14 of the 17 test case. Hence, one can perform the
safety checks and implement the first test cases while
Ulysses is looking for further test cases.

5 CONCLUSIONS

We have motivated and presented a formal test-driven
development technique that combines the benefits of
(1) model-based testing, (2) test-driven development,
and (3) formal methods. The novelty of this approach
is the model checking of the generated test cases as
well as the combination of model refinement and test-
driven development. In our experiments, we used
mutation testing to generate the tests and to evalu-
ate them at the implementation level. We have pre-
sented the first study of model-based mutation testing
under model refinement. Our own tool Ulysses and
the CADP toolbox automate the whole process.

Baumeister proposed the combination of TDD

17 0

18

12

3

4

5

6

7

89

10

1112

13

14

15
16

obs ArmedOff(0)

obs FlashOff(0)

ctr Open(0)

obs SoundOff(30)

obs SoundOff(270)

obs FlashOn(0)

ctr Open(0)

ctr Unlock(0)
ctr Lock(0)

obs SoundOn(0)

ctr Unlock(0)

ctr Unlock(0)

obs SoundOff(0)

obs SoundOn(0)

ctr Unlock(0)

obs FlashOn(0)

ctr Open(0)

ctr Close(0)

ctr Close(0)

obs FlashOff(0)
ctr Unlock(0)

obs SoundOff(0)
obs ArmedOn(20)

obs ArmedOff(0)

ctr Unlock(0)

obs SoundOff(0)

obs FlashOff(0)

obs ArmedOn(0)

ctr Lock(0)
ctr Close(0)

obs FlashOff(270)

Figure 7: The third, complete model of the CAS containing
all traces.

with formal specifications. His ideas differ to ours. In
(Baumeister, 2004) he uses the tests to develop JML
contracts. In (Baumeister et al., 2004) he proposes
an iterative TDD process for developing UML state
machines. His idea is to instrument the models with
OCL constraints, but this was not implemented. It
seems our approach is novel.

The used modelling notation is very similar to
Event-B (Abrial, 2010). The reason is that Event-B
was inspired by Action Systems. Event-B also iden-
tifies actions by labels. However, the refinement no-
tions are different. We use input-output conformance
defined over the input and output labels of the opera-
tional semantics, in contrast, Event-B applies the clas-
sical state-based notion of refinement via a weakest
precondition semantics.

We are not the first who verified test cases. Niese
et al. (Niese et al., 2001) model checked LTL prop-
erties of system-level test cases. In contrast to our
work, these tests were not automatically generated
from models, but designed with a domain-specific li-
brary. The verification of the test cases ensured that
the test designer respected certain constraints, e.g. the
existence of verdicts.

Of course, we are not the first who propose model-
based mutation testing. A good survey can be found
in (Jia and Harman, 2011). However, to the best of
our knowledge this is the first experiment of applying
it in combination with refinement of models.

In future, we will work on overcoming the dis-
cussed limitations and perform larger case studies.
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