
A Systematic Review on Performance Evaluation of Aspect-Oriented
Programming Techniques used to Implement Crosscutting Concerns

Rodrigo F. G. da Silva1, Marcelo A. Maia1 and Michel S. Soares2

1Computing Faculty, Federal University of Uberlândia, Uberlândia, Brazil
2Computing Department, Federal University of Sergipe, Sergipe, Brazil

Keywords: Aspect-Oriented Programming, Systematic Review, Crosscuting Concerns, Performance.

Abstract: Aspect-Oriented Programming (AOP) was proposed with the main objective of addressing an important soft-
ware quality principle that is modularization. The basic idea of the paradigm is to capture crosscutting con-
cerns as a programming abstraction called aspect. Since the introduction of aspects as a complement to object-
oriented programming, many evaluations and empirical studies were provided to the new paradigm, including
the application of a variety of software metrics in order to provide evidence of the benefits or problems with
the new paradigm. There is no consensus about the impact on performance of the use of AOP techniques
to deal with crosscutting concerns. The use of AOP to implement crosscutting concerns and its impact on
performance is the motivation for this study. This paper explores further the evaluation of performance by
proposing a systematic literature review with the purpose of finding out how performance is affected by the
introduction of aspects. The result of this systematic review is that there has been few studies on scientific
literature concerning AOP and performance and most of these studies are too specific, and sometimes even
inconclusive. This article presents these miscellaneous results and how they were extracted from the literature.

1 INTRODUCTION

Currently, performance is one of the non-functional
requirements which has become of utmost relevance
for users. Performance is a pervasive quality of soft-
ware systems (Woodside et al., 2007) and is an im-
portant non-functional attribute to be considered for
producing quality software (Evangelin Geetha et al.,
2011). The performance of software systems is a
serious problem in many projects (Smith, 1990), as
it may cause delays, cost overruns, failures on de-
ployment, and even abandonment of projects. Even
tough, such failures are seldom documented (Wood-
side et al., 2007).

The growing demand for more complex software
which can be executed on several kinds of platforms
and architectures, with varied hardware constraints,
has been postulating that software can adapt to new
requirements, and performance becomes an impor-
tant feature. This feature, however, can be affected
by many elements in a Software Engineering process.
One of these elements is related on how crosscutting
concerns are implemented in software.

Aspect Oriented Programming (AOP), first pre-
sented by Kiczales (Kiczales et al., 1997), came as

an attempt to deal with the crosscutting concerns aim-
ing to improve modularization. AOP has gained im-
portant interest since its introduction to implement
crosscutting concerns, with varying degree of suc-
cess (Ali et al., 2010) (Przybylek, 2011) (Mortensen
et al., 2012) (França and Soares, 2012). Within AOP,
crosscutting concerns are implemented as aspects and
are further weaved into code. The way aspects are
weaved into code may affect performance as the as-
pect weaving process introduces new code to the orig-
inal programs.

There are different approaches to accomplish as-
pect weaving (Hundt and Glesner, 2009):Compile-
time weavingwhich weaves the aspect in a static
way into the original code,Run-time weavingwhich
weaves the aspect dynamically at runtime, andLoad-
time weavingwhich delays weaving of crosscutting
concerns until the class loader loads the class file and
defines it to the Virtual Machine (Dyer and Rajan,
2010).

Because there are different constructions intro-
duced in AOP languages and because there are dif-
ferent ways to implement those constructions, we can
expect that a specific running system implemented
with AOP may have specific impact in its perfor-

5F. G. da Silva R., A. Maia M. and S. Soares M..
A Systematic Review on Performance Evaluation of Aspect-Oriented Programming Techniques used to Implement Crosscutting Concerns.
DOI: 10.5220/0004863800050013
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 5-13
ISBN: 978-989-758-028-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



mance compared for example with traditional proce-
dural languages such as C, which is widely known for
producing high performance executables. This con-
cern that also existed when introducing dynamic bind-
ing in object-oriented languages, is equally expected
to exist in aspect-oriented languages, specially when
we consider runtime and load-time weaving, because
if the corresponding operation is moved away from
the compilation it is expected that it will impact in
runtime or load-time.

The impact on performance, caused by AOP tech-
niques, has motivated previous works in scientific lit-
erature. Liu (Liu et al., 2011) showed that the aspect-
oriented approach does not have significant effect on
performance, and that in some cases, aspect-oriented
software even outperform the non-aspect one. Ad-
ditionally, introduction of a large number of join
points does not have significant effect on perfor-
mance. Remko (Bijker, 2005) assessed the perfor-
mance effects between programs created by a weaver
and a hand-coded version. This work came to the con-
clusion that simple advices give no real performance
penalties, but the more sophisticated advices are, the
slower they become, and this impact can reach more
than 100 percent of penalty. Kirsten (Kirsten, 2005)
compared the four leading AOP tools at the time
(2004) and, when it comes to performance, he pos-
tulated that, in general, code with aspects performs
similarly to that of a purely object-oriented solution,
where the crosscutting code is scattered throughout
the system. Nonetheless, some performance over-
head may be noticed either in build-time or in run-
time, depending on the used AOP approach. Kirsten
also showed the tools’ language mechanisms and the
trade-offs imposed by the different approaches, as
well as the tools’ integration with the development
environment and build process, including a point-by-
point comparison of the tools’ IDE features and pro-
viding a summary of each one’s strengths and weak-
nesses.

The use of AOP to implement crosscutting con-
cerns and its impact on performance is the motivation
for this study. The goal of this systematic review is to
understand the extent of the impact of AOP on the per-
formance of software systems, if there is an impact.
Our main result reveal that there has been few stud-
ies on scientific literature concerning AOP and per-
formance and most of these studies are too specific,
and sometimes even inconclusive. There is a lack of
studies in which an in-depth focus on performance
is taken into account. For instance, there are many
variables that can influence the studies that should be
taken into account, such as different crosscutting con-
cerns, different kinds of AOP implementation, differ-

ent weaving processes, and different tools. In addi-
tion, as this research presents, there is no consensus
about the impact on performance of the use of AOP
techniques to deal with crosscutting concerns. The
reason for this is probably because there are too many
concerns and several kinds of AOP tools and tech-
niques to be evaluated. This paper shows these mis-
cellaneous results and how they were extracted from
scientific literature. We expect to show that this is an
open field for further research.

The remainder of this article is organized as fol-
lows. In Section 2, we present the research method
used for this systematic review. In Section 3, the re-
sults are presented and evaluated. In Section 4, we
discuss the results and finally in Section 5 we provide
the conclusion of this work.

2 RESEARCH METHOD

The main question that motivated this research is:
Does the use of aspect-oriented techniques to imple-
ment crosscutting concerns impact software perfor-
mance ? A derived research question is “If the im-
pact exists, how meaningful is it ?”. The answer to
both questions could help developers to reason about
the feasibility of the use of AOP techniques to handle
crosscutting concerns on architectures where perfor-
mance is itself a concern, as in embedded platforms.

In order to answer both questions, a systematic
literature review (Kitchenham, 2004) has been made
with the purpose of identifying what type of research
has been performed relating AOP and performance.
The systematic review started with searching in a
number of software engineering conferences and jour-
nals. The search was performed considering publica-
tions in the past 6 years. Although the seminal works
on aspects were published in the late 1990’s, we want
to evaluate most up-to-date articles, therefore only the
last 6 years were considered.

The chosen conferences were: AOSD (Interna-
tional Conference on Aspect-Oriented Software De-
velopment) and ICSE (International Conference on
Software Engineering). Papers published on spe-
cific workshops held together with these conferences
were not considered. The chosen journals were:
JSS (Journal of Systems and Software), IST (Infor-
mation and Software Technology), SCP (Science of
Computer Programming), TSE IEEE (IEEE Trans-
actions on Software Engineering), TOSEM (ACM
Transactions on Software Engineering Methodology).
ENTCS (Electronic Notes in Theoretical Computer
Science), which can be considered a series, was also
included.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

6



Table 1: Search Results and selected papers.

Publication Retrieved Papers Relevant Papers Selected Papers Data Source
JSS 38 2 1 ScienceDirect
IST 32 10 5 ScienceDirect
SCP 32 2 1 ScienceDirect
TSE 1 1 1 IEEExplorer
TOSEM 21 3 1 ACM Digital Library
ENTCS 26 3 1 ScienceDirect
AOSD 127 9 3 ACM Digital Library
ICSE 61 2 2 ACM Digital Library
Total 338 32 15

The search string used was (“Aspect-oriented pro-
gramming” AND “performance”). The search has re-
trieved 338 papers. From these 338 papers, a sub se-
lection has been made with the purpose of separating
those relating AOP with any performance metrics. In
a first step, 32 papers were selected and classified as
relevant. For the first selection, the title, the keywords
and the abstract were read. If the subject was perti-
nent to AOP and performance, the introduction and
the conclusion were read as well. In case of doubt
about the relevance of the paper, specific keywords
were searched in the paper, such asaspect, crosscut-
ting andperformance. There were also relevant pa-
pers which used other terms, includingcost, payload
andoverheadwhen considering assessment of perfor-
mance of some AOP technique, and in those cases,
they were selected too.

Table 2: Selected papers.

Venue/year Reference
1 ICSE/07 (Froihofer et al., 2007)
2 SCP/08 (Fabry et al., 2008)
3 IST/09 (Georg et al., 2009)
4 ENTCS/09 (Hundt and Glesner, 2009)
5 IST/09 (Ganesan et al., 2009)
6 ICSE/09 (Zhang, 2009)
7 AOSD/09 (Cannon and Wohlstadter, 2009)
8 JSS/10 (Malek et al., 2010)
9 ACM/10 (Dyer and Rajan, 2010)
10 IST/10 (Ortiz and Prado, 2010)
11 AOSD/10 (Toledo et al., 2010)
12 IST/10 (Janik and Zielinski, 2010)
13 AOSD/10 (Ansaloni et al., 2010)
14 IEEE/12 (Mortensen et al., 2012)
15 IST/12 (de Roo et al., 2012)

In a second step, of the 32 relevant papers, only
those ones which assess the performance of imple-
mentation of some crosscutting concern were selected
to be fully read. As a result, 15 papers were selected
in total. Several types of concerns have been clas-
sified by the papers as crosscutting concerns, even
though some of them were domain specific. How-
ever, papers which had crosscutting concerns imple-

mented through some AOP technique but which did
not consider any assessment of the used technique(s),
or this assessment was incomplete, were discarded.
The summary of the filtering process can be seen in
Table1 and the final selection of papers is presented
in Table 2.

3 EVALUATION OF RESULTS

All 15 selected papers were fully read for the evalua-
tion. The selected papers were evaluated based on two
sets of criteria: Application Type and Performance.
This section classify the papers for both sets of crite-
ria.

3.1 Application Type Criteria

The first set of criteria concerns about Application
Type and encompass the following metrics: number
of assessed studies, lines of code (Size, in LOCs),
original programming language (Original PL), aspect
programming language (Aspect PL) and application
domain.

The application type is related to the type of appli-
cation of the case studies or experiments which have
been assessed by the papers. The following types
were retrieved from the papers: Middleware, Web
Service, Embedded, Platform, System or Applica-
tion, Language or Extension (Language) and Frame-
work. Cases where their case studies were described
as Monitoring Systems were classified as System or
Application. Papers which did not mention the appli-
cation type of their experiments have been classified
under the closest definition of these ones already men-
tioned.

The number of assessed studies indicates only
those studies that were implemented by some AOP
technique and were assessed by some kind of metric.

Concerning the metric lines of code (LOC), papers
showed LOC in different ways: SLOC (Source lines
of code), NCLOC (Non-Comment Lines of Code) and

A�Systematic�Review�on�Performance�Evaluation�of�Aspect-Oriented�Programming�Techniques�used�to�Implement
Crosscutting�Concerns

7



Table 3: Summary of studies.

Application
Type

Article Assessed
studies

LOC / Size Original
PL

Aspect PL Application
Domain

Middleware (Malek et al., 2010) 2 NA
Java

AspectJ Generic
(Zhang, 2009) 3 12.7 KLOC,

113Kb,
190Kb

FlexSync
Industrial

Embedded (Hundt and Glesner, 2009) 1 NA ObjectTeams,
Java

(de Roo et al., 2012) 2 NA GPL NA

Application

(Janik and Zielinski, 2010) 1 NA

Java

JBoss AOP Generic
System or (Ganesan et al., 2009) AspectJ Office

(Cannon and Wohlstadter,
2009)

1 46KLOC Java, As-
pectJ

Generic

(Fabry et al., 2008) 1 NA KALA Bank
(Froihofer et al., 2007) AspectJ,

JBoss AOP
Industrial

(Mortensen et al., 2012) 3 1.6 KLOC,
13.9 KLOC,
51.6 KLOC

C++ AspectC++

Language (Toledo et al., 2010) 1 118 KLOC JavaScript AspectScript Generic
(Dyer and Rajan, 2010) 2

NA
Java NA Industrial

Framework (Ansaloni et al., 2010)
1

Compatible
with As-
pectJ

Generic

Platform (Georg et al., 2009) NA NA
E-commerce

Web Service (Ortiz and Prado, 2010) Java AspectJ

only LOC where no citation about source of com-
ments were made. Some papers showed size of the
applications instead of LOC. There were papers, how-
ever, which did not present any size or LOC of their
studies.

Several languages were identified in the papers
concerning the original languages and aspect lan-
guages. Some papers presented their own languages
or extensions in spite of using the most common pro-
gramming and aspect languages.

The application domain includes: e-commerce
(E-C), industrial application (Ind), Office, Bank and
Generic. Cases where there is no specific domain,
for example a toolkit or a language extension, were
classified as Generic. Some papers, mostly in appli-
cation type, did not mention the application domain
and were also classified by proximity.

The summary of studies is presented in Table 3.
Cases where no metric was presented or in which
it was not possible to identify were classified as not
available (NA).

3.2 Performance Criteria

The second set of criteria concerns Performance. Four
metrics were extracted from the papers: weaving

type, implemented crosscutting concerns, used per-
formance method, and performance overhead.

The weaving type indicates the type of weaving
performed by the studies in the papers. Two main
kinds were considered: Compile-time and Runtime
weaving. Some papers presented studies by perform-
ing Load-time weaving process and these cases were
classified as Run-time weaving, as Load-time is a spe-
cific stage of Runtime.

Several kinds of crosscutting concerns were re-
trieved from the papers. There were cases where
the crosscutting concerns were domain specific. Pa-
pers which treated only one concern in the study pre-
vailed, but there were cases where more than one con-
cern was considered, one of them domain specific
(Mortensen et al., 2012).

The performance methods retrieved were the mea-
surements of running or execution time (ext), business
operations per second (bos), average memory over-
head (avmo), CPU usage (cpu), qualitative observa-
tion of the overall execution (obs), parsing time (pat),
and average number of method calls per second (met).
Some papers presented more than one assessed vari-
able. In these cases, when there was performance re-
duction, the considered measurements were based on
the worst case. The performance overhead was mea-

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

8



Table 4: Performance analysis of studies.

Weaving
Type

Article Implemented cross-
cutting concerns

Performance
Method

Performance over-
head

Run-time

(Malek et al., 2010) Stylistic ext, avmo ext: -negl, avmo:
+1.03x to 1.1x

(Zhang, 2009) Synchronization bos negl
(Hundt and Glesner, 2009) Maintainability, Exten-

sibility and Reusability
ext - 2x for 100 instances

(Janik and Zielinski, 2010) Reconfigurability ext, cpu, avmo ext: +1.1x to 1.22x,
cpu: +NA, avmo: +NA

(Ganesan et al., 2009) Monitoring Qualitative Ob-
servation

not notably

(Cannon and Wohlstadter,
2009)

Security pat + up to 1.16x

(Toledo et al., 2010) Expressiveness met, cpu met: + up to 16.1x, cpu:
negl

(Fabry et al., 2008) Transaction Manage-
ment

NA + NA

Compile-time
(Mortensen et al., 2012) Caching, Check-

FwArgs, Excepter,
Singleton, Tracing,
CadTrace, FwErrs,
FetTypeChkr, Timer,
UnitCvrt, ViewCache,
ErcTracing, QueryCon-
fig, QueryPolicy

ext, avmo ext: + up to 1.18x,
avmo: + up to 1.15x

(Ansaloni et al., 2010) Comunication between
threads

ext + factor up to 31.08x

(Ortiz and Prado, 2010) Device adaptation ext negl
Compile-time
/ runtime

(Froihofer et al., 2007) Constraint validation ext + varies according to
approach

Domain Spe-
cific

(Dyer and Rajan, 2010) Cache met + 1.015x

NA (de Roo et al., 2012) Safety NA + NA
(Georg et al., 2009) Security ext + varies according to

approach

sured in factors (when comparable to the original im-
plementation) or percentage. Some cases related this
overhead as negligible (negl).

The results of the performance assessment per-
formed by the papers are presented in Table 4. In the
Performance Overhead column, the “+” and the “-’’
signs means decrease and increase in performance,
respectively. If a sign is followed by negl, it means
that the paper reported a degradation or gain in per-
formance, but this result is negligible according to the
authors.

4 DISCUSSION

Considering the fact that all the papers selected in
this systematic review were fully read, and all the 15
selected ones are about the implementation of cross-

cutting concerns through AOP techniques and perfor-
mance, important results can be extracted from this
research.

4.1 On the Target Applications

From the first set of criteria, related to Application
type, it is possible to conclude that most papers, 10
out of 15, assessed only one study or experiment.
However, only four of them showed the LOC or
size of their assessed studies. The two studies that
have evaluated more systems, evaluated three small-
scale systems (at most 50KLOC or 190Kb). The
larger evaluated system had 118KLOC. One hypoth-
esis for such lack of large scale studies is that aspect-
oriented programming is not extensively adopted such
as object-oriented programming or procedural pro-
gramming. Therefore, the low adoption from the

A�Systematic�Review�on�Performance�Evaluation�of�Aspect-Oriented�Programming�Techniques�used�to�Implement
Crosscutting�Concerns

9



Table 5: Application Type versus Performance.

Application
Type

Article LOC / Size Original
PL

Aspect PL Application
Domain

Perf. Overhead

Middleware (Malek et al., 2010) 12.3 KSLOC
Java

AspectJ Generic ext: -negl,
avmo: +1.03x to
1.1x

(Zhang, 2009) 12.7 KLOC,
113Kb,
190Kb

FlexSync
Industrial

negl

Embedded (Hundt and Glesner,
2009)

NA ObjectTeams,
Java

- 2x for 100 in-
stances

(de Roo et al., 2012) NA GPL NA + NA

System or

(Janik and Zielinski,
2010)

NA

Java

JBoss AOP Generic ext: +1.1 to
1.22x, cpu:
+NA, avmo:
+NA

(Ganesan et al., 2009) AspectJ Office not notably sig-
nificant

Application (Cannon and
Wohlstadter, 2009)

46KLOC Java, As-
pectJ

Generic + up to 1.16x

(Fabry et al., 2008) NA KALA Bank + NA
(Froihofer et al., 2007) AspectJ,

JBoss AOP
Industrial + varies accord-

ing to the ap-
proach

(Mortensen et al., 2012) 1.6 KLOC,
13.9 KLOC,
51.6 KLOC

C++ AspectC++ ext: + up to
1.18x, avmo: +
up to 1.15x

Language (Toledo et al., 2010) 118 KLOC JavaScript AspectScript Generic met: + up to
16.1x, cpu: negl

(Dyer and Rajan, 2010)

NA
Java NA Industrial + 1.15x

Framework (Ansaloni et al., 2010) Compatible
with As-
pectJ

Generic + factor up to
31.08x

Platform (Georg et al., 2009) NA NA E-commerce + varies accord-
ing to the ap-
proach

Web Ser-
vice

(Ortiz and Prado, 2010) Java AspectJ negl

community restricts the availability of large systems
for experimentation.

The prevailing application type was System or
Application. That is reasonable to expect because in
general this kind of applications are more frequent
and more accessible. The prevailing application do-
main was Industrial applications followed by appli-
cations with no specific domain, hereby classified as
Generic. We can observe that there is reasonable vari-
ability in terms of Application Type and Application
Domain.

In Table 5, we combined the application type fea-
tures and the performance result in order to evaluate if
there is some influence of the application type in the
performance.

We could observe that in Middleware software the
overhead was negligible. In the category System or

Application, there is a tendency of more impact in the
performance.

The LOC seems not to influence because the
larger studies systems had negligible impact on ex-
ecution time and CPU performance. The Application
Domain also seems not to influence the performance
because of the high variation in the results. The ap-
plication domain did not present a clear influence in
performance. TheIndustrial domain, which has the
larger number of studies, had also presented negligi-
ble and positive impact in performance.

Finally, concerning the implemented crosscutting
concerns in the applications, there was no prevailing
concern in the studies, and surprisingly, none of the
studies implemented common concerns such as Log-
ging or Exception Handling. This can be an indicative
that the studied cases were not representative in terms

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

10



of typical aspect-oriented software.

4.2 On the Used Programming
Languages

The prevailing original programming language was
Java with 11 out of 15 studies and the prevailing as-
pect programming language was AspectJ with 6 out
of 15 studies. Here we can see that although Java
is the preferred target for aspectizing and AspectJ is
the preferred solution for aspects (concerning studies
on performance evaluation), we could observe stud-
ies on less common solutions, such as FlexSync, Ob-
jectTeams and KALA. This is a negative point for
those studies because the underlying aspect technol-
ogy may not be an adequate representative of the com-
mon practice. JBoss AOP was present only in two
cases, and Spring AOP was not used in any of them.

Considering the impact of the programming lan-
guage in performance, we can observe that the orig-
inal programming language that has significant num-
ber of studies is Java, but there was no clear indica-
tion that Java is an influence factor. In the same way,
AspectJ, which is the prevailing aspect language has
shown no direct influence on the performance because
it presented either negligible or positive impact in per-
formance. Although only two studies were carried out
with JBoss AOP, both studies have shown a positive
impact in performance.

4.3 On the Type of Weaving

From the second set of criteria, it is possible to con-
clude that run-time is the most common weaving type
process presented by papers in the experiments. One
of the reasons for this choice, instead of compile-time
weaving, is the fact that runtime weaving allows as-
pects to be added to the base program dynamically,
which is better for a context-aware adaptation of the
applications (Hundt and Glesner, 2009). Some pa-
pers not only used the runtime weaving process but
also extended it to adequate the process to their stud-
ies. Also concerning the weaving process, the papers
in general postulated that runtime weaving requires
more effort at runtime, impacting on performance, but
no proofs about this assumption was found in this re-
search.

4.4 On the Experimental Setting

Papers assessed their experiments in different ways,
but the prevailing performance metric was measure-
ment of execution time (ext). The performance over-
head varied according to a set of variables such as the

used approach, implemented concern, the aspect pro-
gramming language, weaving type process and the
used aspect weaver. This motivates the fact that to
reason about AOP and performance is not a trivial
task, and further research is necessary. There are
many variables that impact performance and a con-
trolled experiment is necessary to understand the im-
pact of each variable. The difficulty of this kind of ex-
periment is its multi-factor nature and in order to con-
trol the factors, a factorial design is required. The ad-
vantage of multi-factor experiments is that all paired
interactions can be analyzed. However, the number of
runs grows exponentially with the addition of factors.

Moreover, we know that one important and criti-
cal factor for performance evaluation is the workload
used for measuring the execution (Jain, 1991). In this
case, the workload is strongly influenced by the target
application, which defines several other sub-factors:
the kind of join points, pointcuts and advices, the ratio
of occurrence of AOP constructs and the other non-
AOP constructs, the requirement of the application
for specific type of weaving. Considering the space
for combination of levels for these factors, it is chal-
lenging (if not impossible) to find a real world appli-
cation (or a set of them) that can have all the possi-
ble levels. Therefore, an alternative could be the de-
sign of a synthetic application that could be use as a
benchmark for performance evaluation of AOP tech-
niques. This benchmark would need to be meaningful
to mimic real world scenarios and would need to be
comprehensive to guarantee that all important factors
and their respective levels would be considered.

4.5 Threats to Validity

The short number of selected papers after the ap-
plication of the search string and the criteria to in-
clude papers for evaluation is a threat to validity of
results. A possible solution could be to include ad-
ditional venues in future research. However, in or-
der to assess if the recall of this approach was ade-
quate, we made a query in Google Scholar using the
same string (“Aspect-oriented programming” AND
“performance”). The query returned 10,400 results,
but the best ranked links did not showed relevant re-
sults for this research. Next, we decided to restrict the
string only to the title of the paper and only 12 results
were returned. We analyzed each one of the results
and only (Liu et al., 2011) was a new result that have
not already been selected. Therefore, we conclude
that our recall is fairly adequate.

A�Systematic�Review�on�Performance�Evaluation�of�Aspect-Oriented�Programming�Techniques�used�to�Implement
Crosscutting�Concerns

11



5 CONCLUSION

This work showed through a systematic review and
the further analysis of the retrieved papers that there
are few experiments concerning AOP and perfor-
mance in scientific literature. More specifically, too
few experiments were reported about the performance
of AOP techniques when implementing crosscutting
concerns. From the results, it is clear that there is no
prevailing implemented concern in the studies. On
the contrary, most of the implemented concerns were
domain specific.

Most papers postulated that runtime weaving re-
quires more effort at run-time, impacting on perfor-
mance. However, according to the results of this re-
search, the weaving type process does not appear to
be the only factor that impacts performance. Other
variables such as the used aspect weaver, the imple-
mented crosscutting concern, the aspect programming
language and even the performance method of evalu-
ation could impact the performance results.

This systematic review about AOP and perfor-
mance address several research fields for future
works. We suggest that one of the possible rea-
sons that explain why performance evaluation of AOP
did not attract more attention from the community is
rooted in the complexity of establishing a comprehen-
sive design of experiment that could produce more
solid analysis on the impact of AOP in the perfor-
mance of running systems. For instance, the devel-
opment of synthetic benchmarks would help to ex-
plain the impact that transformed crosscutting con-
cerns through AOP have in real applications and in
what circumstances that impact occurs in the overall
performance.

ACKNOWLEDGEMENTS

The authors would like to thank CAPES
(www.capes.gov.br), CNPq grant 475519/2012-
4, FAPEMIG Grant APQ-01589-11, FAPEMIG grant
APQ-2086/2011 and Federal University of Sergipe
for the financial support.

REFERENCES

Ali, M. S., Ali Babar, M., Chen, L., and Stol, K.-J. (2010).
A Systematic Review of Comparative Evidence of
Aspect-Oriented Programming.Information and Soft-
ware Technology, 52:871–887.

Ansaloni, D., Binder, W., Villazón, A., and Moret, P.
(2010). Parallel Dynamic Analysis on Multicores with

Aspect-Oriented Programming. InProceedings of
the 9th International Conference on Aspect-Oriented
Software Development, AOSD ’10, pages 1–12, New
York, NY, USA. ACM.

Bijker, R. (2005). Performance effects of Aspect Oriented
Programming. Technical report, Twente University,
Enchede, The Netherlands.

Cannon, B. and Wohlstadter, E. (2009). Enforcing Secu-
rity for Desktop Clients using Authority Aspects. In
Proceedings of the 8th ACM international conference
on Aspect-oriented software development, AOSD ’09,
pages 255–266, New York, NY, USA. ACM.

de Roo, A., Sozer, H., and Aksit, M. (2012). Verification
and Analysis of Domain-Specific Models of Physical
Characteristics in Embedded Control Software.Infor-
mation and Software Technology, 54(12):1432–1453.
Special Section on Software Reliability and Security.

Dyer, R. and Rajan, H. (2010). Supporting Dynamic
Aspect-Oriented Features.ACM Transactions on Soft-
ware Engeneering Methodology, 20(2):7:1–7:34.

Evangelin Geetha, D., Suresh Kumar, T., and Rajani Kanth,
K. (2011). Predicting the Software Performance Dur-
ing Feasibility Study.IET Software, 5(2):201–215.

Fabry, J., Tanter,́E., and D’Hondt, T. (2008). KALA: Ker-
nel Aspect Language for Advanced Transactions.Sci-
ence of Computer Programming, 71(3):165–180.

França, J. M. S. and Soares, M. S. (2012). A Systematic Re-
view on Evaluation of Aspect Oriented Programming
using Software Metrics. InICEIS 2012 - Proceedings
of the 14th International Conference on Enterprise In-
formation Systems, Volume 2, pages 77–83.

Froihofer, L., Glos, G., Osrael, J., and Goeschka, K. M.
(2007). Overview and Evaluation of Constraint Val-
idation Approaches in Java. InProceedings of the
29th international conference on Software Engineer-
ing, ICSE ’07, pages 313–322, Washington, DC,
USA. IEEE Computer Society.

Ganesan, D., Keuler, T., and Nishimura, Y. (2009). Archi-
tecture compliance checking at run-time.Information
and Software Technology, 51(11):1586–1600. Third
IEEE International Workshop on Automation of Soft-
ware Test (AST 2008) Eighth International Confer-
ence on Quality Software (QSIC 2008).

Georg, G., Ray, I., Anastasakis, K., Bordbar, B., Toahc-
hoodee, M., and Houmb, S. H. (2009). An Aspect-
Oriented Methodology for Designing Secure Ap-
plications. Information and Software Technology,
51(5):846–864.

Hundt, C. and Glesner, S. (2009). Optimizing Aspectual
Execution Mechanisms for Embedded Applications.
Electronic Notes in Theoretical Computer Science,
238(2):35–45. Proceedings of the First Workshop on
Generative Technologies (WGT) 2008.

Jain, R. (1991).The art of computer systems performance
analysis - techniques for experimental design, mea-
surement, simulation, and modeling. Wiley profes-
sional computing. Wiley.

Janik, A. and Zielinski, K. (2010). AAOP-Based Dynami-
cally Reconfigurable Monitoring System.Information
and Software Technology, 52(4):380–396.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

12



Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., marc Loingtier, J., and Irwin, J. (1997).
Aspect-Oriented Programming. pages 220–242.
Springer-Verlag.

Kirsten, M. (2005). AOP@Work: AOP tools comparison,
Part 1: Language mechanisms. Technical report, IBM
Developer Works.

Kitchenham, B. (2004). Procedures for Performing Sys-
tematic Reviews. Keele university. technical report
tr/se-0401, Department of Computer Science, Keele
University, UK.

Liu, W.-L., Lung, C.-H., and Ajila, S. (2011). Impact
of Aspect-Oriented Programming on Software Perfor-
mance: A Case Study of Leader/Followers and Half-
Sync/Half-Async Architectures. InProceedings of the
2011 IEEE 35th Annual Computer Software and Ap-
plications Conference, COMPSAC ’11, pages 662–
667, Washington, DC, USA. IEEE Computer Society.

Malek, S., Ramnath Krishnan, H., and Srinivasan, J. (2010).
Enhancing Middleware Support for Architecture-
Based Development through Compositional Weav-
ing of Styles. Journal of Systems and Software,
83(12):2513–2527.

Mortensen, M., Ghosh, S., and Bieman, J. (2012). Aspect-
Oriented Refactoring of Legacy Applications: An
Evaluation.IEEE Transactions on Software Engineer-
ing, 38(1):118–140.

Ortiz, G. and Prado, A. G. D. (2010). Improving device-
aware web services and their mobile clients through an
aspect-oriented, model-driven approach.Information
and Software Technology, 52(10):1080–1093.

Przybylek, A. (2011). Impact of Aspect-Oriented Program-
ming on Software Modularity. InProc. of the 15th
European Conference on Software Maintenance and
Reengineering, pages 369–372.

Smith, C. U. (1990).Performance Engineering of Software
Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1st edition.

Toledo, R., Leger, P., and Tanter, E. (2010). AspectScript:
Expressive Aspects for the Web. InProceedings of
the 9th International Conference on Aspect-Oriented
Software Development, AOSD ’10, pages 13–24, New
York, NY, USA. ACM.

Woodside, M., Franks, G., and Petriu, D. (2007). The Fu-
ture of Software Performance Engineering. InFuture
of Software Engineering, 2007. FOSE ’07, pages 171–
187.

Zhang, C. (2009). FlexSync: An Aspect-Oriented Ap-
proach to Java Synchronization. InProceedings of
the 31st International Conference on Software Engi-
neering, ICSE ’09, pages 375–385, Washington, DC,
USA. IEEE Computer Society.

A�Systematic�Review�on�Performance�Evaluation�of�Aspect-Oriented�Programming�Techniques�used�to�Implement
Crosscutting�Concerns

13


