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Abstract: Oil and gas companies’ earnings are heavily affected by fuels price fluctuations. The use of hedging tactics 
independently by each of their business units (e.g. crude oil production, oil refining and natural gas) is 
widespread to diminish their exposure to prices volatility. How much should be hedged and which 
derivatives should be selected according to the company risk profile are the main questions this paper 
intends to answer. The present research formulates an oil and gas company’s integrated earnings structure 
and evaluates the company’s risk tolerance with four approaches: Howard’s, Delquie’s, CAPM and a risk 
assessment questionnaire. Stochastic optimization and Monte Carlo simulation with a Copula-GARCH 
modelling of crude oil, distillates and natural gas prices is used to find the derivatives portfolios according 
to company risk tolerance hypothesis. The hedging results are then evaluated with a multi-criteria model 
built in accordance with the expressed company’s representatives preferences upon four criteria: payout 
exposure; downside gains; upside gains; and risk premium. The multi-criteria analysis revealed a decisive 
role in the final hedging decision. 

1 INTRODUCTION 

Oil and gas (O&G) companies’ earnings are 
substantially affected by the price fluctuations of 
crude oil, natural gas and refined products, which 
induce these companies to find ways to minimize 
price risk exposure. Almost all O&G companies use 
derivative instruments, like swaps and options, to 
share price risks with other counterparties. This 
research intends to propose a methodology to help 
answer the main question that an O&G company 
faces when trying to meet its budget goals: which 
amount (if any) should be hedged and in which 
derivatives. This work does not intend to be an 
intensive research on complex derivatives but 
instead evaluates the robustness of the hedging 
decisions based on risk tolerance parameters and 
confronts the results with a multi-criteria evaluation 
model. For confidentiality reasons, the name of the 
company will not be mentioned. 

Deregulation of the United States energy markets 
in the 1970’s provided the ingredients for the steady 
growth of derivatives in the energy markets. Several 
studies have focused the pros-and-cons of hedging 
practices in O&G companies, some of them 
presenting serious doubts on a company’s value 
increase. However, in general, there exists a 

common agreement on a better financial leverage 
(Haushalter, 2000) and a lower unpredictability on 
the earnings side (Jin and Jorion, 2006). The 
introduction of the decision-maker utility as a 
decision criterion (von Neumann and Morgenstern, 
1944) assured the foundations for risk and return 
concepts across the economic  thinking, including 
the early use of utility functions in portfolio 
optimization (Levy and Markowitz, 1979).  

The remainder of this paper is organized as 
follows. Section 2 describes the problem 
formulation, section 3 presents the price variables 
stochastic modelling and correlation fitting, section 
4 describes the risk modelling, section 5 shows the 
results obtained by stochastic optimization of four 
hedging approaches, section 6 presents a multi-
criteria model built to evaluate eight hedging options 
against four criteria (payout exposure, downside 
gains, upside gains, and risk premium) and section 7 
presents the conclusions. 

2 PROBLEM FORMULATION 

The O&G company is organized in three business 
units: the Exploration and Production unit (E&P) 
produces only a partial amount of the crude the 
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Refining and Distribution (R&D) unit needs (crude 
oil buying is regular), and the Natural Gas unit (NG) 
imports natural gas from foreign suppliers and sells 
it to final consumers. The company has not an 
integrated approach to manage price risk, since the 
price risk management is made separately at each 
business unit level, missing the risk mitigation 
benefits across business units and not evaluating the 
company entire price risk exposure. In fact, does not 
exist a corporate risk measure to align hedging 
operations with the company supposed risk 
preferences. Since this research is focused on 
commodities price risk, we take as reference the 
company’s revenues affected in first instance by 
price fluctuations, i.e. the Gross Margin, calculated 
as the difference between the value of the goods sold 
(crude oil, refined products and natural gas) and 
acquired goods (crude oil and natural gas).  

2.1 Physical Earnings Formulation 

2.1.1 Exploration and Production 

Crude oil production in oilfields of the Exploration 
and Production (E&P) business unit takes place 
under the two most applied agreements regulating 
profits between O&G companies and host 
governments (Kretzschmar et al., 2008): “Production 
Sharing Contracts” (PSC) and “Concessions”. PSC 
are common in African and non-OECD countries. In 
these regimes the O&G company receives a defined 
share of the production remaining after cost 
recovery, the Entitled Production quantity ep (in 
barrels of crude oil, bbl) is given by: 
 

ep 
po   co
p

 (1)

 

where co is the Cost Oil  (oil produced and allocated 
to cover the capital and operating costs of the 
company project), po is the Profit Oil (remaining 
‘profit’ allocated between company and State) and p 
is the crude oil market price in U.S. dollars per 
barrel ($/bbl). The Entitled Production quantity is 
converted in earnings depending on the crude oil 
market price. 

Concession regimes have more straightforward 
agreements and the earnings e (in $) is given by: 
 

e qp c potx , (2)
 

where q is the total production of crude oil (in bbl), 
p is the crude price ($/bbl), c denotes the operating 
costs, po is the Profit Oil and tx is the tax rate due to 
host governments. The general formula for the E&P 
earnings for both regimes me (in $) is: 

me  eppe (3)
 

The crude oil price has two major world reference 
indexes: the Brent price in Europe and the Western 
Texas Intermediate price (WTI) in the U.S.A. 

2.1.2 Refining and Distribution 

The Refining and Distribution (R&D) business unit 
is composed by the refining industrial complex and 
the distribution network (wholesale and retail). The 
price risk affects essentially the refining business, 
which is smashed between the very volatile prices of 
the inputs (crude oil) and outputs (refined products)., 
The price differential between crude oil and some 
refined products can be unfavourable for some 
periods and negative refining margins can occur, 
especially in older and less complex refineries, 
explaining why some of them are being shutdown. 
This turns the yearly earnings of a refinery a difficult 
guess and explains why hedging is a common 
practice (Ji and Fan, 2011). On the opposite side, in 
deregulated markets, Distribution has almost zero 
risk, since any change in the cost of the refined 
products is quickly transferred to the final consumer. 
Therefore, in this paper we will only focus on the 
refining price risk. The refining gross margin mr (in 
$/bbl) is given by: 
 

mr  yixi  p
i1

n










qr  (4)

 

where yi is the yield (the percentage of each i refined 
product taken from a unit of crude), xi is the unitary 
price of each refined product i, p is the unitary price 
of crude and qr is the yearly crude quantity refined 
(in tonnes). 

2.1.3 Natural Gas 

The Natural Gas (NG) business unit buys natural gas 
from other countries, based on long-term contracts 
with complex price formulas indexed to the prices of 
crude oil and refined products baskets. The selling 
price formulas are diversified according to 
consumer’s types (households, power plants and 
industrial consumers) and have usually the Brent 
price as the index reference (αBrent formulas) or 
other indexes. The NG gross margin mg (in $) is 
given by: 
 

mg  zisi  wjbj
j1

n


i1

n










qg, (5)

 

where si and bj are respectively the selling and 
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buying price indexes, zi and wj are respectively the 
selling and buying weights, and qg is the yearly total 
quantity of natural gas (measured in m3 or kWh). 

2.2 Derivatives Payout Formulation 

As the goal underneath this research is at least one 
year term hedging we will choose the most common 
and tradable derivatives for each business unit, 
which includes swaps and european options priced 
in the OTC (over the counter) market through large 
banks and Brent crude futures (ICE Brent) priced in 
the ICE exchange (a NYSE company). 

2.2.1 Exploration and Production (E&P) 

For the E&P business unit we will consider selling 
crude oil futures, since the counterparty’s risk is 
almost null and this procedure avoids the options 
premium’s high costs (Energy Information 
Administration, 2002). The unitary payout de (in 
$/bbl) is given by: 
 

de  f  pt , (6)
 

where f is the future price for the Brent ($/bbl), and 
pt is the Brent price at future exercise time t. If the 
Brent price pt before maturity time, is lower than the 
f sell price, E&P receives the difference between 
these two prices, otherwise it loses the difference.  

2.2.2 Refining 

For Refining we will choose the following 
derivatives: selling swaps which allows protection 
from lowers margins (even losing the potential 
benefit of higher margins) and collars (i.e. selling 
calls and buying puts), since they provide a 
bandwidth to benefit from price movements without 
incurring in costs. 

These derivatives have as underlying a simplified 
refining margin (also known as crack spread), based 
on the refined products with most traded forward 
prices. We will name this simplified refining margin 
the “Hedge Margin” mh (in $): 
 

mh  yixi  p
i1

5










qh, (7)

 

where yi is the yield of product i entering in the 
“Hedge Margin” (only 5 of the 18 products from the 
production of the refinery have enough forward 
price liquidity to enter in a hedge basket), xi is the 
market price of product i,  p is the Brent price and qh 
is the quantity to be hedged. The difference between 
the real margin mr and the hedging margin mh is 

called the “basis risk” b (in $), which is given by: 
 

bmr mh  (8)
 

The hedge margin swap is a derivative based on a 
fixed hedge margin price where the swap seller (the 
company) receives or pays the price difference 
between the fixed agreed price and the spot price at 
each future fixed time legs, usually monthly till the 
end of contract. The swap payout definition for the 
swap hedge margin ds (in $/bbl) is given by: 
 

ds  fs  ph  (9)
 

where fs is the initial agreed fixed price for the hedge 
margin ($/bbl), usually the average forward price of 
the hedging margin mh for the contract duration, and 
ph is the hedge margin spot price at each future 
month t, until the end of the contract, usually one or 
more years. 

The collar is a derivative instrument resulting 
from buying a put and selling a call. In practical 
terms, if the spot price at maturity is between the 
low (“floor”) and the high (“cap”) pre-agreed prices, 
no monthly payout exchange is made between the 
company and the counterpart. If the spot price at 
maturity is lower than the floor price, the company 
receives the difference from the counterparty and in 
the opposite situation, the company pays. The collar 
payout dc (in $/bbl) is given by: 
 

dc  min fc
f  ph;0  max fc

c  ph;0  (10)
 

where fc
f and fc

c are respectively the floor and the 
cap agreed fixed price for the hedge margin mh and 
ph is the hedge margin spot price at each future 
month t until the end of the contract. 

2.2.3 Natural Gas (NG) 

The NG business unit acts as an importer and 
distributor and is concerned with natural gas prices 
increases that may not transfer to clients, affecting 
the natural gas margin. With the same logic of the 
refining margin, selling swaps of the natural gas 
margin allows protection from lower natural gas 
margins even the potential gains from higher 
margins are partially transferred to the counterparty, 
depending on the quantities agreed. The monthly 
swap payout definition dg (in $/kWh) is given by:  
 

dg  fg  pg  (11)
 

where fg is the initial fixed agreed price for the 
natural gas margin, usually the average forward 
natural gas margin mg for contract duration and pg is 
the natural gas margin spot price at each future 
maturity  month t, until the end of the contract. 
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2.3 Company Earnings Formulation 

The company’s total derivatives payout d (in $) is 
given by: 
 

d  deqedsqs dcqc dgqg   (12)
 

where qe, qs, qc and qg are the quantities (a.k.a 
notional amounts in swaps and options and number 
of contracts in futures market) hedged and to be 
found in the hedging optimization, ahead in the 
present research. 

The sum of the total derivatives payout d with 
the physical margin of each business unit, me, mr and 
mg gives the gross margin for the company m (in $): 
 

m dme mr mg   (13)
 

The option to include all physical earnings and 
derivatives payouts to evaluate the company’s risk 
reduction instead of doing it separately by business 
unit is based on previous analyses where the risk 
reduction is more effective by optimizing at once all 
business units and inherent derivatives basket 
(Quintino et al., 2013), having also the advantage of 
minimizing the “basis risk”, b, since physical margin 
mr and hedged margin mh will be optimized in the 
same process. 

3 PRICES MODELING 

3.1 Stochastic Prices Modelling 

For this research we will follow the main historic 
pricing reference for energy markets, the Platts 
(2012) quoted for the Northwest Europe (a.k.a. 
Rotterdam prices) from 2006 to 2012. For the OTC 
forward prices we follow the Reuters (2012) quoted 
monthly prices for the Northwest Europe to 2013 
and the ICE Brent for future prices. 

3.2 Time Series Modelling 

Historic prices will be modelled by their monthly 
price returns and used to define the stochastic 
behaviour of the forward prices, permitting to 
evaluate how the margin m in expression (13) varies 
in the months ahead. 

The price return rt (in %) for a product is given 
by: 

rt  ln
pt
pt1









  (14)

 

where pt is the average price of month t and pt–1 is 

the average price in month t – 1. The Generalized 
Autoregressive Conditional Heteroscedasticity 
model (GARCH) proposed by Bollerslev (1986) 
achieved the best fit for each of the prices returns 
(SIC-Schwarz information criterion and the AIC-
Akaike information criterion were used as goodness 
of fit measures), which was also confirmed by 
Nomikos and Andriosopoulos (2012). The monthly 
spot prices returns rt (in $) for a GARCH(1,1) 
process is given by: 
 

rt    tzt  
with  

 t
2   rt1  2   t1

2  
(15)

 

where μ is the series trend, zt are independent 
variables from a Normal distribution Ɲ(0,1) and the 
conditional variance σt

2 assumes an autoregressive 
moving average process (ARMA), with α weighing 
the moving average part and β affecting the auto-
regressive part, being ω > 0, α ≥ 0, β ≥ 0. The term 
(α + β) should be less than one to assure long-term 
stability and β is defined as the “persistence term”, 
reflecting the speed at which the shocks to the 
variance revert to the long run variance. The higher 
the persistence the slower the times series revert to 
the long run variance. The absence of 
autocorrelation was confirmed by the Ljung-Box 
statistic. Figure 1 shows the high variability of Brent 
prices returns, with other refined products exhibiting 
a similar pattern. 
 

 

Figure 1: Brent monthly price returns modelled with a 
GARCH(1,1) model. 

3.3 Correlation Modelling 

Modelling correlation between the different products 
prices, assuring nonlinear and complex 
interdependencies, leads us to copula’s functions. 
The Sklar (1959) theorem provides the theoretical 
foundation for the application of copulas’ functions. 
It assumes a stochastic multi-variable vector (X1, 
X2,…Xn), where Xi is in our case the price of product 
i with continuous marginals and cumulative density 
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function Fi(xi)=P(Xi ≤ xi). Applying the probability 
integral transform to each component: 
[U1,U2,…Un]=[F1(X1),F2(X2),…,Fn(Xn)], having       
Ui є]0;1[ continuous margins.  

The copula function C is defined as the joint 
cumulative distribution function of [U1,U2,…Un], 
where C[u1,u2,…,un]=P[U1 ≤ u1,U2 ≤ u2,…, Un ≤ un]. 
The copula C contains all information on the 
dependence structure between the components of 
(X1, X2,…Xn), whereas the marginal cumulative 
distribution functions Fi contain all information on 
the marginal distributions. The great advantage of 
copula’s functions is to allow the correlation pattern 
modelled by the copula function to be independent 
from the random variable Xi marginal’s. Copula’s 
functions are considered the most powerful and 
flexible tool for portfolio management and risk 
analysis (Jobst et al., 2006); (Rosenberg and 
Schuermann, 2006); (Chollete, 2008). 

3.4 Copula-GARCH Model 

Natural Gas and Refining business units have very 
narrow gross margins, which depend on complex 
formulas involving several products prices, 
demanding a powerful correlation method to assure 
the margins’ values adhere to reality. Time series 
functions and correlation functions, after long 
testing, led us to the Copula-GARCH models (Lu et 
al., 2011). Our method can be synthesized in three 
steps: first, modelling the independent prices returns 
with a GARCH model as described in (15) and, 
second, find the best copula function to correlate 
each GARCH price returns residuals zt.  
 

zt 
rt 
 t

 (16)

 

Applying the SIC and the AIC criteria (Fermanian, 
2005) we obtained the Student’s t copula (t-copula) 
as the best copula function to model the prices return 
residuals correlation. The Student’s t copula is 
defined by: 
 

C u1;un;,d  Td, td
1 u1 , td1 un   (17) 

 

where T is the t-copula with d degrees of freedom 
and correlation matrix ρ, t–1 is the inverse Student’s t 
distribution with d degrees-of-freedom, and un are 
the marginal distributions of the n variables (the 
price returns residuals, zt in our case). 
The degree of tail dependency in the t-copula is 
defined by d (degrees of freedom).  

Finally, the third step evaluates each stochastic 
price return  pt using: 
 

pt  pe
rt  (18)

 

where p is each forward price and rt is each price 
return, given by the combination of a GARCH and a 
t-copula function T being Z*

t  the residual correlated 
with each other price returns residuals: 
 

rt    rt1  2   t1
2



Td, td

1 ut  
Z*
t

  
  

(19)

 

Unlike the Gaussian copula, the t-copulas have the 
advantage of preserving the tail dependence in 
extreme events (Asche et al., 2003), having steady 
use in advanced portfolio risk estimation (Huang et 
al., 2009), (Shams and Haghighi, 2013) and oil 
hedging strategies (Chang et al., 2011). 

4 RISK MODELLING 

4.1 Risk Measures 

Exposure, also called impact (Kaplan and Mikes, 
2012), is the foreseen potential loss in money or in 
other measurable variable if the risk occurs. The 
importance of confronting an O&G gross margin 
“exposure” with a measure of the respective 
“uncertainty” is to guarantee that a company meets 
its obligations with a previously imposed degree of 
confidence (Haushalter, 2000). Artzner et al., (1999) 
defined the axioms necessary and sufficient for a 
risk measure to be coherent: positive homogeneity, 
translation-invariance, monotonicity and sub-
additivity. Rockafellar and Uryasev (2000) proved 
that standard deviation and Value-at-Risk (VaR) 
created by J. P. Morgan (1992) are not coherent risk 
measures, because the first violates translation 
invariance and monotonicity, while VaR fails sub-
additivity. They proposed Conditional Value-at-Risk 
(CVaR) as a coherent risk measure, which assures 
the essential sub-additivity property and, as 
presented in Figure 2 measures how large is the 
average loss into the left tail ($720x106), while VaR 
only defines the loss frontier for a given probability 
($600x106).  

Conditional Value-at-Risk (CVaR) is given by: 
 

CVaR1  E X  VaR1   (20)
 

where Xα is the value defined for having VaR for a 
confidence level of 1 – α. 
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Figure 2: Company downside earnings measured by VaR 
and CVaR with a 95% confidence level. 

4.2 Risk Tolerance 

Utility theory, firstly proposed by Bernoulli (1738) 
and developed by von Neumann and Morgenstern 
(1944), allows determining a rational decision-
maker behaviour under risk and uncertainty. A 
utility function u(x) describes a decision-maker 
preferences and risk attitude allowing to translate, 
e.g., dollars into utility units. A risk-averse decision-
maker would have a concave utility function, 
meaning that she would exchange a higher expected 
value of an uncertain game by a lower sure amount. 
A risk-prone decision-maker (one that prefers a 
higher expected value of an uncertain game to a 
lower certain amount) would have a convex utility 
function. A risk neutral decision-maker would have 
a linear utility function. 

The Certainty Equivalent (CE) is a key concept 
in risk analysis. In the simple example lottery 
depicted in Figure 3, the decision-maker may 
consider the option “gamble”, with an outcome of 
$100 (u(x) = 1) with a probability of 60%, and an 
outcome of $0 (u(x) = 0) with a probability of 40% 
indifferent to the option “not gamble”, if the certain 
outcome of “not gamble” is $45. Thus, we would 
say that CE = $45 and u($45) = u($100) × 0.6 + 
u($0) × 0.4 = 0.6. The risk premium r (in $) is 
given by: 
 

r = E(x) – CE.
 

(21)
 

Consequently, for the above presented example, r = 
($100 × 0.6 + $0 × 0.4) – $45 = $15. 
 

  

Figure 3: Certainty equivalent meaning in a lottery. 

Measuring corporate risk tolerance requires 

assessing tradeoffs between potential upside gains 
and downside losses under conditions of uncertainty. 

As a result, the selection of the optimal 
derivatives portfolio is influenced by the decision-
maker’s attitudes towards financial risk. This is the 
point where utility theory commands the evaluation 
of the optimal portfolio, assessing the decision 
maker’s risk tolerance. The exponential utility 
function (22) is one of the most widely used, and is 
well tested on portfolio risk management in the oil 
industry (Walls, 2005). 
 

u(x) 1e
 x
  (22)

 

Its single parameter (the risk tolerance ρ), no initial 
wealth dependence and constant absolute risk 
aversion (–u''(x)/u'(x)=cte) (Pratt, 1964) explain the 
exponential utility function wide use. In a lottery 
game, the risk tolerance value ρ is the value that the 
decision maker is willing to accept in order to play a 
game where there are only two outcomes: winning 
the amount ρ with a 50% probability or lose ρ/2 with 
50% probability. 

The exponential utility function performs better 
than other utility functions, including the quadratic 
utility function inherent to the Markowitz’s portfolio 
optimization (Kirkwood, 2004) but using a utility 
function advises a post sensitivity analysis to assure 
the results robustness. The exponential utility 
function certainty equivalent is:  
 

CEx   ln pie
xi


11

n











 (23)

 

but can be simplified (Pratt, 1964, Clemen, 1996) for 
outcomes with normal distributions (which is our 
case, after K-S test) to: 
 

CE   x    x
2

2
 (24)

 

where μ(x) is the yearly average gross margin for the 
company  according to expression (13),  x

2  is the 

gross margin variance and ρ is the company’s risk 
tolerance.  

4.3 Risk Tolerance Estimation 

Numerous studies proposed evaluation methods for 
corporate values of risk tolerance for exponential 
utility functions. The most referred research suggests 
setting the risk tolerance ρ at 6% of sales, 1 to 1.5 
times net income, or 1/6 of equity in the “O&G” 
companies (Howard, 1988). A more analytic 
approach presented by Delquie (2008) proposes the 
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risk tolerance to be set to a fraction of the maximum 
acceptable loss the company can afford for a given p 
significance level, which can be considered a proxy 
for the Value-at-Risk (VaR1–p): 
 

  VaR(p)

 ln p
 (25)

 

With a significance level p = 5% this implies that 
the risk tolerance ρ is equal to one third of the 
VaR95%.  

Another common way to estimate corporate risk 
tolerance is through a questionnaire answered by a 
decision group panel who represents the company 
risk profile (Board, CEO, CRO, CFO) for the most 
important decisions. 

Confronting each decision maker with a list of 
questions in which he must choose between one of 
two outcomes, x1 or x2, with probabilities p1 and p2, 
respectively, it is possible to calculate iteratively the 
certainty equivalent CE and the inherent risk 
tolerance ρ that matches equation (23) (Walls 
(2005)). 

Another risk tolerance method estimation, 
derived from the Capital Asset Pricing Method-
CAPM (Sharpe, 1964) is to assume the CE as the 
effective cash-flow when each year t nominal cash-
flow CFt is discounted through the ratio of the risk 
free rate rf to the rate that the company demands for 
investments, the Weighted Average Cost of Capital 
(WACC).  
 

CEt CFt
1 rf t

1WACC t











 (26)

 

where CFt is the Project Cash-Flow in year t and rf  
is the free rate of return. 

4.4 Risk Tolerance Results 

Let us now explaining the results of the four 
approaches employed:  

a) With Howard’s we obtain the most conservative 
estimation, e.g. one year of the company’s net 
results is assumed to be the company’s risk 
tolerance ($317x106);  

b) For Delquie’s, we estimate the VaR95% for the 
company’s one year gross margin ($505×106) 
with p=5% in expression (25), which gives a risk 
tolerance of $166×106;  

c) For CAPM, we evaluated all the forecasted 
project cash-flows 10 years ahead (essentially 
E&P based) and we estimate the average 
certainty equivalent applying (26), which gives a 
risk tolerance of $220×106;  

d) For the risk assessment questionnaire, we 
confronted the CFO and his advisers with a set of 
questions to evaluate the amount of money about 
which they were indifferent, as a company, in 
order to have a 50-50 chance of winning that 
sum or losing half of it. A complementary set of 
questions was made on the risk premium they 
were willing to pay in order to receive with 
certainty the average gross margin estimated for 
next year’s budget. Applying expression (23) to 
the first set of answers and expression (21) to the 
second set of answers, it was possible to have a 
series of risk tolerances values, with a mean of 
$180×106 and a standard deviation of $42×106.  

The risk tolerance results for the four methods are 
presented in Table 1. 

Table 1: Risk Tolerance results (in $106). 

Method Measure Value 
Risk 

Tolerance 
Howard Net Income 317 317 
Delquie VaR95% 505 166 
CAPM CE 370 220 
Questionnaire Gross Margin 760 180 

 

Delquie (2008) method has the most 
conservative risk tolerance, while Howard’s method 
estimated the highest value. The other ratios 
proposed by Howard (equity and sales) give us even 
larger risk tolerance values. 

5 OPTIMIZATION RESULTS 

In order to evaluate the consequences of the risk 
tolerance estimates in Table 1, we ran optimizations 
for a range of eight risk tolerance values, including 
the four presented in Table 1, maximizing the 
company certainty equivalent by inserting 
expression (13) into expression (24): 
 

max CE  max m(d,me,mr ,mg) 
m

2

2








 (27)
 

We used a stochastic optimization algorithm 
(Optquest, 2012) having the hedge quantities qe, qs, 
qc and qg in expression (12) as the variables to be 
determined. The stochastic price pt of each product 
is embedded in the gross margin of each business 
unit, me, mr, mg and in the derivatives payout d, at 
the same time.  

After having achieved the optimal solution for 
each of the eight risk tolerance values, we ran a 
Monte Carlo simulation (5000 runs) using 
ModelRisk (2012). 
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The solutions from the integrated model (27) 
have the advantage of obtaining the eight optimal 
derivatives solutions while minimizing the “basis 
risk” b. Figure 4 presents the density probability 
curve for the un-hedged and hedged scenario for a 
risk tolerance of $25×106. 

 

 

Figure 4: Hedged and un-hedged margin for a $25×106 
risk tolerance. 

Figure 5 shows the risk tolerance impact in the 
company certainty equivalent and into the CVaR95% 
(the risk measure). 

 

Figure 5: CE and CVaR95% as a function of risk tolerance. 

As risk tolerance increases, the certainty 
equivalent increases, since the risk premium 
decreases (see (24)). However, after a risk tolerance 
of $ 50×106, we see a drop in the company CVaR.  
 

 

Figure 6: CVaR95% and % Physical Hedged as a function 
of Risk Tolerance ($106). 

Looking at Figure 6, the decrease in CVaR is 
explained by the decreasing amount of derivatives d 
in the optimized solutions, which allows greater 
potential upside gains but greater potential downside 

losses. The “% Physical Hedged” is the ratio 
between the notional amounts of derivatives 
contracts and the total physical company production, 
both amounts in tons. 

Less hedging means that the minimum gains (or 
losses) get lower. Looking at the risk tolerance 
vertical lines, the Delquie method implies about 
20% hedging, the risk questionnaire about 15%, 
CAPM about 7% hedging and Howard method 
would imply only 3% hedging. The main question 
that arises is about the “real” company risk 
tolerance, because different risk tolerances imply 
noticeable differences in terms of potential 
derivatives losses, as is shown in Figure 7. Yearly 
potential derivatives losses may vary from $20×106 

to $140×106, which can have a heavy impact in the 
Mark-to-Market (MTM) company quarterly 
financial statements. 

 

 

Figure 7: % Physical hedged and potential derivatives 
losses as a function of risk tolerance. 

6 MULTI-CRITERIA 
EVALUATION 

As we can observe in the results presented in section 
5, the risk tolerance estimation widely affects the 
hedging optimal solutions, and it is not clear if the 
in-house risk assessment questionnaire defined 
accurately the company risk profile. Therefore, we 
will test in what extent the questionnaire reflects 
with confidence the decision maker’s risk 
preferences.  

The company is interested in selecting the most 
attractive hedging option from the set of eight 
options previously built. However, the CFO and his 
advisers, which constitute the company’s decision-
making group (DM), are not sure about which one to 
select. In fact, they suspect that there is no option 
that is the best according to all points of view that 
came to their mind. To help the DM we developed a 
multi-criteria evaluation model (Belton and Stewart 
(2002)) using the MACBETH approach (Bana e 
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Costa and Vansnick, 1999; (Bana e Costa et al., 
2012), which required the group to: discuss their 
points of view and select the criteria that should be 
used to evaluate the hedging options; associate a 
descriptor of performance to each criterion; build a 
value function for each criterion; and weight the 
criteria.  

The additive value function model was selected 
to provide an overall measure of the attractiveness of 
each hedging option:  

 

 v x1,...xn   wivi xi 
i1

n

  with wi 1,
i1

n

  wi  0  (28)
 

where v is the overall score of an hedging option x 
with the performance profile (x1,…, xn) on the n 
criteria, vi (i =1, …, n) are value functions, wi (i =1, 
…, n) are the criteria weights. (Note that by applying 
the additive value function model we are admitting 
that a poor performance of an option in one criterion 
may be compensated by good performances of that 
option in other criteria. However, this working 
hypothesis must be validated by the decision-making 
group.) 

The DM members discussed the points of view 
they considered relevant for evaluating hedging 
options having in mind the next year gross margin 
budget as overall objective. After discussion, four 
evaluation criteria were selected: 1) downside gains, 
2) upside gains, 3) payout exposure and 4) risk 
premium.  

The performances of the hedging alternatives in 
all criteria are their earnings expressed in $106. The 
5th and 95th earnings’ percentiles from the Monte 
Carlo simulation results were used to define the 
upper and lower reference levels, respectively, on 
each descriptor of performance; three other 
intermediate levels, between the upper and the lower 
reference levels, were created on each descriptor of 
performance. For example, Figure 8 presents the 
performance levels of criterion “payout exposure”, 
where 0 and 200 were defined as the upper and 
lower reference levels, respectively, and 50, 100 and 
150 are the intermediate levels; Figure 11 shows the 
performance levels of all criteria). 
 

 

Figure 8: Performance levels for the “payout exposure” 
criterion (in $106). 

A value function was built for each criterion 
using the MACBETH method and software 
(www.m-macbeth.com), fixing 100 and 0 as the 
value scores of the upper reference level and lower 
reference level, respectively, on all criteria. 
According to the MACBETH questioning protocol, 
the decision-makers had to judge the difference in 
attractiveness between each two levels of the 
descriptor of performance using the semantic scale: 
very weak, weak, moderate, strong, very strong or 
extreme. For example, in the matrix of judgments for 
criterion “payout exposure” (see Figure 9) the 
decision-makers considered the difference in 
attractiveness between $0 and $150×106 to be very 
strong (“v. strong” in Figure 9). After, M-
MACBETH proposed a value function scale 
compatible with all the judgments inputted in the 
matrix of judgements, using the linear programming 
procedure presented by Bana e Costa et al. (2012). 
The decision-makers were then asked to validate the 
proposed scale in terms of the proportions between 
the resulting scale intervals, and adjust them, if 
needed. Figure 10 shows the value function scale for 
the “payout exposure” criterion. 

 

Figure 9: MACBETH matrix of judgments for the “payout 
exposure” criterion. 

 

Figure 10: Value function for the “payout exposure” 
criterion (performances in $106). 

The following step consisted in eliciting weights 
for the criteria. For that purpose five hedging 
fictitious options were built: one option with a 
performance at the upper reference level in one 
criterion and performances at the lower reference 
levels in the other three criteria with no repetitions 
(what gives four fictitious options), and one 
fictitious option with performances at the lower 
reference levels in all the four criteria. Figure 11 
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shows that the fictitious option “[Dwn Gains]” (see 
the cell at top in column “Overall references” in 
Figure 11) has a performance at the upper reference 
level in criterion “Dwn Gains” (600) and 
performances at the lower reference levels in the 
other three criteria (“PayoutExp” – 200; “Up Gains” 
– 950, “Risk premium” – 400). Then, the decision-
makers ranked the fictitious options by decreasing 
order of their overall attractiveness, which resulted 
in the rank shown in the “Overall references” 
column in Figure 11. 
 

 

Figure 11: Performance levels on the four criteria (in 
$106). 

After, the decision-making group judged the 
differences in attractiveness between each two 
fictitious options, which allowed filling in the 
MACBETH weighting judgments matrix show in 
Figure 12. We underline that by accepting to make 
these trade-offs, the group is validating our working 
hypothesis of compensation between criteria. 
 

 

Figure 12: MACBETH weighting judgments. 

M-MACBETH then generated the criteria 
weights by linear programming (see Bana e Costa et 
al., 2012), which were show to the group for 
validation and possible adjustment. The final criteria 
weights (in %) were: Downside Gains (47%); 
Payout exposure (33%); Risk premium (16%); and 
Upside gains (4%). 

In the last step, the performances of the eight 
hedging options – from A (no hedge) until H 
(tolerance risk of $350×106) – were inputted in M-
MACBETH (see Figure 13).  
 

 

Figure 13: Performances of the eight alternatives on the 
four criteria (in $106). 

Note that the performances of the options are the 
results generated for each of the eight risk tolerance 
scenarios in section 5. With these data inputted the 
partial (on each criterion) and overall value scores of 
the hedging options were calculated by M-
MACBETH (see Figure 14). 
 

 

Figure 14: Overall and partial value scores of the 
alternatives and criteria weights. 

In Figure 14 (column “Overall”) we see that the 
most overall attractive option considering the 
expressed preferences of the decision-makers is 
option A (No hedge). Option H which corresponds 
to the highest risk tolerance (ρ = $350×106), is 
ranked second, whereas the least preferred hedging 
option is B, which corresponds to lowest risk 
tolerance (ρ = $25×106). 

7 CONCLUSIONS 

The multi-criteria evaluation of the hedging options 
using the judgments of the same decision-makers 
who answered the questionnaire gave us different 
results in terms of preferred hedging options. The 
most preferred hedging option “A”, and inherent 
null hedging is closer to the Howard risk estimation 
(ρ ≈ $350×106) and confirms Smith (2004)’s 
findings that “large companies with reasonably 
diversified shareholders should have risk tolerances 
that are much larger than those typically suggested 
in the decision analysis literature” (p. 114). In fact, 
our research suggests the most preferred alternatives 
have higher risk tolerance values than initially 
estimated by the questionnaire. 

With this research we show that it is possible to 
perform a structured approach to model the entire 
O&G company business model and evaluate price 
risk management in an integrated way. Gross 
margins from the three business units and a basket of 
derivatives enter at once in a certainty equivalent 
maximization problem and it becomes clear how the 
hedging solutions vary with risk tolerance. 

Defining a preliminary risk tolerance measure for 
the company through a tailored risk assessment 
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questionnaire and comparing with other reference 
methods of risk tolerance estimation allows 
achieving preliminary solutions based on stochastic 
portfolio optimization for each risk tolerance. 
However, a multi-criteria final assessment should be 
done, using the Monte Carlo simulation results, in 
order to ascertain how decision-makers valuate the 
underneath multiple consequences from each 
hedging option. This multi-criteria final risk 
tolerance evaluation can in fact help the company in 
the always difficult decision “to hedge or not to 
hedge” and, if yes, which amount to hedge. 

It is important to note that these results were 
obtained with data and preference judgements 
concerning a specific moment in time. Few months 
before or later, with different crude and refined 
products prices, would lead to different decisions 
under this approach. On the other side, each year, 
the company has different goals, the market value 
can grow or shrink along with the earnings and gross 
margins. Further research should be done to evaluate 
the results of the model in different price conditions 
and involving other decision makers, preferably also 
including board directors.  
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