
Optimizing Access Control Performance for the Cloud

Slim Trabelsi1, Adrien Ecuyer2, Paul Cervera Y Alvarez3 and Francesco Di Cerbo1
1SAP Labs France, Mougins, France
2Open Systems, Zurich, Switzerland
3Amadeus, Sophia-Antipolis, France

Keywords: Cloud, Access Control, Performance, Caching, Scalability, Policy, Security.

Abstract: Cloud computing is synonym for high performance computing. It offers a very scalable infrastructure for
the deployment of an arbitrarily high number of systems and services and to manage them without impacts
on their performance. As for traditional systems, also such a wide distributed infrastructure needs to fulfil
basic security requirements, like to restrict access to its resources, thus requiring authorization and access
control mechanisms. Cloud providers still rely on traditional authorization and access control systems,
however in some critical cases such solutions can lead to performance issues. The more complex is the
access control structure (many authorization levels, many users and resources to protect); the slower is the
enforcement of access control policies. In this paper we present a performance study on these traditional
access control mechanisms like XACML, which computes the overhead generated by the authorizations
checking process in extreme usage conditions. Therefore, we propose a new approach to make access
control systems more scalable and suitable for cloud computing high performance requirements. This
approach is based on a high speed caching access control tree that accelerates the decision making process
without impacting on the consistency of the rules. Finally, by comparing the performance test results
obtained by our solution to a traditional XACML access control system, we demonstrate that the ACT in-
memory approach is more suitable for Cloud infrastructures by offering a scalable and high speed AC
solution.

1 INTRODUCTION

Cloud computing offers a high performance
computing infrastructure, combined with a huge
amount of resources (like storage, database,
network, servers, memory, virtual machines, etc.).
Resources are made available to customers with a
strong guarantee on the high quality of the
computing performance. Scalability, availability and
accessibility are among the key pillars of a cloud
service or platform; naturally, these characteristics
must not be sacrificed at the altar of security.
Security comprises many aspects and functionalities,
and access control represents one of the most
common concepts which are mandatory for any
production system. Access control (AC) is a
mechanism in charge of restricting and filtering the
access to system resources (data objects, Personal
Identifiable Information PII, services, platforms, or
infrastructure). Specific authorizations (also called
permissions) are assigned to system users; when a
user requests access to a resource, an AC engine is

in charge of checking if the requesting user’s
permissions are compliant with the set of AC rules
associated to that resource. The AC rules can be
expressed using very basic lists called ACL, or using
a more sophisticated and structured representation
called policy. The AC rules described via policies
are largely adopted in complex systems, those that
are available to many potential users and that offer
different resources. The main advantage of using AC
policies is the possibility to manage and maintain a
huge number of complex rules. Compared to the
basic ACLs, AC policies require a reasoning engine
able to explore process and decide on the
applicability of AC rules against access requests.
Cloud computing instances rely on AC systems
configured via AC policies that express AC rules
targeting a complex structure of user set and
resources (Popa, 2010). The more significant is the
density of the user and resource model; the more
complex is the structure of the policies. A complex
AC policy requires an additional computing and
reasoning effort to the AC engine in order to
interpret its rules and enforce the decision. Some

551Trabelsi S., Ecuyer A., Cervera Y Alvarez P. and Di Cerbo F..
Optimizing Access Control Performance for the Cloud.
DOI: 10.5220/0004854005510558
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (CLOSER-2014), pages 551-558
ISBN: 978-989-758-019-2
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

studies (Antonios, 2011) and (Tang, 2012) pointed
out the new requirements in terms of AC models
introduced by cloud computing the difficulties of
traditional authorization systems to handle very
complex policies for cloud computing systems, and
in some critical cases this can lead to performance
issues in the resource access process. In this paper
we conduct a performance study on a XACML
(OASIS, 2013) AC engine for a cloud infrastructure.
XACML, stands for eXtensible Access Control
Markup Language, is an OASIS XML policy
standard for AC. Although if XACML is not initially
designed for the Cloud, a deployment was proposed
in (Reddy, 2012). Our performance study consists of
stress tests on the AC enforcement engine, requiring
it to process a huge number of access requests for a
wide range of resources protected by complex
policies. The objective of this study is to indicate the
limitation of traditional AC engines when they are
deployed in cloud platforms. Subsequently, we
propose two approaches to optimize the performance
of the considered AC enforcement engine and make
it more suitable to cloud platforms. Both solutions
are based on a pre-caching authorization tree; this
method consists of storing all AC rules in a tree data
structure, in order to optimize the policy exploration
operation. This access tree can be implemented in
two ways: Using a traditional DB (loaded in
memory), or using a structured hash table system
(also loaded in memory). We stress the importance
of the in-memory deployment, in order to take
advantage of the “unlimited” resources offered by
the Cloud infrastructures.

This paper is organized as follows: In section
two we survey the state of the art on the different
performance studies dealing with performances of
AC systems, in section three we describe the
deployment of the XACML engine in the cloud as a
reference study basis, in section four we detail our
access control tree based solutions, in the section
five we compare the different approaches through
performance tests and try to identify the most
scalable approach.

2 RELATED WORK

Optimizing performances of AC enforcement
engines is an issue that appeared and was partially
addressed before the emergence of the Cloud
computing paradigm. It is interesting to review these
studies to learn about their approaches and try to
map them to the new requirements introduced by the
cloud infrastructures. An AC mechanism has its

deployment and operational costs, for instance when
implementing its structure in very large scale storage
systems, one has to face a trade-off among
performance, availability and security (Leung,
2007). Balancing this trade-off is particularly
challenging in the storage cloud environment, as
providers must implement an efficient access control
system that scales elastically and meets the high
availability requirements of the cloud. The
bottleneck caused by the lack of cloud-adapted AC
enforcement mechanisms can be exploited for DoS
attacks to break a service or a system like in the case
described in (Niu, 2009).

2.1 Performance Issues for Access
Control Enforcement in
Traditional Systems

One of the most interesting approaches that inspired
our solution is the XEngine. In (Hwang, 2011), and
(Daly, 2011) the XEngine is presented as a fast and
scalable evaluation engine for XACML. This work
proposes to transform a XACML policy into a
different data structure; this method converts the
hierarchical structure of the XACML policy into a
flat structure and then transforms any set of multiple
combining algorithms into a first-applicable
algorithm section. This work is inspired by the
decision diagram approach where the decision is
made based on a tree data structure. This work
addresses the problem of performing fast XACML
evaluation; however their model is quite static
especially with respect to the proposed tree structure
that systematically uses the subject as root of the AC
tree. Such model lacks of efficiency especially when
many resources are requested at the same time. In
our solution, we proposed several enhancements to
this approach in order to make it more flexible and
efficient for any type of queries.

(Squicciarini, 2011) proposed an alternative
approach called reordering and clustering policy
rules. Their work proposes a way to optimize
policies based on statistics to reorder rules. As it
consists of a reordering of rules, only the deny-
overrides and permit-overrides combining algorithm
are taken in consideration for the optimization. Their
solution works well if the amount of requests per
requesters and the type of requester are not dynamic.
In the case where they are dynamic the reordering is
not efficient, and a clustering solution is proposed.
The clustering is based on a per subject basis. In our
previous example, this leads to the creation of two
views, one for each subject, student and faculty.
However, Squicciardini et al consider only two

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

552

 XACML combining algorithms.

2.2 Performance Issues for Access
Control Enforcement in Cloud
Systems

An initial study was proposed by (Punithasurya,
2012) to compare different AC models; they tried to
compare different parameters including the
performance aspect. This evaluation of such
parameters was not really motivated by a technical
analysis. Therefore, it is hard to interpret their
results and compare the different AC models with
respect to performance aspects.

Well known cloud providers like Amazon S3 or
Microsoft Windows Azure Storage, has a simple
method for granting access to third parties using
ACLs, provided that they are registered as S3 users
or groups (they do not implement complex AC
rules). Objects can be made public by granting
access to the Anonymous group but there is no way
to selectively grant access to principals outside of
the S3 domain. The main limitation of S3 ACLs is
the restriction to list 100 principals. Instead of
proposing a scalable solution, Amazon S3 proposed
to split the ACLs into small independent clusters.
EMC Atmos Online opted for the same approach
with a more hierarchical structure between the
different cluster groups.

The caching solution was also proposed for
cloud computing systems (Reeja, 2012). The
approach described in that paper implements two
policy decision points (PDP), one for new access
requests and another one for access requests that
were already processed by the primary PDP.

(Harnik, 2011) conducted an analysis on the
ACL based mechanism for cloud computing in order
to point out their weaknesses and to propose their
AC mechanism. It is based on a capability-based
system that allows the integration of existing AC
solutions thus leading to hybrid architectures for AC
systems. Such hybrid systems combine the benefits
of capability-based models with other commonly
used mechanisms such as ACLs or RBAC. On the
other hand this study points out the weakness of
ACL used by many major cloud providers like
Amazon and Microsoft.

3 DEPLOYING XACML IN THE
CLOUD

In the previous section we explored the different

access control system deployed in the current cloud
infrastructures. We observed that most of the
solutions are based on basic ACLs and not really
adapted to the Cloud requirements. We explain in
this section how the XACML is deployed in a Cloud
platform, and how to optimise the enforcement
process using access control trees. We explain how
our new solution takes benefit and enhance the tree
based structures proposed by other studies in the
literature.

3.1 XACML Integration

XACML is a declarative AC policy language
implemented in XML and a processing model
describing how to evaluate authorization requests
according to the rules defines in policies. It allows
for the definition of AC but also usage control rules
through obligations. This language is very
expressive and can be used to define a lot of
different kind of policies. The choice of this
language was due to the completeness of its
expressivity for access control rules. We can define
many AC models (like RBAC, ABAC, UBAC, etc.)
with this language. It has a good flexibility for
defining rule conditions.

We propose the XACML engine architecture
depicted in Figure 1 as an integration architecture to
the Cloud infrastructure.
 Cloud User interface: UI layers provided by the

cloud as a service or as a platform feature. This
cloud layer offers an IDM function to manage
the user identity and authentication features.
Through this UI the user can access to the
different services and resources offered by the
cloud. The identity (or role) of the user and her
access request are collected at this level in
order to be exploited by the PEP (Policy
Enforcement Point) of the XACML engine

 XACML Engine: it is deployed in the cloud a
service or as platform functionality (in this
paper we chose to deploy it as a service). It
offers the traditional functionality defined by
the XACML specifications: PAP (Policy
Administration Point) to manage the policy
repository, PDP (Policy Decision Point) that
evaluates the user request, and the
authorizations contained in the policies, PIP
(Policy Information Point) that provides
external information about the user profile, and
the Context Handler that coordinates all the
previous components.

 Cloud Resources: we connected the resource
manager of the XACML engine to the different
resources provided by the cloud infrastructure

Optimizing�Access�Control�Performance�for�the�Cloud

553

(database, services, VMs, etc.) in order to
associate a user request with the requested
resources. These resources are only accessible
if the PDP evaluates positively the user request.

Figure 1: XACML Architecture for the Cloud.

3.2 Cloud Platform

The XACML AC engine that we used and modified
in this paper is deployed as a service on a PaaS. We
chose SAP Hana Cloud since it can be seen as SaaS
and PaaS. SAP Hana Cloud platform also offers
services like connectivity, document storing,
identity, persistence and mail. But the most
important selling argument offered by SAP Hana
Cloud is that the platform is running over an in-
memory database (Plattner, 2009), which fits
perfectly with our in-memory based solution,
described in details in the next sections.

4 OPTIMIZED ACCESS
CONTROL ENFORCEMENT

The AC policy evaluation and enforcement can be
complex and lengthy tasks to perform, impacted by
the complexity of rules. In cloud computing, this
issue is combined with thousands of users requesting
simultaneously access to resources. This leads to an
overhead during the authorization checking process.
Therefore, it is important to implement a solution for
speeding up the policy-based authorization checking
process. Such solution should scale properly in order
to handle multiple concurrent requests.

4.1 Access Control Trees

The main issue with XACML is the complexity due
to its high expressivity. In order to optimize the

evaluation computation process, we decided to
implement a solution based on AC trees (ACT). The
ACT is a concept based on aggregation. The use of
pre-processing to aggregate privacy policies into the
ACT will allow performance efficient AC check on
mass of data. We can represent the aggregate AC
information into a tree. The tree data structure has
two key advantages for us: first, it provides a simple
view of the AC structure; secondly, it facilitates the
application of hashing techniques on a tree for
efficient data search functions. This hashing
technique will allow us to use an emerging database
class (NoSQL) in order to improve further the
already good performance of an ACT
implementation in a relational database.

To map the AC rules into a tree structure we
adopted the model proposed by (Bascou, 2002) and
adapt it to the XACML policy schema. In this
model, only accessible data objects are available. If
the access to an object is denied, it will not appear.
Following this model, our ACT contains only
permitted data objects. If the data object cannot be
accessed it will simply not appear. For this reason
we call this tree the “Permit Tree” (PT). The AC tree
or PT can be represented as follows:

Figure 2: Access Control Tree (Permission Tree).

The PT (the same procedure can be applied for the
Deny rules thus obtaining a Deny Tree) represented
in Figure 2 is structured in three main levels: The
first level contains the list of authorized subjects (or
users, or roles, etc.) declared in the XACML policy
repository. The ANY subject ID is used for objects
that are accessible to all users with no restrictions.
The second level represents the different actions or
operations that can be executed on the data. If the
list of actions is undefined, there is also an element
Any (Action). The third level represents the different
types for data objects. Subsequently, the fourth layer
contains a list of accessible data object IDs. The
layer order (in the example subject, action and
resource) can change according to system
requirements. For example the first level can be the
ID of the object. In that case the selection is made on
the object to be accessed, for which one gets the list

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

554

of authorized users.

4.2 Tree Management Algorithms

In this section we describe the tree management
algorithms, i.e. how the AC tree is built, maintained
and explored.

4.2.1 Insertion Algorithm

This algorithm describes how one can add a new
data object associated with its XACML rule. In other
words, this means to insert data object references in
the ACT corresponding to the XACML policy
associated to the data object.

Tree Input Parameters
The input for the insertion or “insert” algorithm is a
data object with a policy associated to it. The policy
is seen as a rule set that can be composed by 4 rule
types; they are listed in Table 1. One of them is
specific, while others are not specific. The first rule
type is a specific rule and can be easily mapped in
the ACT tree. The others (2-4) are not specific. Not
specific rules can be recognized by the “any”
keyword.

Table 1: List of rule types.

Rule Type Specific rule?
1.< subject; action; decision > specific
2.< subject; any; decision > non-specific
3.< any; action; decision > non-specific
4.< any; any; decision > non-specific

Tree Insertion Algorithm
The insertion algorithm consists of a body and two
functions. The body loops over each rule and check
if the rule is specific or not. If it is not specific, the
algorithm creates all specific rules corresponding to
it, by means of the first function
getAllSpecificRules(). Then for all specific rules the
algorithm executes the handleSpecificRule()
function. The getAllSpecificRules() function receives
as input a non-specific rule which is (specific type).
According to the non-specific rule type, all
corresponding specific rules will be created.

The handleSpecificRule() focuses on what to do
with a specific rule. First it checks if the rule was
already handled. Then it checks if the subject of the
rule already exists in PT. If it is not the case, the
subject is created in the tree and any sub-tree of the
PT is copied. If a specific subject can access any
data object ID in the “any” action sub-tree (rule type
2 in Table 1), the algorithm firstly extracts all action
sub-trees then checks if the rule decision is permit or

deny. If it is permit, the algorithm adds data object
ID to the subject sub-tree for the corresponding
action. At the end the algorithm inserts the rule in
the handled rule set in order to ensure the
consistency of the PT.

Insertion Algorithm

Input: <R1,R2,…,Rn> as P,PII, current tree as T
handeledRules={} //set of rules of type <subject,action>
for each rule R in P do
 if R is of type <subject,action,permit> OR <subject,any decision> then
 if T.subject not exist then
 Add subject in T.subjects
 Copy actions from T.any into T.subject
 end if
 endif
 if R is of type <subject ,action,decision> then
 if decision == permit then
 Add PII in T.subject.action
 endif
 Add <subject, action> in handledRules
 else if R is of type <subject, any ,decision> then
 actionList = T.decision.subject.actions
 for each action A in actionList do
 if <subject, A> not in hanledRules then
 if decision == permit then
 add PII in T.subject.A
 endif
 Add <subject, A> in handledRules
 endif
 endfor
 else if R is of type <any,action,decision> then
 Subjectlist = T.decision.subjects
 for each subject S in subjectList do
 if <S, action> not in handledRules then
 if decision == permit then
 Add PII in T.S.actions
 endif
 Add <S, Actions> in handledRules
 Endif
 Enfor
 else if R is of type <any, any, decision> then
 subjectList = T.decision.subjects
 for each subject S in subjectList do
 actionList = T.decision.S.actions
 for each action A in actionList do
 if <S, A> not in handledRules then
 if decision == permit then
 add PII in T.S.A
 endif
 add <S, A> in handledRules
 endif
 endfor
 endfor
 endif
endfor
return T

4.2.2 Request Algorithm

The request algorithm is used to explore the AC tree
in an optimal way and retrieve the authorizations
related to a particular rule. This algorithm is
executed when a user requests access to a resource.

Tree Input Parameters
The request input takes the form: < Subject; Action;
Resource Type >. If one created a tree where the
level 1 node is a subject, then it is possible to start
the exploration using the input parameter Subject.

Optimizing�Access�Control�Performance�for�the�Cloud

555

Tree Request Algorithm
If the subject exists in the tree then a deep
exploration of the path is needed to find the data
object IDs related to it. If the subject does not exist,
the access to the resource is denied.

Request Algorithm

Input: <subject, action> as R, current tree as PT
If R.subject not exist in PT then
 Return set of data objects ids resulting form PT.any.action
Else
 Return set of Data object ids resulting form PT.subject.action
endif

5 IMPLEMENTING THE ACT
FOR THE CLOUD

Compared to the XEngine solution, we propose
implementations specially designed for the Cloud
platforms and the in-memory capabilities offered by
such platforms. The proposed ACT can be stored in
two ways: in a relational database or in structured
hash tables. Both are stored in-memory (using the
in-memory Hana DB). Each of the solutions has its
own advantages and drawbacks, detailed in the
following performance analysis section.

5.1 Database Implementation

In this implementation, the ACTs (Permit Tree and
Deny Tree) are stored in a relational database,
therefore any request is performed in the database
using SQL queries. The two ACTs are stored in the
same table: ACT(uniqueId, subject, name)

This table is composed by three columns:
 UniqueId: representing the IDs of data

objects.
 Subject: representing the user ID or role

specified in the Policy.
 Name: the value of the data object (ex:

john.doe@example.com).

The primary key of this table is composed of the
three columns. The composed primary key ensures
that a tuple is unique in the table and so in the ACTs
as well. Additionally, the primary key also creates
indexes on the three columns that will accelerate the
queries performed on the table.

Each request type is translated into a SQL
statement:

 Verify the access on a given data object by
a given subject:

SELECT uniqueId FROM ACT WHERE Subject =
? AND Name = ?, If the query returns an
unique Id, then the access can be granted

 Retrieve the list of data objects that a given
Subject can access

SELECT uniqueId FROM ACT WHERE subject =
?,the query returns a set of Data objects
IDs

 Retrieve the list of data objects from a
given category (Name) that a given subject
can access

SELECT uniqueId FROM ACT WHERE subject =
? AND name = ?, the query returns a set
of data objects ids

 Retrieve the list of subjects for a given data
object

SELECT subject FROM ACT WHERE uniqueId =
?, the query returns a set of Subjects

5.2 Hash based Implementation

In this implementation, we proposed to store the
access control trees into in-memory hash tables and
persisted in a relational database. The persistence of
ACTs is managed like in the previous
implementation. The tree data structure fits well
with the use of hash tables. This implementation
consists of two different trees, ACTbyData and
ACTbySubject with their own data structures.

The ACTbyData is implemented using the Java
structure HashTable. It maps keys to values. In our
case we mapped the Data IDs to a set of delegates.
The set of delegates is represented using the java
structure HashSet, which implements a set back by a
hash table. We mapped the delegates to a nested
HashTable. This nested HashTable maps the Data
names to sets of Data IDs. This latter set is
represented using the Java structure HashSet.

Therefore, we propose the following two data
structures:

 ACTbyPii: Hashtable<Long,
HashSet<String>>

 ACTbySubject: Hashtable<String,
Hashtable<String, HashSet<Long>>>

The performance of Hashtables and Hashsets
depends on two parameters: the initial capacity and
the load factor. The former defines the number of
buckets that are created at the creation of the hash
tables. The load factor is a measure representing
how full the hash table is allowed to get before its
capacity is automatically increased. It is a Boolean
value.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

556

6 PERFORMANCE STUDY

In this section we evaluate the implementation of the
ACT in the use case. The setup for the evaluation is
the following. It is a PC with an Intel(R) Core(TM)
i5-2500 CPU @ 3.30 GHz. It has 8.00 GB of RAM
and is running Windows 7. The SAP HANA Cloud
Platform where we deployed our application offers
an elastic package with a limit of 12 GB of RAM.
For the ACT we performed the tests on a traditional
XACML engine HERAS-AF, the Cloud platform.
We developed two different ACT implementations,
one using a Derby DB loaded in-memory and the
hash version using Redis.

6.1 Comparing the Three AC
Implementation Versions

The basic testing scenario is a sequential query of
2000 different subject requesting 2000 different data
objects (in our scenario PIIs representing e-mail
addresses, and names). Every request is made by a
single user that asks to access everything and only
gets one object at the end. Every PII is constrained
by a policy permitting one subject to access.

Both of the XACML engines are deployed as a
service on the SAP Hana Cloud platform and
installed on top of a database containing PIIs.
Access requests are generated then sent to the the
engines as a HTTP REST requests.

At 2000 data object, the Derby version is 2428x
faster than the HERAS one, and the hybrid version
is even 16998x faster. The difference is important
since the HERAS based solution has to explore a
complex structure of XML and objects representing
the policy rules in order to match the applicable
policy with the context of the request. This is more
expensive in terms of processing time than a DB
SQL query execution or a Hash function call.

Figure 3: Comparing ACT solution with the traditional
XACML HERAS engine.

6.2 Comparing the in-DB and the
in-Hash ACT Solutions

The processing time of the HERAS solution gets
worse with the increase of the system population
(data objects + users). We decided then to focus our
performance study on the comparison between the
two proposed ACT implementations.

We run the same tests with a set of 6000 data
objects accessible for 6000 different subjects. At
6000 data objects available the in-hash
implementation of the ACT is 6x faster than the DB
one. Furthermore the in-hash version scales better.
Its performances are more stable as we can see with
the standard deviation which is more important for
the DB solution.

Figure 2: ACT in DB Vs. In-hash with 100% of the data
objects accessible

7 CONCLUSION

The performance requirement for AC systems on the
cloud is currently neglected by most of the cloud
providers. Most of the cloud services are relying on
single central AC systems implementing ACLs and
in charge of handling all the access requests coming
from all the cloud users. This issue can end up with
serious performance problems especially when the
cloud systems become complex. AC systems may
become the main bottleneck disrupting the high
speed computing capabilities of cloud servers. In our
paper we evaluated a XACML engine for a cloud
platform and demonstrated the limits of such policy
based AC engine when access requests become
huge. We proposed an AC tree caching system that
can be implemented in parallel to the traditional AC
systems in order to accelerate AC decisions. For this
solution we proposed two implementations: one
based on a relational database, and another one

Optimizing�Access�Control�Performance�for�the�Cloud

557

based on a structured hash table system. Both
solutions are stored in-memory. We tested these two
solutions against a traditional XACML-based
solution for the cloud. The performance discrepancy
between the traditional AC system and our ACT
based solutions is very important. Especially the
hash based ACT seems the more scalable and the
more adapted to cloud platforms.

ACKNOWLEDGEMENTS

This paper is done in the context of the PPP Fi-Ware
project and the FP7 EU COCO Cloud Project.

REFERENCES

G. Antonios, “Towards new access control models for
Cloud computing systems”, PhD report University of
Macedonia, Department of Applied Informatics

Z. Tang, J. Wei, A. Sallam, K. Li, R. Li, “ A New RBAC
Based Access Control Model for Cloud Computing”,
7th International Conference, GPC 2012, Hong Kong,
China, May 11-13, 2012. Proceedings, pp 279-288

OASIS. Extensible Access Control Markup Language
(xacml).https://www.oasis-open.org/committees/xacml

J. J. Bascou L. Gallon A. Gabillon, M. Munier and E.
Bruno, « An access control model for tree data
structures”. In ISC '02 Proceedings of the 5th
International Conf. on Information Security, 2002.

A. W. Leung, E. L. Miller, and S. Jones. Scalable security
for petascale parallel file systems. In SC ’07:
Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, pages 1–12, New York, NY, USA,
2007. ACM. ISBN 978-1-59593-764-3. doi:
http://doi.acm.org/10.1145/1362622.1362644.

Z. Niu, H. Jiang, K. Zhou, T. Yang, and W. Yan.
Identification and authentication in large-scale storage
systems. Networking, Architecture, and Storage,
International Conference on, 0:421–427, 2009.

J. Hwang A.X. Liu, F. Chen and T. Xie. Designing fast
and scalable xacml policy evaluation engines. IEEE
Transactions on Computers, Dec 2011.

A. Squicciarini S. Maruf, M. Shehab and S.
Sundareswaran. Adaptive reordering and clustering
based framework for efficient xacml policy evaluation.
IEEE Transactions on Services Computing, Oct-Dec
2011.

J. Daly J. Brown and A. Gregory. The xengine policy
decision point for xacml 3.0. Computer security
project in Department of Computer Sciences at the
Michigan State University, 26 Oct 2011.

Popa, Lucian, Minlan Yu, Steven Y. Ko, Sylvia
Ratnasamy, and Ion Stoica. "CloudPolice: taking
access control out of the network." In Proceedings of

the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks, p. 7. ACM, 2010.

Punithasurya K and Jeba Priya S. Article: Analysis of
Different Access Control Mechanism in Cloud.
International Journal of Applied Information Systems
4(2):34-39, September 2012. Published by Foundation
of Computer Science, New York, USA.

C.K. K. Reddy, P.R Anisha, K.S. Reddy, S.S. Reddy,
“Third Party Data Protection Applied To Cloud and
Xacml Implementation in the Hadoop Environment
With Sparql”, IOSR Journal of Computer Engineering
(IOSRJCE) ISSN: 2278 - 0661 Volume 2, Issue 1
(July - Aug. 2012), PP 39 – 46

Reeja S L, “Role Based Access Control Mechanism in
Cloud Computing using co-operative secondary
authorization Recycling Method”, 2012. International
Journal of Emerging Technology and Advanced
Engineering Website: www.ijetae.com (ISSN pp.
2250-2459, Volume 2, Issue 10, October 2012)

Amazon Simple Storage Service (Amazon S3). Amazon,
b. http://aws.amazon.com/s3/.

Windows Azure Platform. Microsoft, a. http://
www.microsoft.com/windowsazure/windowsazure/.

Atmos Online Programmer’s Guide. EMC, a. https://
community.emc.com/docs/DOC-3481, accessed Jan
12, 2010.

D. Harnik, E. K. Kolodner, S. Ronen, J. Sataran, A.
Shulman-Peleg, S. Tal,”Secure Access Mechanism for
Cloud Storage”, Journal of Scalable Computing:
Practice and Experience Volume 12, Number 3, pp.
317–336. http://www.scpe.org

HERAS-AF XACML - University of Applied Sciences
Rapperswil. http://www.herasaf.org/

SAP HANA Cloud Portal http://scn.sap.com/
community/hana-cloud-portal

Apach Derby http://db.apache.org/derby/
Redis Database http://redis.io/
Plattner, H. "A common database approach for OLTP and

OLAP using an in-memory column database."
Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data. ACM, 2009.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

558

