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Abstract: Cloud computing is synonym for high performance computing. It offers a very scalable infrastructure for 
the deployment of an arbitrarily high number of systems and services and to manage them without impacts 
on their performance. As for traditional systems, also such a wide distributed infrastructure  needs to fulfil 
basic security requirements, like to restrict access to its resources, thus requiring authorization and access 
control mechanisms. Cloud providers still rely on traditional authorization and access control systems, 
however in some critical cases such solutions can lead to performance issues. The more complex is the 
access control structure (many authorization levels, many users and resources to protect); the slower is the 
enforcement of access control policies. In this paper we present a performance study on these traditional 
access control mechanisms like XACML, which computes the overhead generated by the authorizations 
checking process in extreme usage conditions. Therefore, we propose a new approach to make access 
control systems more scalable and suitable for cloud computing high performance requirements. This 
approach is based on a high speed caching access control tree that accelerates the decision making process 
without impacting on the consistency of the rules. Finally, by comparing the performance test results 
obtained by our solution to a traditional XACML access control system, we demonstrate that the ACT in-
memory approach is more suitable for Cloud infrastructures by offering a scalable and high speed AC 
solution.  

1 INTRODUCTION 

Cloud computing offers a high performance 
computing infrastructure, combined with a huge 
amount of resources (like storage, database, 
network, servers, memory, virtual machines, etc.). 
Resources are made available to customers with a 
strong guarantee on the high quality of the 
computing performance. Scalability, availability and 
accessibility are among the key pillars of a cloud 
service or platform; naturally, these characteristics 
must not be sacrificed at the altar of security. 
Security comprises many aspects and functionalities, 
and access control represents one of the most 
common concepts which are mandatory for any 
production system.  Access control (AC) is a 
mechanism in charge of restricting and filtering the 
access to system resources (data objects, Personal 
Identifiable Information PII, services, platforms, or 
infrastructure). Specific authorizations (also called 
permissions) are assigned to system users; when a 
user requests access to a resource, an AC engine is 

in charge of checking if the requesting user’s 
permissions are compliant with the set of AC rules 
associated to that resource. The AC rules can be 
expressed using very basic lists called ACL, or using 
a more sophisticated and structured representation 
called policy. The AC rules described via policies 
are largely adopted in complex systems, those that 
are available to many potential users and that offer 
different resources. The main advantage of using AC 
policies is the possibility to manage and maintain a 
huge number of complex rules. Compared to the 
basic ACLs, AC policies require a reasoning engine 
able to  explore process and decide on the 
applicability of AC rules against access requests. 
Cloud computing instances rely on AC systems 
configured via AC policies that express AC rules 
targeting a complex structure of user set and 
resources (Popa, 2010). The more significant is the 
density of the user and resource model; the more 
complex is the structure of the policies. A complex 
AC policy requires an additional computing and 
reasoning effort to the AC engine in order to 
interpret its rules and enforce the decision. Some 
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studies (Antonios, 2011) and (Tang, 2012) pointed 
out the new requirements in terms of AC models 
introduced by cloud computing the difficulties of 
traditional authorization systems to handle very 
complex policies for cloud computing systems, and 
in some critical cases this can lead to performance 
issues in the resource access process. In this paper 
we conduct a performance study on a XACML 
(OASIS, 2013) AC engine for a cloud infrastructure.  
XACML, stands for eXtensible Access Control 
Markup Language, is an OASIS XML policy 
standard for AC. Although if XACML is not initially 
designed for the Cloud, a deployment was proposed 
in (Reddy, 2012). Our performance study consists of 
stress tests on the AC enforcement engine, requiring 
it to process a huge number of access requests for a 
wide range of resources protected by complex 
policies. The objective of this study is to indicate the 
limitation of traditional AC engines when they are 
deployed in cloud platforms. Subsequently, we 
propose two approaches to optimize the performance 
of the considered AC enforcement engine and make 
it more suitable to cloud platforms. Both solutions 
are based on a pre-caching authorization tree; this 
method consists of storing all AC rules in a tree data 
structure, in order to optimize the policy exploration 
operation. This access tree can be implemented in 
two ways: Using a traditional DB (loaded in 
memory), or using a structured hash table system 
(also loaded in memory). We stress the importance 
of the in-memory deployment, in order to take 
advantage of the “unlimited” resources offered by 
the Cloud infrastructures.   

This paper is organized as follows: In section 
two we survey the state of the art on the different 
performance studies dealing with performances of 
AC systems, in section three we describe the 
deployment of the XACML engine in the cloud as a 
reference study basis, in section four we detail our 
access control tree based solutions, in the section 
five we compare the different approaches through 
performance tests and try to identify the most 
scalable approach. 

2 RELATED WORK 

Optimizing performances of AC enforcement 
engines is an issue that appeared and was partially 
addressed before the emergence of the Cloud 
computing paradigm. It is interesting to review these 
studies to learn about their approaches and try to 
map them to the new requirements introduced by the 
cloud infrastructures. An AC mechanism has its 

deployment and operational costs, for instance when 
implementing its structure in very large scale storage 
systems, one has to face a trade-off among 
performance, availability and security (Leung, 
2007). Balancing this trade-off is particularly 
challenging in the storage cloud environment, as 
providers must implement an efficient access control 
system that scales elastically and meets the high 
availability requirements of the cloud. The 
bottleneck caused by the lack of cloud-adapted AC 
enforcement mechanisms can be exploited for DoS 
attacks to break a service or a system like in the case 
described in (Niu, 2009). 

2.1 Performance Issues for Access 
Control Enforcement in 
Traditional Systems 

One of the most interesting approaches that inspired 
our solution is the XEngine. In (Hwang, 2011), and 
(Daly, 2011) the XEngine is presented as a fast and 
scalable evaluation engine for XACML. This work 
proposes to transform a XACML policy into a 
different data structure; this method converts the 
hierarchical structure of the XACML policy into a 
flat structure and then transforms any set of multiple 
combining algorithms into a first-applicable 
algorithm section. This work is inspired by the 
decision diagram approach where the decision is 
made based on a tree data structure. This work 
addresses the problem of performing fast XACML 
evaluation; however their model is quite static 
especially with respect to the proposed tree structure 
that systematically uses the subject as root of the AC 
tree. Such model lacks of efficiency especially when 
many resources are requested at the same time. In 
our solution, we proposed several enhancements to 
this approach in order to make it more flexible and 
efficient for any type of queries. 

(Squicciarini, 2011) proposed an alternative 
approach called reordering and clustering policy 
rules. Their work proposes a way to optimize 
policies based on statistics to reorder rules. As it 
consists of a reordering of rules, only the deny-
overrides and permit-overrides combining algorithm 
are taken in consideration for the optimization. Their 
solution works well if the amount of requests per 
requesters and the type of requester are not dynamic. 
In the case where they are dynamic the reordering is 
not efficient, and a clustering solution is proposed. 
The clustering is based on a per subject basis. In our 
previous example, this leads to the creation of two 
views, one for each subject, student and faculty. 
However, Squicciardini et al consider only two
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 XACML combining algorithms.  

2.2 Performance Issues for Access 
Control Enforcement in Cloud 
Systems 

An initial study was proposed by (Punithasurya, 
2012) to compare different AC models; they tried to 
compare different parameters including the 
performance aspect. This evaluation of such 
parameters was not really motivated by a technical 
analysis. Therefore, it is hard to interpret their 
results and compare the different AC models with 
respect to performance aspects. 

Well known cloud providers like Amazon S3 or  
Microsoft Windows Azure Storage, has a simple 
method for granting access to third parties using 
ACLs, provided that they are registered as S3 users 
or groups (they do not implement complex AC 
rules). Objects can be made public by granting 
access to the Anonymous group but there is no way 
to selectively grant access to principals outside of 
the S3 domain. The main limitation of S3 ACLs is 
the restriction to list 100 principals. Instead of 
proposing a scalable solution, Amazon S3 proposed 
to split the ACLs into small independent clusters. 
EMC Atmos Online opted for the same approach 
with a more hierarchical structure between the 
different cluster groups. 

The caching solution was also proposed for 
cloud computing systems (Reeja, 2012). The 
approach described in that paper implements two 
policy decision points (PDP), one for new access 
requests and another one for access requests that 
were already processed by the primary PDP.  

(Harnik, 2011) conducted an analysis on the 
ACL based mechanism for cloud computing in order 
to point out their weaknesses and to propose their 
AC mechanism. It is based on a capability-based 
system that allows the integration of existing AC 
solutions thus leading to hybrid architectures for AC 
systems. Such hybrid systems combine the benefits 
of capability-based models with other commonly 
used mechanisms such as ACLs or RBAC. On the 
other hand this study points out the weakness of 
ACL used by many major cloud providers like 
Amazon and Microsoft. 

3 DEPLOYING XACML IN THE 
CLOUD 

In the previous section we explored the different 

access control system deployed in the current cloud 
infrastructures. We observed that most of the 
solutions are based on basic ACLs and not really 
adapted to the Cloud requirements. We explain in 
this section how the XACML is deployed in a Cloud 
platform, and how to optimise the enforcement 
process using access control trees. We explain how 
our new solution takes benefit and enhance the tree 
based structures proposed by other studies in the 
literature.  

3.1 XACML Integration 

XACML is a declarative AC policy language 
implemented in XML and a processing model 
describing how to evaluate authorization requests 
according to the rules defines in policies. It allows 
for the definition of AC but also usage control rules 
through obligations. This language is very 
expressive and can be used to define a lot of 
different kind of policies. The choice of this 
language was due to the completeness of its 
expressivity for access control rules. We can define 
many AC models (like RBAC, ABAC, UBAC, etc.) 
with this language. It has a good flexibility for 
defining rule conditions.  

We propose the XACML engine architecture 
depicted in Figure 1 as an integration architecture to 
the Cloud infrastructure. 
 Cloud User interface: UI layers provided by the 

cloud as a service or as a platform feature. This 
cloud layer offers an IDM function to manage 
the user identity and authentication features. 
Through this UI the user can access to the 
different services and resources offered by the 
cloud. The identity (or role) of the user and her 
access request are collected at this level in 
order to be exploited by the PEP (Policy 
Enforcement Point) of the XACML engine 

 XACML Engine: it is deployed in the cloud a 
service or as platform functionality (in this 
paper we chose to deploy it as a service). It 
offers the traditional functionality defined by 
the XACML specifications: PAP (Policy 
Administration Point) to manage the policy 
repository, PDP (Policy Decision Point) that 
evaluates the user request, and the 
authorizations contained in the policies,  PIP 
(Policy Information Point) that provides 
external information about the user profile, and 
the Context Handler that coordinates all the 
previous components. 

 Cloud Resources: we connected the resource 
manager of the XACML engine to the different 
resources provided by the cloud infrastructure 
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(database, services, VMs, etc.) in order to 
associate a user request with the requested 
resources. These resources are only accessible 
if the PDP evaluates positively the user request. 

 
Figure 1: XACML Architecture for the Cloud. 

3.2 Cloud Platform 

The XACML AC engine that we used and modified 
in this paper is deployed as a service on a PaaS. We 
chose SAP Hana Cloud since it can be seen as SaaS 
and PaaS. SAP Hana Cloud platform also offers 
services like connectivity, document storing, 
identity, persistence and mail.  But the most 
important selling argument offered by SAP Hana 
Cloud is that the platform is running over an in-
memory database (Plattner, 2009), which fits 
perfectly with our in-memory based solution, 
described in details in the next sections.  

4 OPTIMIZED ACCESS 
CONTROL ENFORCEMENT 

The AC policy evaluation and enforcement can be 
complex and lengthy tasks to perform, impacted by 
the complexity of rules. In cloud computing, this 
issue is combined with thousands of users requesting 
simultaneously access to resources. This leads to an 
overhead during the authorization checking process. 
Therefore, it is important to implement a solution for 
speeding up the policy-based authorization checking 
process. Such solution should scale properly in order 
to handle multiple concurrent requests. 

4.1 Access Control Trees 

The main issue with XACML is the complexity due 
to its high expressivity. In order to optimize the 

evaluation computation process, we decided to 
implement a solution based on AC trees (ACT). The 
ACT is a concept based on aggregation. The use of 
pre-processing to aggregate privacy policies into the 
ACT will allow performance efficient AC check on 
mass of data. We can represent the aggregate AC 
information into a tree. The tree data structure has 
two key advantages for us: first, it provides a simple 
view of the AC structure; secondly, it facilitates the 
application of hashing techniques on a tree for 
efficient data search functions. This hashing 
technique will allow us to use an emerging database 
class (NoSQL) in order to improve further the 
already good performance of an ACT 
implementation in a relational database. 

To map the AC rules into a tree structure we 
adopted the model proposed by (Bascou, 2002) and 
adapt it to the XACML policy schema. In this 
model, only accessible data objects are available. If 
the access to an object is denied, it will not appear. 
Following this model, our ACT contains only 
permitted data objects. If the data object cannot be 
accessed it will simply not appear. For this reason 
we call this tree the “Permit Tree” (PT). The AC tree 
or PT can be represented as follows: 

 
Figure 2: Access Control Tree (Permission Tree). 

The PT (the same procedure can be applied for the 
Deny rules thus obtaining a Deny Tree)  represented 
in Figure 2 is structured in three main levels: The 
first level contains the list of authorized subjects (or 
users, or roles, etc.) declared in the XACML policy 
repository. The ANY subject ID is used for objects 
that are accessible to all users with no restrictions.  
The second level represents the different actions or 
operations that can be executed on the data. If the 
list of actions is undefined, there is also an element 
Any (Action).  The third level represents the different 
types for data objects. Subsequently, the fourth layer 
contains a list of accessible data object IDs. The 
layer order (in the example subject, action and 
resource) can change according to system 
requirements. For example the first level can be the 
ID of the object. In that case the selection is made on 
the object to be accessed, for which one gets the list
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of authorized users. 

4.2 Tree Management Algorithms 

In this section we describe the tree management 
algorithms, i.e. how the AC tree is built, maintained 
and explored.  

4.2.1 Insertion Algorithm 

This algorithm describes how one can add a new 
data object associated with its XACML rule. In other 
words, this means to insert data object references in 
the ACT corresponding to the XACML policy 
associated to the data object. 

Tree Input Parameters 
The input for the insertion or “insert” algorithm is a 
data object with a policy associated to it. The policy 
is seen as a rule set that can be composed by 4 rule 
types; they are listed in Table 1. One of them is 
specific, while others are not specific. The first rule 
type is a specific rule and can be easily mapped in 
the ACT tree. The others (2-4) are not specific. Not 
specific rules can be recognized by the “any” 
keyword. 

Table 1: List of rule types. 

Rule Type Specific rule? 
1.< subject; action; decision > specific 
2.< subject; any; decision > non-specific 
3.< any; action; decision > non-specific 
4.< any; any; decision > non-specific 

 
Tree Insertion Algorithm 
The insertion algorithm consists of a body and two 
functions. The body loops over each rule and check 
if the rule is specific or not. If it is not specific, the 
algorithm creates all specific rules corresponding to 
it, by means of the first function 
getAllSpecificRules(). Then for all specific rules the 
algorithm executes the handleSpecificRule() 
function. The getAllSpecificRules() function receives 
as input a non-specific rule which is (specific type). 
According to the non-specific rule type, all 
corresponding specific rules will be created.  

The handleSpecificRule() focuses on what to do 
with a specific rule. First it checks if the rule was 
already handled. Then it checks if the subject of the 
rule already exists in PT. If it is not the case, the 
subject is created in the tree and any sub-tree of the 
PT is copied. If a specific subject can access any 
data object ID in the “any” action sub-tree (rule type 
2 in Table 1), the algorithm firstly extracts all action 
sub-trees then checks if the rule decision is permit or 

deny. If it is permit, the algorithm adds data object 
ID to the subject sub-tree for the corresponding 
action. At the end the algorithm inserts the rule in 
the handled rule set in order to ensure the 
consistency of the PT. 

 

Insertion Algorithm 
 

Input: <R1,R2,…,Rn> as P,PII, current tree as T 
handeledRules={} //set of rules of type <subject,action> 
for each rule R in P do 
  if R is of type <subject,action,permit> OR <subject,any decision> then 
      if T.subject not exist then 
         Add subject in T.subjects 
         Copy actions from T.any into T.subject 
      end if 
   endif 
   if R is of type <subject ,action,decision> then 
      if decision == permit then 
         Add PII in T.subject.action 
      endif 
      Add <subject, action> in handledRules 
   else if R is of type <subject, any ,decision> then 
      actionList = T.decision.subject.actions 
      for each action A in actionList do 
         if <subject, A> not in hanledRules then 
            if decision == permit then 
               add PII in T.subject.A 
            endif 
            Add <subject, A> in handledRules 
         endif 
      endfor 
   else if R is of type <any,action,decision> then 
      Subjectlist = T.decision.subjects 
      for each subject S in subjectList do 
         if <S, action> not in handledRules then 
            if decision == permit then 
               Add PII in T.S.actions 
            endif 
            Add <S, Actions> in handledRules 
         Endif 
      Enfor 
   else if R is of type <any, any, decision>  then 
      subjectList = T.decision.subjects 
      for each subject S in subjectList do 
         actionList = T.decision.S.actions 
         for each action A in actionList do 
            if <S, A> not in handledRules then 
               if decision == permit then 
                  add PII in T.S.A 
               endif 
               add <S, A> in handledRules 
            endif 
         endfor 
      endfor 
   endif 
endfor 
return T 

4.2.2 Request Algorithm 

The request algorithm is used to explore the AC tree 
in an optimal way and retrieve the authorizations 
related to a particular rule. This algorithm is 
executed when a user requests access to a resource. 

Tree Input Parameters 
The request input takes the form: < Subject; Action; 
Resource Type >. If one created a tree where the 
level 1 node is a subject, then it is possible to start 
the exploration using the input parameter Subject. 
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Tree Request Algorithm 
If the subject exists in the tree then a deep 
exploration of the path is needed to find the data 
object IDs related to it. If the subject does not exist, 
the access to the resource is denied. 

 
Request Algorithm 

 
Input: <subject, action> as R, current tree as PT 
If R.subject not exist in PT then 
   Return set of data objects ids resulting form PT.any.action 
Else  
   Return set of Data object ids resulting form PT.subject.action 
endif 
 

5 IMPLEMENTING THE ACT 
FOR THE CLOUD 

Compared to the XEngine solution, we propose 
implementations specially designed for the Cloud 
platforms and the in-memory capabilities offered by 
such platforms. The proposed ACT can be stored in 
two ways: in a relational database or in structured 
hash tables. Both are stored in-memory (using the 
in-memory Hana DB). Each of the solutions has its 
own advantages and drawbacks, detailed in the 
following performance analysis section. 

5.1 Database Implementation 

In this implementation, the ACTs (Permit Tree and 
Deny Tree) are stored in a relational database, 
therefore any request is performed in the database 
using SQL queries. The two ACTs are stored in the 
same table: ACT(uniqueId, subject, name) 

This table is composed by three columns: 
 UniqueId: representing the IDs of data 

objects. 
 Subject: representing the user ID or role 

specified in the Policy. 
 Name: the value of the data object (ex: 

john.doe@example.com). 

The primary key of this table is composed of the 
three columns. The composed primary key ensures 
that a tuple is unique in the table and so in the ACTs 
as well. Additionally, the primary key also creates 
indexes on the three columns that  will accelerate the 
queries performed on the table. 

Each  request type  is translated into a SQL 
statement: 

 Verify the access on a given data object by 
a given subject: 

SELECT uniqueId FROM ACT WHERE Subject = 
? AND Name = ?, If the query returns an 
unique Id, then the access can be granted 

 Retrieve the list of data objects that a given 
Subject can access 

SELECT uniqueId FROM ACT WHERE subject = 
?,the query returns a set of Data objects 
IDs  

 Retrieve the list of data objects from a 
given category (Name) that a given subject 
can access 

SELECT uniqueId FROM ACT WHERE subject = 
? AND name = ?, the query returns a set 
of data objects ids 

 Retrieve the list of subjects for a given data 
object 

SELECT subject FROM ACT WHERE uniqueId = 
?, the query returns a set of Subjects 

5.2 Hash based Implementation 

In this implementation, we proposed to store the 
access control trees into in-memory hash tables and 
persisted in a relational database. The persistence of 
ACTs is managed like in the previous 
implementation. The tree data structure fits well 
with the use of hash tables. This implementation 
consists of two different trees, ACTbyData and 
ACTbySubject with their own data structures. 

The ACTbyData is implemented using the Java 
structure HashTable. It maps keys to values. In our 
case we mapped the Data IDs to a set of delegates. 
The set of delegates is represented using the java 
structure HashSet, which implements a set back by a 
hash table. We mapped the delegates to a nested 
HashTable. This nested HashTable maps the Data 
names to sets of Data IDs. This latter set is 
represented using the Java structure HashSet. 

Therefore, we propose the following two data 
structures: 

 ACTbyPii: Hashtable<Long, 
HashSet<String>> 

 ACTbySubject: Hashtable<String, 
Hashtable<String, HashSet<Long>>> 

The performance of Hashtables and Hashsets 
depends on two parameters: the initial capacity and 
the load factor. The former defines the number of 
buckets that are created at the creation of the hash 
tables. The load factor is a measure representing 
how full the hash table is allowed to get before its 
capacity is automatically increased. It is a Boolean 
value.  
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6 PERFORMANCE STUDY 

In this section we evaluate the implementation of the 
ACT in the use case. The setup for the evaluation is 
the following. It is a PC with an Intel(R) Core(TM) 
i5-2500 CPU @ 3.30 GHz. It has 8.00 GB of RAM 
and is running Windows 7. The SAP HANA Cloud 
Platform where we deployed our application offers 
an elastic package with a limit of 12 GB of RAM. 
For the ACT we performed the tests on a traditional 
XACML engine HERAS-AF, the Cloud platform. 
We developed two different ACT implementations, 
one using a Derby DB loaded in-memory and the 
hash version using Redis.  

6.1 Comparing the Three AC 
Implementation Versions 

The basic testing scenario is a sequential query of 
2000 different subject requesting 2000 different data 
objects (in our scenario PIIs representing e-mail 
addresses, and names). Every request is made by a 
single user that asks to access everything and only 
gets one object at the end. Every PII is constrained 
by a policy permitting one subject to access. 

Both of the XACML engines are deployed as a 
service on the SAP Hana Cloud platform and 
installed on top of a database containing PIIs. 
Access requests are generated then sent to the the 
engines as a HTTP REST requests. 

At 2000 data object, the Derby version is 2428x 
faster than the HERAS one, and the hybrid version 
is even 16998x faster. The difference is important 
since the HERAS based solution has to explore a 
complex structure of XML and objects representing 
the policy rules in order to match the applicable 
policy with the context of the request. This is more 
expensive in terms of processing time than a DB 
SQL query execution or a Hash function call. 

 
Figure 3: Comparing ACT solution with the traditional 
XACML HERAS engine. 

6.2 Comparing the in-DB and the  
in-Hash ACT Solutions 

The processing time of the HERAS solution gets 
worse with the increase of the system population 
(data objects + users). We decided then to focus our 
performance study on the comparison between the 
two proposed ACT implementations. 

We run the same tests with a set of 6000 data 
objects accessible for 6000 different subjects. At 
6000 data objects available the in-hash 
implementation of the ACT is 6x faster than the DB 
one. Furthermore the in-hash version scales better. 
Its performances are more stable as we can see with 
the standard deviation which is more important for 
the DB solution. 

 
Figure 2: ACT in DB Vs. In-hash with 100% of the data 
objects accessible 

7 CONCLUSION 

The performance requirement for AC systems on the 
cloud is currently neglected by most of the cloud 
providers. Most of the cloud services are relying on 
single central AC systems implementing ACLs and 
in charge of handling all the access requests coming 
from all the cloud users. This issue can end up with 
serious performance problems especially when the 
cloud systems become complex. AC systems may 
become the main bottleneck disrupting the high 
speed computing capabilities of cloud servers. In our 
paper we evaluated a XACML engine for a cloud 
platform and demonstrated the limits of such policy 
based AC engine when access requests become 
huge. We proposed an AC tree caching system that 
can be implemented in parallel to the traditional AC 
systems in order to accelerate AC decisions. For this 
solution we proposed two implementations: one 
based on a relational database, and another one 
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based on a structured hash table system. Both 
solutions are stored in-memory. We tested these two 
solutions against a traditional XACML-based 
solution for the cloud. The performance discrepancy 
between the traditional AC system and our ACT 
based solutions is very important. Especially the 
hash based ACT seems the more scalable and the 
more adapted to cloud platforms.  
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