
Automatic Software Development as a Service (ASDaaS)

Hind Benfenatki1, Catarina Ferreira Da Silva1, Nabila Benharkat2,
and Parisa Ghodous1

1Université Lyon 1, LIRIS, UMR5205, F-69622, Lyon, France
2INSA Lyon, LIRIS, UMR5205, F-69621, Lyon, France

Keywords: Cloud Computing, Business Applications, Requirement Expression, Linked-Data.

Abstract: Cloud-based services have become a norm for business application development. With Cloud Computing
and the convergence toward Everything as a Service (XaaS), we no longer consider the classical context of
application development, where IT teams or integrators are solicited. Current approaches in Cloud environ-
ments are usually designed for a specific Cloud platform; moreover, they are only designed for technical
users. To overcome the lack of generic and complete methodology for business application development,
we propose a methodology for Automatic Software Development as a Service (ASDaaS), which is designed
for non-technical users and promotes services reuse. In this paper, we focus on the phase of business soft-
ware requirement gathering of our methodology. We define the requirement vocabulary based on linked data
principles, and extend the Linked-USDL language to describe business stakeholder requirements as service
functions, business constraints, user preferences and QoS parameters. Our approach is illustrated with an
e-commerce example.

1 INTRODUCTION

Web and Cloud services are a popular medium
for application development and deployment on the
Cloud. Modern enterprises are moving towards Cloud
service-oriented architectures to promote reuse and
interoperability of services; and to benefit from the
Cloud Computing advantages, such as small initial
investment, no license acquisition, accessibility from
everywhere and every time, high availability and so
on.

With Cloud Computing and the convergence to-
ward Everything as a Service, we no longer con-
sider the classical context of application development,
where IT teams or integrators are solicited to perform
software development. We propose a business appli-
cation development process that minimizes business
stakeholder intervention and meets Cloud character-
istics.

Let us consider an e-commerce scenario in which
a business stakeholder in a European company ”A”
would automate the IT hardware acquisition pro-
cess. The business stakeholder wants to make avail-
able to its staff a Cloud hosted business applica-
tion that allows the following functions: (i) to se-
lect products with the edition of purchase orders,

(ii) to proceed to the online purchase, (iii) and to
make delivery of the product. The business stake-
holder has to describe functional and non-functional
requirements. Functional requirements include ap-
plication business functions and business constraints.
One of the business constraints is the budget, and
for this ”A” imposes a maximum purchase order
value equal to 1000 euros. Non-functional require-
ments include user preferences and QoS Parameters.
The business stakeholder prefers to use ”PayPal Ser-
vice” for the online purchase. For the deployment
of the business application, the company ”A” relies
on previous good experience using ”Amazon EC2”
(http://aws.amazon.com/fr/ec2/) and prefers to deploy
its business application on this same platform. Com-
pany ”A” prefers to pay deployment costs with the
European currency ”euro”. This scenario requires
great caution with respect to data privacy and data in-
tegrity due to the online payments service. For main-
taining the confidentiality of their data, ”A” prefers
invoked services be located in European region.

Based on our scenario, we identify the follow-
ing three challenges, which are addressed in the pa-
per: (i) how to develop a Cloud business application
that meets the business stakeholder requirements with
minimal intervention and that leverages the Cloud

95Benfenatki H., da Silva C., Benharkat N. and Ghodous P..
Automatic Software Development as a Service (ASDaaS) .
DOI: 10.5220/0004844400950102
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (CLOSER-2014), pages 95-102
ISBN: 978-989-758-019-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



benefits. Nowadays, there is a lack of a standard ap-
proach for Cloud applications development, as this re-
search aspect is still in progress, (ii) how to specify
and model the functional and non-functional business
requirements. There is a need for a model that pro-
vides explicit description of requirements to ensure
then the correct selection of services, and (iii) how to
adapt or extend service description languages to facil-
itate services selection that meet user’s requirements.

In this paper, we propose a methodology for
business application development for Cloud environ-
ments allowing business stakeholders to perform the
automatic development of those applications. This
methodology is called Automatic Software Develop-
ment as a Service (ASDaaS) and promotes the discov-
ery and the composition of Cloud services that match
functional and non-functional business application re-
quirements. Functional requirements describe service
features and business constraints. Non-functional re-
quirements describe user preferences and Quality of
Service (QoS) parameters.

The originality of our work presented in this paper
lies in the business application requirement descrip-
tion phase of the methodology. We define the require-
ment vocabulary based on the linked data principles
(http://www.linkeddata.org/), and extend the Linked
USDL language (http://www.linked-usdl.org/) so that
it can describe business stakeholder’s requirements
as service functions, business constraints, user pref-
erences and QoS parameters.

The rest of this paper is organised as follows.
Section 2 describes the works related to existing
Cloud software development methodologies. Section
3 presents the proposed ASDaaS methodology. Sec-
tion 4 introduces ASDaaS’s architecture. We describe
the implementation and evaluate our work in section
5. Section 6 draws final conclusions and describes our
future work.

2 RELATED WORKS

In Cloud Computing paradigm, there is a lack of com-
plete application development methodologies. How-
ever, several partial approaches for the development
of applications exist in literature. In (Sledziewski et
al., 2010), the authors propose an approach based on
Domain Specific Languages (DSL) within the devel-
opment process. The main inconvenient with this ap-
proach is the huge time that consumes the DSL devel-
opment in early phase of their approach.

Giove and colleagues (Giove et al., 2013) propose
a library called CPIM (Cloud Provider Independent
Model) abstracting from the details that are specific

of the underlying PaaS provider; and allowing an ap-
plication developer to implement his application in a
PaaS independent way. At deployment time, the de-
veloper specifies the PaaS to be used. At runtime,
CPIM library acts as a mediator between the appli-
cation code and the services offered by the PaaS. Our
work will reuse and integrate this interesting approach
for developing undiscovered services.

In (Ardagna et al., 2012), the authors propose
the MODACLOUDS system, a European project
(http://www.modaClouds.eu/.) that uses the principle
of MDD (Model Driven Development) for the devel-
opment of applications on the Cloud. Applications
are designed at a high level of abstraction of the target
Cloud, making them capable of operating on multiple
Cloud platforms. The main lack in this work is that
the PaaS Cloud services selection is only taking into
account QoS parameters to the detriment of the plat-
form’s Application Programming Interfaces (APIs).

The work proposed by (Kommalapati et al., 2011)
describes a SaaS Development Life Cycle (SaaS-
DLC). The authors present an approach that promotes
evaluation of the Cloud provider based on capabili-
ties of a platform. The SaaSDLC does not consider
reuse of Cloud services. It promotes the development
to a specific platform, making application portability
more difficult.

In (Guha et al., 2010), the authors advocate the
intervention of Cloud provider in the Agile eXtreme
Programming software development process, espe-
cially in planning, designing, building, testing and de-
ployment phases to mitigate the challenges associated
with Cloud software development, and make it more
advantageous. These authors integrate the notion of
roles for the various stakeholders in the agile develop-
ment process for Cloud applications, but do not con-
sider the other characteristics of Cloud applications
that can influence the development process.

In (Sun et al., 2010), the authors describe Service-
Oriented Software Development Cloud (SOSDC), a
Cloud platform for developing service-oriented soft-
ware and a dynamic hosting environment. The
SOSDC adopts an architecture covering the three lev-
els of Cloud services. The IaaS level is primar-
ily responsible for providing infrastructure resources.
The PaaS level provides App Engine for testing, im-
plementing and monitoring the deployed application
without having to consider the technical details. SaaS
level aims to provide ”Online Service-Oriented Soft-
ware Development Environment”. This approach
aims to supply a dynamic development environment
by providing on demand appliance for developers, it
is dedicated to a specific platform and does not exploit
public Cloud platforms.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

96



In summary, the state of the art analysis shows
there is a need for a complete methodology that
guides Cloud-based developers to perform the de-
velopment of Cloud service-oriented business appli-
cations, considering the constraints and benefits of
Cloud environments.

The methodology we propose in the next section,
(i) obeys the SOA principles and techniques that pro-
mote the reusability, the loose coupling and the com-
posability of the underlying XaaSs; (ii) meets the re-
quirements of the distributed nature of Cloud; (iii)
aims to make software development more accessible
for non IT-professionals; and (iv) is independent of a
particular platform.

3 AUTOMATIC SOFTWARE
DEVELOPMENT AS A SERVICE
METHODOLOGY (ASDaaS)

Our methodology for Automatic Software Develop-
ment as a Service (ASDaaS) is aimed at business
stakeholders who need a business application to au-
tomate a frequent task. In this section, we describe
the ASDaaS methodology through the described sce-
nario.

The originality of our approach lies in the follow-
ing: (i) it allows selection of a development platform
(PaaS) according to user preferences and restrictions
of available Cloud services, such as suitable APIs,
and (ii) it allows selection of IaaS for deployment that
meets the predefined user preferences and QoS pa-
rameters.

Figure 1: Automatic Software Development as a Service
methodology (ASDaaS).

Figure 1 illustrates the different phases of the
methodology, which are the following:

a) Requirements expression;

b) IaaS selection for application deployment;

c) Service discovery;

d) Development of undiscovered services;

e) Service composition;

f) Automatic deployment of business application;

g) Tests and Validation of the deployed business ap-
plication.

These phases are explained in the next sections. In
this paper we focus on business application require-
ment expression, i.e. the initial phase of the ASDaaS
methodology.

3.1 Requirements Expression

Services description languages such as WSDL (Web
Service Description Language) focus on the descrip-
tion of functional aspects of software component in-
terfaces (Coulouris et al, 2011) to the detriment of
non-functional aspects.

The USDL (Unified Service Description Lan-
guage) was created to address WSDL shortcomings
by describing business, operational and technical as-
pects in services description. Linked USDL consists
on reuse of existing vocabularies and ontologies for
services description. The rationale behind the use of
Linked Data is the requirement that USDL descrip-
tions should be shared between interested parties and
linked to other descriptions, standards and formats
(Cardoso et al, 2013).

We extend Linked USDL with a new module en-
abling to describe business application requirements.
This way it will be easier to match business stake-
holder’s requirements with Cloud services described
in Linked USDL.

The business stakeholder describes his/her busi-
ness application requirements (functional and non-
functional). Functional requirements are the appli-
cation features and the business constraints imposed
by the stakeholder’s organization. Non-functional re-
quirements are the QoS parameters and stakeholder
preferences. The latter describes, among others, the
location of services an payment means. The QoS
parameters describe the stakeholder’s business appli-
cation requirements in terms of quality of service of
Cloud platforms and infrastructures.

Following the predefined scenario, the stakeholder
defines his/her business application requirements as
follows:

� Application functions:

- Laptop review service,

Automatic�Software�Development�as�a�Service�(ASDaaS)�

97



- Computer purchase service,
- Delivery service.

� Business constraints:

- Purchase cost max value = 1000 Euros.

� QoS parameters: in order to describe its priorities
regarding QoS parameters, he/she should assign
coefficients to QoS parameters so that the sum of
all the coefficients does not exceed 10. As busi-
ness application integrates online payment, the
stakeholder prefers to value data privacy and in-
tegrity more than service response time with the
following coefficients:

- Data privacy: 3,
- Data integrity: 3,
- Availability: 3,
- Response time: 1.

� Stakeholder preferences:

- Services location: Europe,
- Currency: Euro,
- Cost max value: 500,
- Preferred deployment provider: ”Amazon”,
- Preferred provider for the purchase service:

”Paypal”.

Figure 2: USDL-requirement vocabulary.

The existing USDL modules
(https://github.com/linked-usdl.) are not sufficient
to describe non-functional aspects of stakeholder
business requirements, such as the preference for
invoking a business provider rather than another.
To achieve the goal of providing a unified language
to describe business application requirements, we
propose to extend the Linked USDL language
by defining a ”USDL-requirement” vocabulary,
which will allow matching the business applica-
tion requirements with the Linked USDL Cloud

service descriptions. Multiple vocabularies exist
(http://lov.okfn.org/dataset/lov/); we will reuse some
of their classes and properties following linked
data principles. The USDL-requirement vocabulary
describes business application requirements in terms
of stakeholder preferences, QoS parameters, service
functions, and business constraints. Figure 2 illus-
trates classes and properties that we define in the
USDL-requirement vocabulary. Rectangles represent
classes, and the circles represent the properties. For
example, the property 7 illustrates that a requirement
comprises functions, and the property 8 shows that
the stakeholder can define his preferred provider for
a given function. The gr:BusinessEntity is a Good
Relation’s (Hepp 2011) class that describes, in our
context, a service provider.

Figure 3: Requirements to USDL translation.

Figure 3 illustrates the matching process from
Linked USDL-requirement business application de-
scription to Linked USDL Cloud services. Once the
stakeholder expresses its business application require-
ments, these are formalized according to the template
of our ”USDL-requirement” vocabulary. This pro-
cess generates a file that is further divided into several
USDL files, each one describing a desirable Cloud
service. These USDL files provide input for the Cloud
service discovery process. If the USDL-requirement
file describes ”N” functions, the USDL-requirement
to USDL mapping engine generates ”N+1” USDL
files describing abstract services. ”N” USDL files cor-
respond to the ”N” functions, plus one USDL file de-
scribing the deployment platform.

Listing 1 illustrates the functions expression us-
ing USDL-requirement vocabulary in our scenario.
Line 3 presents the hasFunctions property for describ-
ing several functions needed by the stakeholder (from
line 4 to 6). Lines 8 to 10 show that the stakeholder
prefers invoking the paypal service for the computing
purchase function. From this listing file, four USDL
service files are generated, corresponding to the re-
quirements description of abstract services, which are
the products review service, the computer purchase
service, the delivery service and the IaaS deploy-
ment platform. The service discovery process re-
ceives these USDL files as input.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

98



1: @prefix rq: <usdl-requirements vocabulary>.
2:
3: rq: hasfunctions
4: :laptop review service,
5: :computer purchase service,
6: :delivery service.
7:
8: :computer_purchase_service a rq:function
9: rq:hasPreferedProvider
10: [a gr:BusinessEntity :Paypal]

Listing 1: Functions expression with USDL Require-
ment vocabulary.

3.2 Service Discovery

The process of service discovery starts from the
USDL files describing abstract services for outputting
a business service or a composite business service.

In this phase, through a business services search
engine, we have to discover business services corre-
sponding to several required functions and meeting
location, currency and preferred provider criteria. For
each service, several services can be discovered and
have to be ranked. The advantage of this phase is to
reduce the workload and improve reusability of busi-
ness services. If no business services are discovered
for some abstract services, we move on to the phase
of service automatic development.

We have to discover services in a Cloud market-
place by matching the USDL describing abstract ser-
vices and the marketplace’s USDL Cloud services.
Table 1 illustrates discovered services for the require-
ments described in our scenario with their QoS indi-
cators and cost. Where Q1 represents data privacy,
Q2 is data integrity, Q3 data loss, Q4 access control,
Q5 availability, Q6 response time. Values of Q1 to
Q5 represent satisfaction percentage of each indica-
tor. We assume that these values are retrieved from a
history of invoking these services.

Table 1: Scenario’s discovered services.

Needed
func-
tions

Disco
vered
ser-
vices

Q1
(%)

Q2
(%)

Q3
(%)

Q4
(%)

Q5
(%)

Q6
(ms)

Cost
(e/
month)

Products
review

S1 90 85 0 100 90 10 20

S2 100 95 2 98 80 20 40
Computer
pur-
chase

Paypal N.A. N.A. N.A. N.A. N.A. N.A. 32

Delivery S3 60 50 5 70 60 30 100
S4 85 90 3 90 50 5 59

IaaS Amazon N.A. N.A. N.A. N.A. N.A. N.A. 26

Currently, for the discovery of existing services,
we apply a syntactical matching. The next section de-

scribes how the services selection and their composi-
tion are done.

3.3 Service Selection and Composition

The service selection phase translates as a multi-
criteria decision making problem (Figueira, 2005).
Based on stakeholder’s preferences and QoS param-
eters, we weight the discovered services to select a
service that meets most requirements and preferences
of the user. The service provider with the highest rank
will be selected. The rank is calculated based on the
coefficients associated to QoS attributes. Two scenar-
ios are available: Let Si be a service and Qi an indica-
tor.

R(Si;Q j) =

(
Rupper

Rlower
(1)

Case 1: the higher the value of the attribute is, better
is the service, for instance, the service availability. In
this case the rank associated with this attribute for a
given provider is calculated as follows:

Rupper =
Value
Max

�Coe f f icient (2)

Where: Value is the value of the attribute for a given
provider, Max is the maximum value of the attribute
among all providers, Coefficient is the coefficient pre-
viously assigned to the attribute by the stakeholder.
The sum of several coefficients for all attributes does
not exceed 10.
Case 2: the smaller the value of the attribute is, for
instance, the response time, better is the service. In
this case the rank associated with this attribute for a
given provider is calculated as follows:

Rlower = (1� Valeur
Max

)�Coe f f icient (3)

Let R(Si) be the global ranking regarding the whole
indicators for a service Si. The IaaS provider with the
highest rank is selected.

R(Si) =
n

å
j=1

R(Si;Q j) (4)

In our scenario, the service discovery phase gener-
ates a list of services corresponding to different func-
tions described by the user. For each function, the
service with the highest rank is selected. The cost is
considered as a global criterion. Table 2 illustrates
cost and rank calculation for each selected service in
our running scenario. Service S1 is selected for the
laptop review service requirement. Service S4 is se-
lected for the delivery service requirement. In our
scenario, the stakeholder has chosen ”Amazon” as an

Automatic�Software�Development�as�a�Service�(ASDaaS)�

99



IaaS provider. The final composition includes the ser-
vices S1, S4, Paypal and Amazon.

Table 2: Service costs and ranks.

Services Services rank Service
cost
(e/month)

S1 R(S1)=(90/100)*3+(85/95)*3 20
+(90/90)*3+(1-(10/20))*1
=8.88

S2 R(S2)=(100/100)*3 40
+(95/95)*3+(80/90)*3
+(1-(20/20))*1=8,66

Paypal / 32
S3 R(S3)=(60/85)*3+(50/90)*3 100

+(60/60)*3+(1-(30/30))*1
=6.78

S4 R(S4)=(85/85)*3+(90/90)*3 59
+(50/60)*3+(1-(5/30))*1
=9.33

Amazon / 26

The service composition research domain has
been subject of several surveys explaining method-
ologies, approaches and composition languages (Mi-
lanovic, 2004), (Srivastava, 2003).

In our methodology the service composition phase
combines the selected and the developed services.
The composition of services is a continuous process,
which does not stop even after the deployment of the
business application. A VCS (Version Control Sys-
tem) will manage different versions of compositions
for each business application in order to allow back-
tracking, if necessary. If a new service S1’ is discov-
ered, with the same functionalities as S1 and better
QoS, S1’ replace S1 and a new composition with S1’
instead of S1 is made, then a new version of the busi-
ness application is generated.

3.4 IaaS Selection for Application
Deployment

A Cloud infrastructure is either chosen by business
stakeholder or automatically selected for the deploy-
ment of the business application, according to perfor-
mance indicators required by the user and the QoS pa-
rameters characterizing the Cloud Infrastructure. IaaS
selection is performed by ranking different IaaS, ac-
cording to QoS indicators (response time, availability,
accessibility, security, etc.) and following the ranking
and selection processes described in section 3.3.

3.5 Development of Undiscovered
Services

In traditional systems of service discovery, the discov-
ery process will output the discovered business ser-
vices, and gives no output if no services are discov-
ered. In our methodology, when the service discov-
ery algorithm does not return a result, we propose a
development of the service. Undiscovered services
are developed from UML (Unified Modelling Lan-
guage) models. This phase identifies and develops the
features described in the stakeholder’s business appli-
cation requirements that have not been discovered as
business services. This involves three key steps:

1. Undiscovered Services Modeling. Services are
modeled in UML without imposing a particular
platform, in order to allow automatic generation
of their code for a targeted Cloud platform with
full knowledge of the tools it offers. Our work will
reuse and integrate the CPIM library proposed by
Giove and colleagues (Giove et al, 2013) for de-
veloping the undiscovered services.

2. Discovery and Selection of Development Plat-
forms (PaaS) for each service. This phase allows
to select the platform based on the service to be
developed and the technologies allowed by the
PaaS, as well as on the QoS requirements. This
creates a distributed multi-platform development.
The selection of platforms is the same as for the
selection of infrastructure, with the only differ-
ence that we consider the APIs offered by differ-
ent providers. The benefits of choosing a PaaS
for each service development are: (i) the develop-
ment is custom made to each service, (ii) depen-
dencies of a particular PaaS are reduced, because
a specific PaaS deployment is based on a MDD
approach, (iii) addressing the distributed nature of
the Cloud, thus increasing the availability of the
final application.

3. Automatic Deployment and Publication of New
Developed Services. After the development of
new undiscovered services, these are deployed
and published in a marketplace of services.

3.6 Automatic Deployment

The automatic deployment phase consists in automat-
ically deploying the resulted business application on
the IaaS preferred by the business stakeholder or on
the one automatically selected by our system accord-
ing to stakeholder’s preferences and QoS parameters.

The deployment occurs until achieving stake-
holder satisfaction. If after the tests and validation

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

100



phase, tests are not conclusive and/or the stakeholder
does not validate results of the composition, IaaS
resources are freed, and another composition is se-
lected and deployed until stakeholder’s satisfaction is
achieved. Or the stakeholder can proceed to the re-
finement of its requirements.

3.7 Tests and Validation

The acceptance tests phase occurs after the business
application deployment, where the stakeholder tests
the deployed business application and verifies appli-
cation features and the respect of business constraints,
with the aim of validating or bringing modifications to
the requirements expression.

If tests are conclusive, the stakeholder validates
the deployed application. Else, other services are se-
lected from the service marketplace, composed and
deployed, or, the stakeholder introduces changes in
his/her requirements expression for the business ap-
plication, after, he/she has to test and validate the new
deployed business application.

In the next section, we describe the architecture
for ASDaaS. This architecture applies the previously
explained methodology.

4 ARCHITECTURE FOR
AUTOMATIC SOFTWARE
DEVELOPMENT AS A SERVICE

The figure 4 illustrates the architecture for business
application development as a service, which consists
of three levels: client level, system level and service
level. The client level allows to describe the applica-
tion requirements (business functions, business con-
straints, QoS parameters and stakeholder preferences)
via a web form; and to access to the deployed business
application via internet.

The system level describes the core of the archi-
tecture and is the focus of the remainder of this sec-
tion. It consists of the following services: project
management, discovery as a service, PaaS discovery
as a service, IaaS discovery as a service, undiscov-
ered services development as a service, composition
as a service and automatic deployment as a service.

The project management service is in charge of
managing several projects. The discovery as a ser-
vice is responsible for the service discovery opera-
tion based on service functions, QoS parameters and
stakeholder preferences. The undiscovered services
development as a service provides development of
undiscovered services from models, on the Cloud

Figure 4: Automatic Software Development as a Service
Architecture.

platform selected by the service PaaS discovery as
service. This module generates the code exploiting
the PaaS APIs and respecting the Cloud provider ar-
chitecture. The developed services are then deployed.
The ”PaaS Discovery as a Service” module enables
to find PaaS platform where each new developed ser-
vice will be deployed. The IaaS discovery as a service
enables the choice of an IaaS infrastructure for the
deployment of the business application. This phase
needs to match the QoS characteristics of different
IaaS with those desired by the stakeholder. The de-
ployment as a service consists of automatically de-
ploying the generated business application on a se-
lected infrastructure.

The service level includes the marketplace in
which our system selects services for composition.

5 IMPLEMENTATION &
VALIDATION

In order to validate and evaluate our proposal, we are
implementing a prototype for ASDaaS using Java lan-
guage. The phases of requirements expression, ser-
vices discovery and IaaS selection are implemented.
We use the Apache Jena Library for modeling and
manipulating the USDL files and the SPARQL Query
Language for querying them. We have implemented
an IT history service that is responsible for returning
the QoS parameters values for each discovered ser-
vice.

Due to the early stage of implementation, few tests
have been done. We have evaluated the service dis-
covery execution time variation with the number of
services in the marketplace. Figure 5 depicts these re-
sults obtained for the service discovery phase for our
running scenario.

Automatic�Software�Development�as�a�Service�(ASDaaS)�

101



Figure 5: Variation of the service discovery execution time
versus the marketplace’s number of services.

6 CONCLUSIONS

With Cloud computing, the application development
is changing, providing environments enabling to em-
power business stakeholders and to automatize the
software development activities. In this paper, we
have described a methodology for Cloud-based col-
laborative software development, and then presented
the ASDaaS architecture that addresses the challenges
of interoperability, independency to a specific plat-
form, and respects the distributed nature of the Cloud
environment. ASDaaS generates a business appli-
cation based on discovered and developed on-the-fly
business Cloud services.

Currently we are implementing the business
Cloud service composition module. In the future,
we will deploy the ASDaaS architecture in the Cloud
Platform of the Lyon 1 University for evaluating and
testing this work with a large set of cloud services.

REFERENCES

Amazon. (2013). Available: http://aws.amazon.com/fr/ec2/
Ardagna, Danilo., Di Nitto, Elisabetta., Casale, Giu-

liano., Petcu, Dana., Mohagheghi, Parastoo., Mosser,
Sbastien., Matthews, Peter., Gericke, Anke., Bal-
lagny, Cyril., DAndria, Francesco., Nechifor, Cosmin-
Septimiu., and Sheridan, Craig. (2012). MODA-
CLOUDS: A Model-Driven Approach for the Design
and Execution of Applications on Multiple Clouds.
ICSE Workshop on Modeling in Software Engineering
(MISE), 2012. pp 50-56.

Cardoso, J. (2013). A Unified Language For Ser-
vice Description: A Brief Overview. Available:
http://www.issip.org/2013/04/26/a-unified-language-
for-service-description-a-brief-overview/

Cardoso, J. B. (2010). Towards a unified service description
language for the internet of services: Requirements
and first developments. IEEE International Confer-
ence on Services Computing, Florida, USA (2010).pp
602 - 609.

Cardoso, J., Pedrinaci, C., Leidig, T., & Rupino, P. a.
(2012). Open semantic service networks. International
Symposium on Services Science 2012 (ISSS 2012).
pp 141-154.

Coulouris, G. D., Dollimore, J., Kindberg, T., and Blair,
G., (2011). Distributed Systems: Concepts and De-
sign. Fifth Edition, published by Addison Wesley,
May 2011.

Figueira, J.; Greco, S. and Ehrgott M.,. (2005). Multiple
Criteria Decision Analysis: State of the Art Surveys.
Springer, 2005.

Giove, Filippo., Longoni, Davide., Shokrolahi Yanchesh-
meh, Majid., Ardagna, Danilo. and Di Nitto, Elisa-
betta. (2013). An Approach for the Development of
Portable Applications on PaaS Clouds. CLOSER 2013
- 3rd International Conference on Cloud Computing
and Services Science, 2013. pp 591- 601.

Hepp M. (2011). GoodRelations Language
Reference. Available: http://www. hepp-
netz.de/ontologies/goodrelations/v1.html

Guha, Radha. and Al-Dabass, David. (2010). Impact of Web
2.0 and Cloud Computing Platform on Software En-
gineering. IEEE, International Symposium on Elec-
tronic System Design, 2010. pp 213-218.

Kommalapati, Hanu., and Zack, William H. (2011).
The SaaS Development Lifecycle. 2011. Available:
http://www.infoq.com/articles/SaaS-Lifecycle.

Linked Data - Connect Distributed Data across the Web.
(2013). Available: http://www.linkeddata.org/

Linked Open Vocabularies (LOV). (2013). Available:
http://lov.okfn.org/dataset/lov/

Linked USDL. (2013). Available: http://www.linked-usdl.
org/

Milanovic, N. a. (2004). Current Solutions for Web Service
Composition. IEEE Internet Computing. Vol 8. pp 51-
59.

Linked USDL modules. (2013). Available: https://
github.com/linked-usdl.

MODACLOUDS. Available: http://www.modaClouds.eu/.
Sledziewski, Krzysztof., Bordbar, Behzad., and Anane,

Rachid. (2010). A DSL-based Approach to Software
Development and Deployment on Cloud. 24th IEEE
International Conference on Advanced Information
Networking and Applications, 2010. pp 414-421.

Srivastava, B. a., Koehler, J., (2003). Web service
composition-current solutions and open problems.
Workshop on Planning for Web Services. page 28-35.

Sun, Hailong., Wang, Xu., Zhou, Chao., Huang, Zicheng.,
Liu, Xudong.,. (2010). Early Experience of Building
a Cloud Platform for Service Oriented Software De-
velopment. 2010 IEEE International Conference on
Cluster Computing Workshops and Posters (CLUS-
TER WORKSHOPS). pp 1-4.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

102


