
Revamping the Classroom
Teaching Mobile App Software Development Using Creative Inquiry

Roy P. Pargas1 and Barbara J. Speziale2
1School of Computing, Clemson University, Clemson, SC 29634, U.S.A.

2Undergraduate Studies, Clemson University, Clemson, SC 29634, U.S.A.

Keywords: App Development, Creative Inquiry, iOS, Android, Smartphone, Tablet.

Abstract: Teaching mobile device software development is challenging. Almost everything about it is different from
teaching a traditional software development class in which the target computer (on which the software
developed by the students is to run) is a laptop or desktop computer. In a mobile device software
development course, the target computer is a device (smartphone or tablet) that has a large number of
features (Internet access, camera, GPS, gyroscope, media display, etc.) accessible by software. The material
that must be covered in such as course is so broad that new approaches to delivering course content must be
used. This paper describes the overall method by which we teach such a course. We describe four
challenges and explain how we address each. We describe the structure of the course in detail, explain how
a class policy of open collaboration and a university program called Creative Inquiry complement the
proposed approach. We conclude with student evaluations and examples of apps we have produced over the
past several years.

1 INTRODUCTION

Teaching app software development is challenging.
Almost everything about it is different from a
traditional software development class in which the
target computer (on which the software developed
by the students is to run) is a laptop or desktop
computer. In a traditional object-oriented software
development class, the focus is the programming
language, how statements are formed, how classes
and methods are constructed, and how object-
oriented properties, such as inheritance, are brought
to life in the program being developed. The focus is
almost never the computer itself (laptop or desktop)
on which the program will run. It is simply assumed
that the program can read input files, take input from
the computer keyboard or mouse, write output files
and display output on the computer monitor.

In a mobile app software development class, the
programming language is only the first of several
major items that the student has to learn. The student
must also learn how to use the interactive
development environment (IDE) and the software
development kit (SDK) specifically designed for the
mobile device. This includes learning about different
types of input and output touch elements (for

example, buttons, sliders, and text boxes), working
with different types of views (for example, table
views, web views, views that allow for video),
understanding new ways of providing input (such as
gestures or speech), learning about new source
streams of time sensitive or late-breaking
information (such as Rich Site Summary, or RSS,
and Twitter feeds) learning about maps, the global
positioning system (GPS), accelerometers,
gyroscopes, the camera both video and still, and on
and on and on. Often apps must also work with app
settings or an internal database to store persistent
data. More advanced apps may also work with an
external database, for example MySQL, that the app
accesses through the web using web services written
in PHP: Hypertext Preprocessor (PHP) or other
scripting languages.

Teaching a one-semester course on mobile
device software development is significantly more
challenging than teaching a one-semester course on
traditional computer science topics such as an
introduction to programming, algorithms and data
structures, compiler design and implementation, or
operating systems. In courses such as the latter, the
topic is well defined and narrow enough for the
student to grasp and develop skills for in an evenly-

71P. Pargas R. and J. Speziale B..
Revamping the Classroom - Teaching Mobile App Software Development Using Creative Inquiry.
DOI: 10.5220/0004847800710079
In Proceedings of the 6th International Conference on Computer Supported Education (CSEDU-2014), pages 71-79
ISBN: 978-989-758-022-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

paced and systematic manner. In a mobile device
software development course, the material that must
be covered is so broad that new approaches to
delivering course content must be developed and
employed.

This paper describes the method by which we
teach a mobile device software development course.
In Section 2, we explain in detail the challenges
facing the instructor in this app development course
and explain the approach we take in addressing these
challenges. In Section 3, we talk about the structure
of the course itself. In Section 4, we elaborate on the
Creative Inquiry Program at our university and how
it supports this course and helps generate ideas for
app projects. In Section 5, we describe some of the
apps that have emerged as the result of this effort. In
Section 6, we summarize the results of student
evaluations. In Section 7, we discuss future plans..

2 CHALLENGES / APPROACH

We find four major challenges facing an instructor
of a mobile device app development course.

The first challenge arises due to the fact that the
content is very new and also constantly changing.
The Apple iOSTM and Google AndroidTM operating
systems (OS), for example, are updated at least
annually; keeping up with the major changes in the
OS and the associated SDKs is difficult. Textbook
authors, unfortunately, cannot possibly keep up; on
the day that a textbook is published, the OS and the
SDK it references are already one version behind the
latest stable version. And so the first challenge is
finding resources that can help the student learn
about the latest version of the OS and SDK in a
timely manner.

The second challenge is that the material that has
to be covered is very broad. In iOS, this includes
learning the syntax of a language, Objective-C,
whose syntax is unlike any of the other more
commonly taught languages such as Java, C++, C#
or Python. A student wanting to take this app
development course is unlikely to be familiar with
Objective-C. (On the Android platform, this
challenge is not as great since the language used for
Android apps is Java which is known to many
students.) On both platforms, however, new course
material also includes touch input artefacts such as
buttons, sliders, segmented controls, and date
pickers as well as input finger movements such as
gestures, swipes, and multi-finger touches. The
material includes a variety of views such as web
views, table views, and views that present video and

animation, from and to which students will have to
learn how to program transitions.

The course material must also include a variety
of components and features of smartphones that are
available for software control, components such as
the still and video camera, the global positioning
system (GPS), the accelerometer, a gyroscope,
maps, and a compass. The material also includes
new sources of streaming data such as RSS feeds
and Twitter feeds. The instructor may also want to
cover sending and receiving short message service
(commonly called SMS or text) messages, or
sending and receiving email. Yet another content
topic that the instructor may want to include is
graphics for animation, using OpenGL for example.

The third challenge is how to have a discussion
of good database design and implementation. An
app may require a local database that resides in
persistent memory on the mobile device, or may
communicate with an external database that resides
on a server in the cloud and accessed via web
services. In many instances, both an internal and an
external database are required. Unfortunately, in
many computer science programs, a database design
course is an elective and not required. If such is the
case at your university as it is at ours, then a
minimum of one to two weeks of lecture will be
required to introduce very basic database design
concepts to allow for an internal and external
database implementation in the app.

The fourth and possibly the most difficult
challenge is how to make the course relevant, i.e.,
how to make the course as close to professional app
development as possible. Our goal was to avoid
having the students develop toy apps that have no
purpose other than as an exercise in programming.
How do we give our students an experience that is
close to real world app development? How do we
provide students with app ideas that have real-life
application? The challenge was to find projects that
would give our students this type of experience. We
found our answer in Creative Inquiry, a university-
wide program designed to give undergraduate
students experience in designing and developing
solutions to research problems posed by faculty
members, researchers and staff.

These four challenges require us to rethink the
manner by which we teach this course. The approach
we have chosen (which we detail in Section 3) is a
variation of the “flipped” or the “inverted”
classroom (Walvoord and Anderson, 1998;
DesLauriers, Schelew, and Wiemanm, 2011). This
variation consists of a combination of (a) minimized
lecture on the part of the instructor, (b) open

CSEDU�2014�-�6th�International�Conference�on�Computer�Supported�Education

72

collaboration among the students, (c) frequent
student presentation of programming assignments,
and (d) close mentoring of the semester projects.

In order to minimize instructor lecture, we had to
find resources with which students can work outside
of class. Examples of these resources are listed in
Section 3.2.1. Students are expected to view these
video clips or tutorials before coming to class.
Proponents of flipped classrooms suggest that
allowing the students to gain what is referred to as
first-exposure learning on their own before class and
then working on applying their learning during class
can in certain situations be more effective than
traditional lecture. To be effective, an assessment
tool, such as an assignment on the material the
student learned, must be included. In our case, the
assessment tools are the four assignments described
in Section 3.2.3.

Where our approach differs from typical flipped
classrooms is in “open collaboration”. The purpose
of open collaboration is to facilitate the exploration
of as many facets of the SDK as possible. Students
are encouraged to include different app components
(compass, gyroscope, camera, GPS, etc.) in their
assignments and to share their knowledge with the
rest of the class. This is accomplished by requiring
each student to maintain a personal website on
which he or she posts URLs of sites that they have
found helpful. More importantly, the student posts
copies of his or her programming assignments
(complete with source code) when they are
submitted. Students are free to discuss and share
their programs before and after submission.
Moreover, after each assignment is evaluated, the
instructor selects the two or more best programs and
asks the students to give a brief (10-minute)
presentation to the rest of the class, focusing on the
new app components employed and describing the
corresponding source code. Students in effect teach
each other what they learned as they developed their
assignment. This is further discussed in Sections
3.2.2 and 3.2.3.

The fourth challenge is making the course
relevant. We are fortunate at our university to have
what is called a Creative Inquiry (CI) program that
encourages faculty to design one to three credit hour
courses involving undergraduate students in the
faculty member’s research. So, for example, an
English professor may be working with students in
studying the writing of British author Virginia
Woolf. A Biology professor may be interested in
engaging students in the study of swamp forests. An
Entomology professor may have his students
researching whether firefly populations are

decreasing. These and many other CI courses are
opportunities for collaboration with our app
development class. The instructor contacts the
instructors of these CI courses and discusses the
possibility of developing apps supporting these CI
efforts. Sometimes a natural collaboration between
our app class and the CI course emerges, sometimes
it doesn’t. When a potential collaboration does
emerge, the app class instructor must facilitate the
matching of one or two student app developers and
the CI course. We devote Section 4 to the Creative
Inquiry program that has provided support and a rich
source of ideas for this course, helping us respond
positively to the fourth challenge above.

3 APP COURSE STRUCTURE

In this section, we describe the organization of our
app development course (henceforth referred to
simply as X81, short for CPSC 481/681, the official
number of the course). In X81, the semester is
divided into two parts. The first half of the semester
is spent on four programming assignments of
increasing difficulty, with the requirements of each
assignment being a superset of the previous. In the
second half of the semester, the students work on a
major project. The project starts with the students
submitting a proposal for a project. After the project
is approved, the remainder of the semester is spent
on the design and implementation of the software
system.

During exam week, students formally present
their results in a class mini-conference. With the
course instructor serving as session chair, students
give 20-minute presentations and demonstrations of
their apps, just as they might at a real conference.
All are invited and project co-mentors, other
students, faculty, staff, and occasionally family
members do attend. At the end of exam week,
students submit the entire project (source code and
documentation) for a final private demonstration to
the course instructor and for final evaluation.

Each of these course components is described in
detail below, but we start with an explanation of the
choice of mobile device platform.

3.1 IOS, Android or Other?

A recent Nielsen poll in the US (Nielsen, 2013)
gives Android a 52% to 40% smartphone market
share edge over iOS. Another poll (Business Wire,
2013) gives Android a 79% to 13% edge over iOS
worldwide in the 2nd Quarter 2013, suggesting that

Revamping�the�Classroom�-�Teaching�Mobile�App�Software�Development�Using�Creative�Inquiry

73

Android is surging and significantly surpassing iOS.
The takeaway from this is that Android and iOS
together dominate the smartphone market in 2013.

We are not concerned about whether Android
beats iOS or vice versa. In X81 we cover both
platforms (iOS in the fall semester and Android in
the spring). What is important to us is that we cover
the dominant platforms in this course. We keep track
of trends, however, and should another platform
(say, Windows) become a significant player in the
mobile device world, we will adapt this course
accordingly.

3.2 First Half: Building Skills

3.2.1 Gathering and Updating Materials

The first challenge listed in Section 2 describes the
difficulty of finding a textbook or other materials
that teach the student about the latest version of the
mobile device OS and SDK. For the course, we use
online materials, including videos, tutorials, sample
code, and other online resources.

For example, for iOS, in addition to the
comprehensive developer reference site provided by
Apple (Apple, 2013), we use the video series
provided by Paul Hegarty and Stanford University
available on iTunes (Hegarty, 2013). For Android, in
addition to the comprehensive developer site
provided by Google (Android, 2013), we use sites
such as Nick Parlante’s (Parlante, 2011) course
outline that provides tutorials on topics such as
intents, lifecycles, lists, GUIs, and databases.

In addition to these, throughout the semester, we
constantly search the web for new and better video
or text tutorials that provided instruction on the
latest version of the OS and SDK. Students in the
class are tasked with seeking and reporting new sites
that they find useful in developing their apps. By
doing so, the class collectively and continually keeps
the set of course resources up-to-date and available
to the entire class through the class website
maintained by the instructor.

3.2.2 Individual Student Websites

Students are required to create and maintain
individual websites specifically for this class. On
each website, students post links to resources that
they have found useful in developing their apps.
They also post the source code of each programming
assignment they submit. This is so that their code is
available for download by other members of the
class. This is part of the class policy of open

collaboration that is explained further in the next
section.

3.2.3 Assignments and Open Collaboration

In this class, student home and class activity consists
of (a) viewing video and tutorials providing detailed
instruction on app development, (b) submitting four
apps satisfying four programming assignments, (c)
when asked, giving brief (5-10 minute) impromptu
presentations about his or her programming
assignment pointing out where in the source specific
actions in the app are coded, and (d) sharing ideas
about interesting things he or she may have
discovered along the way.

The assignments are of increasing difficulty.
The first assignment asks the student to build an app
with several input controls (for example, buttons,
sliders, or text boxes) several output controls (for
example, labels, alert boxes, or images such as check
marks or smiley faces corresponding to calculated
results) and some activity that occurs when the client
touches an input control.

An important class policy is: whereas in other
programming classes, students are often forbidden
from working together and certainly never allowed
to copy one another’s code, in this class students are
not only allowed to copy each other’s work but are
encouraged to do so. The one requirement is that if a
student develops his or her app with the explicit or
implicit help of another, the recipient must explicitly
acknowledge the other student’s help and give credit
to the other both on the recipient’s website and in
the information page within the app. Giving credit
for help received is mandatory.

The rationale behind this policy of open
collaboration is that in a given assignment, different
students will go in different directions and use
different tools within the SDK. Discussion about
their apps in and out of class is strongly encouraged.
Copying code is allowed and encouraged. In this
manner, students quickly learn multiple features of
app development from their peers. The tacit
expectation, of course, is that every student brings
something new to contribute to the class collective
repository of knowledge.

The second assignment includes all the
requirements of the first app and must include
multiple views (for example, table views, web
views, or views that play audio and video). The third
assignment must include a local database created
and populated using SQLite3, a commonly used
internal database for apps. The fourth assignment
has all the requirements of the third assignment, plus

CSEDU�2014�-�6th�International�Conference�on�Computer�Supported�Education

74

it must involve an external database, preference
settings and two additional features such as GPS, the
video or still camera, the accelerometer, the
gyroscope, or must capture input from some external
device such as an automotive on-board diagnostics
(OBD2) sensor which can provide the vehicle owner
or repairman or app developer with the status of
various vehicle subsystems.

By the time Assignment 4 is submitted, the
semester is half over.

3.3 Second Half: Major Project

The second half of the semester is spent on the
proposal, design, and development of a major
project.

3.3.1 Project Proposal

Students may submit an original proposal or may
select a proposal from a list of ideas provided by the
instructor. The one-page proposal is intended to be a
brief overview of the project and is the starting point
of a discussion between student(s) and instructor.
The result of the discussion is a resubmission of the
proposal with more detail and with a fairly complete
storyboard sketch. There exists software available
for free that facilitate storyboard development
producing mock-up views that look very much like
actual screenshots from a smartphone. An example
is Fluid (Fluid, 2013) that provides a software tool
for quickly and easily building mock-ups of apps.

The student has the option of proposing a project
that he or she may be interested in. Students are
encouraged to submit ideas that relate to and benefit
the university and campus life. So, for example, a
proposal to develop an app that expedites orders at a
local pizza restaurant would not be approved.
However, a proposal to (1) help newly arrived
international exchange students get around campus
using an interactive campus map, (2) complete all
university requirements for international students,
and (3) communicate with one another and with the
international student office through SMS and phone
numbers stored in internal and external databases,
this type of app proposal would be approved. (A
screenshot of this app is found in Section 5).

Most students, however, do not have a pet project
in mind. A list of ideas offered by the instructor is
the result of interaction with university faculty,
researchers, staff and administrators interested in
participating in the Creative Inquiry program.
Throughout the first half of the semester, the
instructor meets with various university personnel

(potential co-mentors) and discusses the possibility
of collaborating for the purpose of developing an
app for the co-mentor and his or her students. The
co-mentor and students provide the project content;
the X81 instructor and students provide the technical
expertise. The list is the result of this consultation
with several faculty and staff and is offered to the
X81 students as pre-approved projects.

3.3.2 Timeline, Database and Code Design

After the proposal is approved, the students develop
a project timeline or schedule of tasks and
deliverables. The instructor reviews this timeline,
critiques it and returns the modified timeline to the
students.

After the timeline is approved, database and code
module design begins. The app may require both an
internal and an external database. Final approval is
given only when the instructor is convinced that all
of the functionality proposed for the app can be
supported by the structure of the internal and
external database.

3.3.3 Presentations

Over the next three weeks, each project team gives
three short (10-minute) presentations and one full
(20-minute) final presentation before the class,
reporting on the current status of their work. The
instructor and class critique the presentation as well
as the content of the project, offering suggestions for
improvement or alternative approaches. In this
manner, each team has multiple opportunities to
refine their presentation skills as they develop the
app solution to their problem.

The final presentation occurs during exam week.
Co-mentors and students, interested faculty and
staff, and family members attend. The instructor
serves as session chair and introduces the student
speakers, as they would be at a real conference.
Every attempt is made to simulate and provide the
students with a formal conference experience,
including a soda and pizza reception at the end.

3.3.4 Final Demonstration and Submission

After the final presentations, student teams are
required to meet with the instructor one last time to
give a final, private demonstration of the software
and to submit all source code and supporting
documentation. The documentation includes a
Technical Reference Manual and a User’s Manual,
the presentation slides, and any other supporting
documents. Students have been instructed to develop

Revamping�the�Classroom�-�Teaching�Mobile�App�Software�Development�Using�Creative�Inquiry

75

the User’s Manual using language understandable by
a non-technical user of the app. The Technical
Reference Manual, on the other hand, is for a
computer science student who may want to extend
the app in the future.

4 APP IDEAS: CREATIVE
INQUIRY

The students are always given the opportunity to
propose projects for which they are interested in
developing apps. The one requirement in this class is
that the app be one that is designed to benefit
students, teachers, staff, administrators, or other
personnel in an academic environment. The app
must help students learn or teachers teach or make
life better for someone in the academic community.

Coming up with a list of suitable projects is not
easy; they must satisfy several course goals. One
course goal is for the project to take advantage of the
features of the mobile device. Another course goal is
for the project to be generic, i.e., ideally adaptable to
any university or institution, not just our university.
A third goal is for the project to be upwardly
scalable, i.e., capable of being initialized with and
holding additional content.

Once a list of potential projects has been
identified, matching the right students with the right
projects is crucial for success. It is for this reason
that we have worked with a university program
called Creative Inquiry to help us identify projects
and involve other faculty, researchers, staff, and
administrators as co-mentors of course projects.

Section 4.1 describes the general Creative
Inquiry program. Section 4.2 explains how Creative
Inquiry has helped provide app ideas and projects
for X81.

4.1 What Is Creative Inquiry?

Clemson University’s Creative Inquiry model for
undergraduate research provides students with team-
based, collaborative research experiences that
address real-world problems and prepare students
for jobs in the changing economy. Graduates have
stated that they were better prepared for jobs or
graduate school, and more attractive to employers.
Students in Creative Inquiry have developed
business plans for start-up companies and
participated in patent applications, in addition to
presenting and publishing their work.

The model develops teams of students to address

topics identified by the faculty mentors, the students,
or that are spurred by external influences. Each
project is embedded within one or more academic
courses. Projects may be multi-disciplinary. Teams
work on a given project for two or more semesters.
Some projects have a natural end point; others
continue to evolve for many years. For example, a
performing arts team dedicated two years to
developing and producing an original play. Several
English and Social Sciences teams have collaborated
on books. An award-winning interdisciplinary team -
with students from engineering, business, and the
humanities - has worked for several years to boost
economic development and the standard of living in
a Haitian village. Their signature project was
designing and installing a water system for the
village.

Each academic year, approximately 3,500
Clemson undergraduates participate in Creative
Inquiry projects. Departments, such as food science
and geology, use Creative Inquiry to attract and
retain Others departments, such as industrial
engineering and bioengineering, use it to in concert
with their senior design and freshman courses.
Students in all departments praise their experiences
as valuable in terms of the research accomplished
and the opportunities to gain insights into potential
careers.

Creative Inquiry is sustained by high levels of
student and faculty interest, substantial funding from
the university, and a demonstrated record of
accomplishments within both the academic and
business worlds. The program has grown to the point
that private donors and industries are sponsoring
student research teams. A key feature of the program
is its flexibility. Projects from all disciplines are
supported. Students are encouraged to develop ideas
for projects and then identify faculty mentors to
refine the ideas and mentor the work.

4.2 How Co-mentoring Supports X81

X81 is classified as a Creative Inquiry course. As
such, it enjoys financial support from the university;
this support is used to purchase mobile devices to be
used in the class, or pay hourly wages to students
who have taken the course before and who can serve
as teaching assistants. More importantly, though,
other members of the university recognize and
support the Creative Inquiry model and are more
willing to participate in co-mentoring a Creative
Inquiry project.

A typical project involves one or two faculty
members plus one or more of their students, i.e. the

CSEDU�2014�-�6th�International�Conference�on�Computer�Supported�Education

76

X81 instructor plus one or two X81 students. For
example, one project last year involved an English
professor and avid researcher in the works of British
author Virginia Woolf. The English professor had
eight students working with her in gathering and
organizing material associated with Virginia Woolf.
These included maps where Woolf lived and
worked, pictures of British houses she lived in and
London gardens she frequented, articles written
about Woolf, essays critiquing her work, lists of
websites where one can gather more Woolf
information, and even copies of ledgers of daily
household expenses that Woolf and her husband
maintained.

Two X81 students undertook the technical
development of an app that organized the material
gathered by the English professor and her students.
The final version of the app presented the content on
an Apple iPad in an efficient, easy-to-use, and
intuitive manner. The English professor and the X81
instructor served as co-mentors of the entire group
with one guiding the software development process
and the other guiding the organization of the content.
The results of the effort were presented in an
international conference on Virginia Woolf last
spring (Sparks and Pargas, 2013).

5 RESULTS

The proof of a pie is in the eating. The proof of a
course on mobile app software development is in the
apps that are produced. Over the past two years,
students have successfully produced over 30 iOS
and Android apps.

Figure 1: Three sample apps produced by X81 students.

Three examples are shown in Figure 1. In the upper
left, iCUExchange is designed to help international
students prepare for their study at this university.
The app was designed by three international
exchange students and provides helpful information
before and after the international students arrive on
campus, including important deadlines, contact
information, tips on getting around the campus,
finding classrooms and getting to know other
people. In the upper right, the Virginia Woolf app is
designed for people who want to be able to access a
mobile collection of photos, documents, and general
information about the British author. The app serves
as a knowledgeable portable tour guide. The bottom
app, R3-ROS Robot Remote, provides an iOS user
with an interface to control robots (represented by
cubes) within a virtual world. The app uses the
gyroscope and motion sensors of iOS devices to
control the robots.

Figure 2: Two apps available at the Apple app store.

In some cases, development of apps start out in
the classroom but continue after the semester is over
and eventually are made available to the general
public. Two examples are shown in Figure 2. Swamp
Forest, shown on the left, provides a virtual field trip
through the Francis Beidler Forest and Congaree
National Park in South Carolina, USA. This and
two sister apps, Cove Forest and Salt Marsh, are all
available at the Apple app store. The Firefly Flash
Counter, shown on the right, is also available at the
Apple app store and is used by citizen scientists
around the USA to count fireflies as part of the
Vanishing Firefly Project 2013 (Baruch, 2013). In
total, six iOS apps originating from this course are
now available at the Apple app store and one
Android app will be available on the Google play
store in spring 2014.

Undoubtedly, instructors at many universities
have developed app development courses with
approaches similar to this course (e.g., Muppala,

Revamping�the�Classroom�-�Teaching�Mobile�App�Software�Development�Using�Creative�Inquiry

77

2011). We feel, however, that this course is different
from others with its policy of open collaboration and
with the availability of the Creative Inquiry program
to provide support and real project ideas. Open
collaboration is a powerful and effective way to
cover large numbers of disparate topics related to
app development and Creative Inquiry is a rich
source for real-life projects.

6 STUDENT EVALUATION

This three-credit course has been well received by
students. Students may count it as one of two
computer science electives and therefore the course
must compete for student enrolment with over 15
other elective computer science courses. It
consistently attracts between 15 and 18 students
each semester, a very good and manageable size for
a project course.

Multiple end-of-semester evaluations show that
over 85% agree or strongly agree (ASA) that the
course added significant value to their resumes and
transcripts, over 90% ASA that the open
collaboration policy helped them learn the material
more easily, and among students who chose a
Creative Inquiry project, over 85% ASA that
working on an actual research project with a co-
mentor and students from other disciplines was a
valuable educational experience. Moreover, over
90% would recommend this course to other students
and over 85% reported that they were satisfied with
the learning that they received.

On the negative side, over 95% felt that the
amount of work required by the course was
significantly greater than other three credit hour
computer sciences courses and over 85% spent on
average over 10 hours per week on this one course.

A bit surprisingly, relatively few students (less
than 10%) felt that the absence of a textbook
hindered their learning of the material. Moreover,
over 95% ASA that much of their learning came
from discussions with their classmates and over 75%
ASA that they were successful in finding answers to
technical questions on blog sites.

7 CONCLUSIONS AND FUTURE
WORK

Teaching mobile device software development
indeed is challenging. The rapidly changing software
tools, the amount of material that must be covered,

the need of students for database design skills, and
the constant search for real-world applications pose
significant problems for the instructor of such a
class. Traditional lecture by the instructor no longer
suffices. New approaches such as open collaboration
among students, frequent presentation of coding tips
by students, and continuous communication between
instructor and students and among students
themselves, are necessary in order for student
projects to be successful. And support by the
university for undergraduate research projects in
programs such as Creative Inquiry, both in terms of
academic credit as well as monetary support, helps
generate the all important research ideas that
produce realistic and beneficial app projects.

ACKNOWLEDGEMENTS

The authors are grateful to the students who have
taken and participated in this app development
course, to faculty who have served as co-mentors,
and for the continued support received from the
Clemson University Creative Inquiry Program.

REFERENCES

Apple, Inc., https://developer.apple.com, 2013.
Baruch Public Service, Vanishing Firefly Project,

http://www.clemson.edu/public/rec/baruch/firefly_proj
ect/, 2013.

Business Wire, Apple Cedes Market Share, http://
www.businesswire.com/news/home/20130807005280/
en/Apple-Cedes-Market-Share-Smartphone-
Operating-System, August 6, 2013.

DesLauriers L, Schelew E, and Wieman C. Improved
Learning in a Large-enrollment Physics Class.
Science 332: 862-864, 2011.

Fluid, https://fluidui.com, 2013.
Google, Inc., https://developer.android.com, 2013.
Hegarty, Paul, Coding Together: Developing Apps for

iPhone and iPad (Winter 2013),
https://itunes.apple.com/us/course/coding-together-

developing/id593208016.
J. K. Muppala, Teaching Embedded Software Concepts

Using Android, Proc. 2011 Workshop on Embedded
Systems Education (WESE 2011), EMSOFT 2011,
Taipei, Taiwan, Oct. 13, 2011.

Nielsen, Who’s Winning the U.S. Smartphone
Market,http://www.nielsen.com/us/en/newswire/2013/
whos-winning-the-u-s-smartphone-market-.html,
August 6, 2013.

Parlante, Nick, CS193a Android Programming
http://www.stanford.edu/class/cs193a/, 2011.

CSEDU�2014�-�6th�International�Conference�on�Computer�Supported�Education

78

Sparks, Elisa and Pargas, Roy, Hands on the iPad:
Crafting a Visual Guide to Place in Woolf, The 23rd
Annual Conference, Virginia Woolf and the Common
(Wealth) Reader, Vancouver, BC, Canada, June 6-9,
2013.

Walvoord B. E., and Anderson V. J., Effective grading: A
tool for learning and assessment. San Francisco:
Jossey-Bass, 1998.

Revamping�the�Classroom�-�Teaching�Mobile�App�Software�Development�Using�Creative�Inquiry

79

