
Performance Prediction for Unseen Virtual Machines

John O’Loughlin and Lee Gillam
Department of Computing, University of Surrey, Guildford, GU2 7XH Surrey, U.K.

Keywords: Cloud Computing, Performance Prediction, Virtualisation, Scheduling.

Abstract: Various papers have reported on the differential performance of virtual machine instances of the same type,
and same supposed performance rating, in Public Infrastructure Clouds. It has been established that instance
performance is determined in large part by the underlying hardware, and performance variation is due to the
heterogeneous nature of large and growing Clouds. Currently, customers have limited ability to request
performance levels, and can only identify the physical CPU backing an instance, and so associate CPU
models with expected performance levels, once resources have been obtained. Little progress has been made
to predict likely performance for instances on such Public Clouds. In this paper, we demonstrate how such
performance predictions could be provided for, predicated on knowledge derived empirically from one
common Public Infrastructure Cloud.

1 INTRODUCTION

Infrastructure as a Service (IaaS) Clouds offer
resources such as object storage, attachable storage,
configurable networks and virtual machines (VMs)
to customers over the internet, and are available to
anybody with an internet connection and a credit
card. Resources are provided on-demand, meaning
they are provisioned at the time of the request, and
can be ‘terminated’ when no longer needed.
Together with an ‘illusion of infinite capacity’
(Armbrust et al., 2009) publically available
computing environments allow customers to grow
and shrink their usage as required and when
required, and customers can be charged, typically,
on a per-hour basis for resources used. The
provider’s ability to support this is referred to as
elasticity; it is this that differentiates Clouds from
dedicated hosting environments where servers can
take up to a day to provision, are charged on a per-
month basis, and require customers to enter into
contracts for a pre-specified period of time
irrespective of usage.

Infrastructure Clouds are the first successful
attempt at public delivery of compute resources, and
naturally there are concerns about migrating on-
premise systems to them. Such concerns include:
security, availability, vendor lock-in and
performance; this latter concern of performance, in
particular compute performance, is the focus of this
paper.

As the largest, and arguably the de facto
standard, of Infrastructure Clouds, performance of
instances on EC2 has been widely studied, although
mainly for its suitability for HPC and scientific
computing. Consequently, differential performance
of instances of the same type has been reported on
by a number of authors, (Phillips, Engen, and Papay,
2011, and Ou et al., 2012) and it is now established
that performance variation is due to the
heterogeneous nature of large and growing Clouds.
Although EC2 acknowledges heterogeneity,
claiming that instances of the same type should
deliver a ‘consistent and predictable’ level of
compute (Amazon EC2 FAQS, no date) – despite
the published evidence to the contrary– is certainly
not ideal.

As users scale their infrastructure, knowing how
many instances they should start in order to meet
their needs requires an understanding of the
deliverable performance. At present users are,
potentially, in the unsatisfactory position of either
(1) having to guess how many instances to start in
order to obtain the desired number of satisfactory
ones, with obvious cost implications, or (2)
obtaining a number of instances that might not
deliver the required performance. EC2 customers
who are building services for their own customers
on top of these instances may run the risk of failing
any SLAs they provide unless they undertake
rigorous performance evaluations themselves.

70 O’Loughlin J. and Gillam L..
Performance Prediction for Unseen Virtual Machines.
DOI: 10.5220/0004840900700077
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (CLOSER-2014), pages 70-77
ISBN: 978-989-758-019-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

In this paper, we consider the problem of
determining the expected performance of a set of
instances before they are provisioned. The rest of
this paper is structured as follows: Section 2
provides background information on Cloud
structure, and in section 3 we discuss CPU model
distribution in a number of AZs as is relevant to the
discussions in this paper. In section 4 we describe
our AZ model, and Sections 5-7 discusses
simulations of VM offerings. In section 8 we
compare our simulated data with real data from
Amazon’s “us-west-1c” zone. In section 9 we
discuss assumptions made in our simulations and
how this relates to other scheduling algorithms one
could use. In section 10 we review related work, and
section 11 concludes and discusses future work.

2 CLOUD INFRASTRUCTURE

EC2, Google Compute Engine (GCE), HP Public
Cloud and Rackspace OpenCloud (AWS Global
Infrastructure, no date, Google Cloud Platform, no
date, HP Public Cloud, no date and Rackspace
Global Infrastructure, no date) structure their Clouds
into Regions and Zones; and all define these terms in
essentially the same manner: Regions are dispersed
into geographic areas consisting of Zones, and each
Zone is presented as an isolated location. Zones have
separate power and network connections and are tied
together with high speed interconnects.
Consequently, failure of one Zone should not, in
theory, disrupt operations in another. EC2 refer to
Zones as AZs and we will use these terms
interchangeably.

There exist some operational differences
between Regions/Zones in different Clouds. For
example, EC2 will not automatically replicate any
resources placed in one Region into another, whilst
GCE state that they make ‘no guarantee that project
data at rest is kept only in that Region’. However,
for the purposes of our present discussion these
operational differences are not important.

Clouds offer VMs in a range of sizes known as
instance types, with similar types grouped into
instance classes. Instances types within the same
class typically have the same ratio of quantity of
CPU cores to RAM.

Providers give their instance types a performance
rating, which expresses the compute power an
instance’s vCPUs should deliver, with a vCPU
rating multiplied by the number of vCPUs offered to
provide an overall rating for the type. On Amazon’s
Elastic Compute Cloud (EC2), this is called the EC2

Compute Unit (ECU), whilst Google Compute
Engine has the Google Compute Engine Unit
(GCEU). Such ratings should guarantee, if not
identical, then certainly very similar, levels of
performance of instances of the same type.

However, we have previously shown (Author1
and Author2, 2013) that m1.small instances on EC2
backed by a Xeon E5430 will run a bzip2
compression benchmark on average in 445s, whilst
instances backed by a Xeon E5507 will take on
average 621s to run the same benchmark. This is a
39% increase in time taken for instances backed by
Xeon E5507 compared to the Xeon E5430. These
instances are ‘rated’ the same and the user is charged
the same price for each, but a performance-based
pricing would clearly be expected to distinguish
these.

By a heterogeneous Cloud we mean one where
instances of the same type may run a variety of
underlying hardware (which we refer to as hosts). Of
the providers considered, EC2 is the only one which
acknowledges a heterogeneous infrastructure,
stating: ‘EC2 is built on commodity hardware, over
time there may be several different types of physical
hardware underlying EC2 instances’ (Amazon EC2
FAQs, no date). In such an environment
performance variation is to be expected. As Amazon
adds new Regions into EC2, and new Availability
Zones (AZ) into existing Regions performs
hardware refreshes, and as CPU models are retired
by manufacturers, heterogeneity is seemingly
inevitable. One would assume that, over time, any
successful Cloud provider is will end up with a
heterogeneous environment.

We have however found a stable association
between hardware, as identified by CPU model, and
instance classes. That is, an instance of a given class
only runs on particular set of hardware. For
example, First Generation Standard (FGS) instances
run on hardware with Intel Xeon E5430, E5-2650,
E5645 and E5507 CPUs. Over the 6 month period,
in which we have been running various performance
experiments on EC2 (April to September 2013),
these sets and associations have not changed.

We would of course expect change over time, for
the reasons discussed above. Indeed, in Ou, et al.
(2012), the authors find Intel Xeon E5430, E5645,
E5507 and AMD Opteron 270 backing FGS
instances. They note that the AMD model is present
less often in 2012 than compared to results they
obtain in 2011. We also find that the hardware
associated to different instance classes is distinct
from each other. We would assume that hardware
associated to different classes has either different

Performance�Prediction�for�Unseen�Virtual�Machines

71

performance characteristics, or a different ratio of
CPU cores to RAM. This allows instances from
different classes to be differentiated along these
lines. Thus, in addition to FGS instance class we
have High CPU, High Memory and Second
Generation Standard Instance classes. We may
logically view AZs as being partitioned into
hardware platforms associated with instance classes
that are available there.

Amazon is currently the only provider to publish
specific CPU model information associated with
certain instance types. Generally these are
specialised high-performance instance types such as
Cluster Compute with 10Gb networking, or GPU
instances. These types are only available, at the time
of writing, in a limited number of Regions. The
recently introduced High Memory class (m3.xlarge
and m3.2xlarge) is the only general purpose class of
instances globally available on EC2 whereby the
CPU model is provided as part of the instance
description. Whether EC2 will continue this trend;
and specify CPU model for all new, and possibly
existing, types, or find that heterogeneity is also
inevitable for these new instance types and remove
specific information, remains to be seen.

Dividing a Region into AZs, and encouraging
their use for load balancing and high availability,
tends to suggest that the resources available in the
various AZs are likely to be broadly similar.
However, we have experimentally determined that
the proportions of CPU models backing instances
are quite different in different AZs. Indeed, with
heterogeneous hardware in the same Zone, even
Zone-specific load balancing, and related scalability
matters, may necessitate further thought.

In the next section, we present some
experimental results showing the distribution of
CPU models found in a number of AZs.

3 CPU PERFORMANCE AND
DISTRIBUTION IN EC2

In April 2013 (Author1 and Author2 2013), we
benchmarked the compute capacity of close to 1300
instances on EC2, across 14 AZs in 6 (out of the 8)
Regions. We included 11 (non-specialised) instance
types across 4 instance classes: First Generation
Standard, High CPU, High Memory and Second
Generation Standard. The image id backing the
instances was ami-a73264ce which is a para-
virtualised image. As such the cpuid instruction
(used by the Linux kernel to populate /proc/cpuinfo)
does not trap to the hypervisor. Through cpuid we

identify the CPU model underlying an instance. And
so can determine CPU model to instance class
associations, and also the proportions of CPU
models found in a given AZ.

We measure an instance’s compute capacity by
timing the compression of an Ubuntu 10.04 desktop
image ISO with bzip2, a compression tool found on
Linux systems. Bzip2 is a compute bound
application and forms part of the SPECint 2006 CPU
benchmark suite. In Table 1 below we record the
benchmark times of 540 m1.small instance, broken
down by CPU model backing them.

Table 1: Bzip2 compression times on m1.small instances.

Statistic E5430 E5-2650 E5645 E5507
Mean(s) 445 470 510 621

Sd(s) 14 13 11 28
Min(s) 425 443 488 578
Max(s) 482 519 543 716

From Table 1 we see that, for this particular task, it
is clearly preferable to obtain an E5430 than a
E5507. These results concur with related work
(reviewed in Section 9), which shows that an
instance’s (compute) performance is primarily
determined by the CPU model backing it, and that
variation between instances backed by the same
CPU is much smaller than the variation between
instances backed by different CPUs. As such,
determining the expected performance of a set of
instances depends, in part, on being able to predict
which CPU models will back them. Since, in this
paper, we seek to elaborate a capability to undertake
such predictions, we consider the following
problem: In a request for a number of instances of a
given type (from a given AZ), what is the expected
number of each CPU model backing the instances?

We begin with the observation that it will depend
(at a minimum) upon (1) the proportions of CPU
models found in a given AZ, and (2) the scheduling
algorithm being used to place instances onto hosts.

In September 2013 an updated survey was
conducted focusing on the AZs us-east-1a and us-
east-1c in the Region US East. We ran 150 instances
of types m1.small, m1.medium and m1.large in both
us-east-1a and us-east-1c, that is 900 instances in
total. Table 2 shows the percentages of each model
found backing our instances in the 2 AZs. We
abbreviate us-east-1a and us-east-1c by 1a and 1c.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

72

Table 2: Proportion of CPU models for FGS instances is
us-east-1a and us-east-1c.

Type AZ E5430 E5-2650 E5645 E5507

m1.small 1a 0 0 98% 2%
m1.medium 1a 0 85% 15% 0
m1.large 1a 0 67% 33% 0
m1.small 1c 25% 0 26% 49%
m1.medium 1c 24% 1% 39% 36%
m1.large 1c 14% 0 7% 79%

 We do not interpret the above percentages as an
estimate for the actual proportions of hosts with a
given CPU type in the Zone, rather as an estimate of
the probability of obtaining a particular model.
Clearly, one would assume the percentages found to
be reflective of actual host proportions in the AZ.
From Table 2 we see that in us-east-1a we have very
high probability of an m1.small obtaining an E5645,
whilst the m1.medium has a much smaller chance.
However, we do expect probabilities to change over
time, and perhaps even frequently. We discuss this
further in section 7.

We also note that without much further
consideration a customer (given knowledge of Table
2) may well choose us-east-1a over us-east-1c for
certain instance types. However, we also note that
us-east-1c may offer better price/performance
compared to us-east-1a due to it having a larger
proportion of the E5430 model.

4 MODELLING AN AZ

In this section we develop a simple model of an AZ
that will allow us to simulate requests and responses.
Public Clouds are generally opaque - few
architectural details are made available. And so we
are guided by knowledge derived from the
OpenStack reference architectures (OpenStack, no
date), experiments on EC2, and our experiences of
running both Eucalyptus and OpenStack Private
Clouds at our institution.

To simplify matters we model requests only for
FGS instances, the m1.small, m1.medium, m1.large
and m1.xlarge instances. As discussed earlier, this
class is backed by Intel Xeon E5430, E5-2650,
E5645 and E5507 CPUs.

By VM density we refer to the ratio of vCPUs to
physical cores that a host presents. For example, a
host with 8 cores and VM density = 1 presents 8
vCPU. In this case the host could run, for example, 1
m1.xlarge (requiring 4 vCPU) and 4 m1.small
instances (1 vCPU each). However, if the VM
density is increased to 1.5 we now have 12 vCPUs

presented, and so the host may now run (for
example) an additional 2 m1.large instances. Of
course, running a Cloud at a higher VM Density will
lead to greater resource contention amongst the
VMs, resulting in larger performance variation. We
set the VM Density = 1.

The scheduler in our model (in common with the
OpenStack scheduler) is capable of filtering
instances types onto associated hardware. We
therefore avoid considering hardware not associated
with FGS instance class.

In our model, a host for a given class can run a
mix of its instance types. For example, a FGS host
with sufficient vCPUs could have an m1.small,
m1.medium, m1.large and an m1.xlarge running on
it at the same time. There is no obvious reason why
this should not also be true on EC2.

We have chosen to use the chance scheduling
algorithm. This chooses hosts at random and, if there
are available resources, will allocate the VM to the
host.

Hence our AZ consists of:
 A number of host machines running a

hypervisor in order to host VM instances.
 Heterogeneous hosts (hosts may have

different hardware).
 Each host presents a number of vCPUs which

are allocated to instances running on it.
 One scheduler, responsible for placement of

VM instances onto hosts.
o The scheduler can be configured to

implement a number of scheduling
algorithms. We use chance scheduling.

o The scheduler also filters instance types
onto hosts of a given type.

 VM Density = 1.

5 SIMULATING USER
REQUESTS

We restate the problem of interest: In a request for a
number of instances of a given type, what is the
expected number of each CPU model backing the
instances?

By state of the Zone, we mean the total number
of available vCPUs and their arrangement over the
host machines. Clearly, the state of the Zone will
change over time, potentially for a number of
different reasons including demand fluctuation,
capacity management, short-term unplanned
outages, planned maintenance and hardware
replacement and refreshes. Some of these are merely
transient, whilst other will change the composition
of the Zone.

Performance�Prediction�for�Unseen�Virtual�Machines

73

To generate a state, we need to make an
assumption about data centre loading, which we
consider to be the number of in use vCPUs. Whilst
we have no reliable data for actual VM loadings in
data centres, and providers do not release such
information, it is generally claimed to be high.
Indeed, one of the positive arguments for Cloud
adoption is high utilisation. Further, providers claim
they can maintain high rates and that whilst an
individual customer’s demand fluctuates; aggregate
demand (over all customers) remains fairly constant.
This has been referred to as one of the ‘Laws’ of
Cloudonomics (Weinman, 2008). From the
discussion above, we believe that scenario 2 would
be a reasonable assumption on data centre loading.

Our algorithm for generating a Zone state
depends on size of the Zone, the load and the
instances we wish to run in it. Assuming 1000 hosts
each with 8 cores (without load), so 8000 vCPUs in
total, able to run m1.medium, m1.large and
m1.xlarge instance, we do as follows:

LOADING = randomint(0.7*8000,0.9*8000)
while (LOADING > 0) do
 k = random-select(1, 2, 4)
 schedule(20 instances of k vCPUs)
 LOADING = LOADING - 20*k

With all hosts, and so all vCPUs, free, we

generate a random loading of 70% to 90% of the
vCPU count. Next, we randomly select (random
numbers drawn from the uniform distribution) a
vCPU size (1, 2, 4 to reflect the vCPU requirement
of m1.medium, m1.large and m1.large, respectively)
and schedule 20 instances of this type into the Zone.
This is repeated until we have the required load.
This gives a mix of types running on hosts. In our
code the schedule function ensures that a VM is only
placed on a host which has a sufficient number of
free vCPUs. The schedule function updates the host
and VM state after allocation.

We choose a static (Monte Carlo) simulation of
user requests, proceeding as follows: We first
generate a Zone State as described above, we then
simulate a request (over this state) to the scheduler,
which allocates the required number of instances
onto hosts. We then count the number of CPU
models in the hosts backing our instances. An
example output of a request for 20 m1.small
instances, in a Zone containing CPU models E5430,
E5645 and E5507 would be: (5 E5430, 4 E5645, 11
E5507).

For each iteration in the simulation, the requested
instance type is constant, the request size is 20 (the
maximum on EC2), and Zone state is generated
anew so if we are interested in m1.small types then

the simulation asks for 20 m1.small instances 50,000
times (each time over a new Zone state). By
repeatedly sampling over Zone states a sufficiently
large number of times (50,000 in this case) we
generate a distribution for the CPU models from
which we calculate estimates of the expected
number of CPU models per request. In practice there
will be some request failures, however for simplicity
we assume that all instances are successfully placed
in each request.

We investigate two scenarios:
Scenario 1: Zero loading in the data centre.
Scenario 2: 70% to 90% of the cores in the data
centre already in use.

To run a simulation, we need to specify the
proportions of the CPUs in the Zone. Whilst we
have data from our survey of us-east-1c, we are
faced with 2 immediate problems. Firstly, as already
discussed, the percentages are estimates of the
probability of obtaining a model and not estimates of
the actual host proportions. Clearly though they are
likely to be indicative of them and as there is no
obvious way to more accurately determine host
proportions we take the percentages as estimates for
our model. Next, instance types share common
platforms, and yet from Table 2 are not being
allocated to them in the same fashion. And so, if we
wish to model m1.small requests should we use 49%
as the percentage? Or should we average over 49%,
36% and 79%, which would give 55%? When
modelling a given type we take the percentage found
for the type and not the average.

6 SCENARIO 1

We are requesting 20 FGS instances from the pool
of all available hosts. We start by considering the
m1.medium instance type which has 1 vCPUs, and
so requires 1 physical core by our assumptions. We
are using a chance scheduler, which chooses hosts
randomly and allocates a VM to it, if it has sufficient
resources (if not choose a new host). Thus we are
sampling over the set of cores without replacement.
In this case the joint probability density function is
described by the multivariate hyper-geometric
distribution. The marginal distributions are also
hyper-geometric, however when the sample size is
small compared to the population, as in this case, the
hyper-geometric tends to binomial distribution. And,
so we have, for example E5430 ~ B(n,p) where n =
20 and p is proportion of E5430 cores expressed as a
decimal for m1.medium instance. We also note that,
whilst this request is for m1.medium instances, the

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

74

argument above, with slight modifications, applies
to all FGS instance sizes.

7 SCENARIO 2

The AZ is assumed to have a loading such that 70%
to 90% of the cores are already in use. That means
the total available core count is between 800 and
2400. The first simulation is with m1.small requests
in us-east-1c with CPUs in the following
proportions: 25% E5430, 26% E5645 and 49%
E5507. We then simulate m1.medium and m1.large
using data from Table 2.
 We calculate the marginal distributions for our
random variables by simply counting the number of
times a particular output occurs. To calculate the
marginal probability distributions we simply divide
the number of occurrences by the 50,000, from this
we calculate the expected number of each CPU. In
Table 3 below we present the calculated
expectations for all CPU models in each simulation,
and in Figure 1 we present the frequency distribution
for the discrete random variable defined by the
number of E5430 models returned in response to a
request for 20 m1.large instances.

Table 3: Expected Value of CPU Returns.

 E5430 E5645 E5507
m1.small 5.00 5.197 9.795
m1.medium 5.0114 5.195 9.793
m1.large 5.008 5.192 9.799

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2000

4000

6000

8000

10000

12000

E5430 for m1.large Instances

Nunber of E5430 Returned

F
re

q
u

e
n

cy

Figure 1: E5430 for m1.large Instances.

We suspect that the distributions are binomial. For
the distribution depicted in Figure 1 we perform a
Chi-Squared Goodness of Fit Test, where the null
hypothesis is E5430 ~ B(20,0.25), and E5430
denotes the discrete random variable as defined in
the paragraph above. For the test we generate
expected output from B(20,0.25) and then calculate
the chi squared statistic as 17.99. With 20 degrees of
freedom, at a 5% significance level, we fail to reject

the null hypothesis. Similarly, our simulations for
m1.small and m1.medium instance types also
produce marginal distributions which are binomial.

8 COMPARISONS WITH POST
SIMULATION DATA FROM
US-EAST-1C

From the above simulation E5430 ~ B(20,0.25).
By a direct calculation P(E5430 <=7) – P(E5430
<=2) = 0.673. And so in 2 out of 3 samples of 20
instances we would expect the number of E5430
models obtained to be between 3 and 7.

In a follow on experiment to the one described in
section 3, paragraph 6, and with results in Table 2;
we requested 3 samples of 20 m1.large instances,
with a 10 minute interval between requests and no
resources were released until we had concluded the
experiment. In Table 4 below we record the results.

Table 4: CPU models returned in request in us-east-1c for
20 m1.large.

Sample E5430 E5645 E5507
1 3 0 17
2 5 1 14
3 2 0 18

In a final experiment, we launched 100 m1.small
instances. Assuming a binomial distribution, and
using our data in Table 2 as an estimate for p, the
expected numbers (100*p) of each CPU model
would be (25,24,49). We obtained (21,29,50).

It is not yet clear to us why instance types within
the same class obtained the same CPUs in different
proportions. It may well be the case that instances
types within the same class do not run on the same
host at the same time. That is, a host may run 2
m1.xlarge machines, and if one is terminated will
only host another m1.xlarge. However, if both
m1.xlarge instances are terminated then the host is
available again to all instance types in the class.
Over time such a scheme may lead to the
distributions we have seen. We intend to pursue this
idea further.

9 SCHEDULERS AND AZ STATE

We chose the chance scheduler as our staring point
as it is was previously the default scheduling
algorithm in OpenStack. There are a number of
algorithms that schedule more intelligently than

Performance�Prediction�for�Unseen�Virtual�Machines

75

chance, and reflect the priorities of a site. As an
example, minimise the number of hosts in use;
whilst keeping the hosts not in use in a low energy
state. Others algorithms attempt to make efficient
use of resources; and these are generally variations
on the bin packing problem, as described in Wilcox,
et al. (2010), with the scheduler employing a
heuristic to solve the problem. The AZ states and
the CPU distributions generated by this scheduler
are potentially quite different from those that a
chance scheduler would generate. Similarly,
schedulers that seek to take advantage of co-locating
VMs, for either deduplication of base images or
page sharing amongst VMs may also generate AZ
states different from both the chance scheduler and
bin packing.

10 RELATED WORK

In Armbrust, et al. (2009), the authors describe EC2
Cloud performance as unpredictable. Similarly,
Osterman, et al. (2010), describe performance in the
Cloud as unreliable. The Magellan Report on Cloud
Computing for Science (Yelick, et al., 2011) found
that ‘applications in the Cloud…experience
significant performance variations’ and noted that
this is in part caused by the heterogeneous nature of
EC2. However, EC2 was the only Public Cloud they
considered. Similarly, in Phillips, Engen, and Papay,
(2011), also discovered differential performance in
instances of the same type on EC2 when attempting
to predict application performance.

Iosup, et al. (2011), demonstrate that
performance variation exists in a range of AWS
services, including S3, SDB and SQS, and so
performance variation of applications using these
services is not solely dependent upon instance
compute capability.

Schad, et al. (2010), show that the compute
performance of instances sampled from US East N.
California and the EU West Dublin Region falls into
two distinct performance bands. Upon further
investigation they detect two different CPU models
backing their instances and speculate that previous
results are explained by differences in CPU model.
They also found a difference in the amount
performance variation in two out of the four AZs
used (us-east-1c and us-east-1d).

Ou, et al. (2012), suggest that the heterogeneous
nature of Clouds can be exploited by estimating the
probability of obtaining a particular CPU model
backing an instance. Their method assumes that
instances will be randomly sampled from all AZ

available in US East N. California, which, as noted
by the authors in Schad, et al. (2010) is not
necessarily the case. To fully exploit heterogeneity,
requests must be made per AZ, and this requires an
analysis of the CPU distributions per AZ in the
Region of interest. Additionally, they assume that
the CPU model obtained in a particular request is
independent of the one previously obtained. There is
no guarantee of this; and VM placement algorithms
need to be considered.

There is a large literature base for VM
scheduling; for example Bazarbayev, et al. (no date),
consider scheduling of VMs with identical or similar
base images onto the same hosts. Reig, Alonso and
Guitart, (2010), add machine learning capabilities to
the scheduler in order for it to be able to predict
resources required for a given execution time.
However, as far as we aware, there are no papers
looking specifically at how scheduling may affect
the probability of obtaining particular resources.

11 CONCLUSIONS AND FUTURE
WORK

The compute performance of an instance is primarily
determined by the CPU model backing it. Currently
customers cannot request either a desired level of
performance, or, failing that, a particular CPU
model. Being able to predict the performance of a
set of instances before provisioning them, is
therefore an important issue for Cloud users. Being
able predict the range of CPU models that may be
obtained in response to a request will go someway
towards answering this question.
In this paper we therefore address the following
problem: In a request for a number of instances of a
given type, what is the expected number of each
CPU model backing the instances?

By create a simple AZ model we showed that in
the case of an empty (but sufficiently large) AZ
then the number of models of a given type in a
request is binomially distributed B(20,p), where p is
the proportion of CPU models in the zone.

We then modelled an AZ and under a load of
70% to 90% capacity used, this describes the
number of vCPUs in use. We used the uniform
distribution to generate the AZ state, and then used a
chance scheduling algorithm to allocate FGS
instances into our AZ. The simulation samples over
the set of possible states, so we estimate a joint
probability distribution for our random variables
E5430, E5645 and E5507 (denoting the CPU models

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

76

found in AZ respectively). From this joint
distribution we calculated the marginal distributions
and using a chi-squared goodness of fit test we
showed that these are drawn from a Binomial
distribution.

Therefore, in both scenarios the answer to our
original question is this: the expected number of
CPUs of a given type is the request size multiplied
by the probability of obtaining a CPU (in a request
for one instance). Comparing with a (small) set of
samples drawn from us-east-1c we find that n*p
appears to be reasonably good estimate of the
number of models we may obtain.

We intend to investigate commonly found
scheduling algorithms and incorporate them into
future models, and compare the distributions our
models generate with instance sampled from
providers.

We recognise that the work involved in
implementing such a model, and estimating possibly
frequently changing probabilities, may make it
impractical for certain users. However, we believe
that this is feasible for Infrastructure Cloud brokers;
and indeed they are ideally placed to do so.

More generally, we believe this will enable
brokers to make performance related pricing offers
to customers of the following form: Offer 1: We are
95% sure that at least 15 of the 20 VMs will run the
workload in less than or equal to T seconds. Our
future work is aimed at advancing this.

REFERENCES

Phillips, S., Engen, V., & Papay, J., 2011. Snow white
clouds and the seven dwarfs, in Proc. of the IEEE
International Conference and Workshops on Cloud
Computing Technology and Science, pp738-745, Nov.
2011.

Ou, Z., Zhuang, H., Nurminem, J.K., Yla-Jaaski, A., &
Hui, P., 2012. Exploiting Hardware Heterogeneity
within the same instance type of Amazon EC2,
presented at 4th USENIX Workshop on Hot Topics in
Cloud Computing, Boston, MA. Jun. 2012.

Reig, G., Alonso, J., & Guitart, J., 2010. Prediction of Job
Resource Requirement for Deadline Schedulers to
Manage High-Level SLAs on the Cloud, in 2012 Ninth
IEEE International Symposium on Networking
Computing and Applications, pp 162-167, July 2010.

Amazon EC2 FAQs, no date. Aws.amazon.com. [Online].
Available at: < http://aws.amazon.com/ec2/faqs>
[Accessed: 30 September 2013].

Google Cloud Platform, no date. cloud.google.com.
[Online]. Available at:https://cloud.google.com
[Accessed: 30th September 2013].

HP Public Cloud, no date. www.hpcloud.com. [Online].

Available at: <https://www.hpcloud.com/> [Accessed:
2nd July 2013].

Rackspace Global Infrastructure, no date.
www.rackspace.com [Online]. Available at: http://
www.rackspace.com/information/aboutus/datacenters/
[Accessed: 30th September 2013].

AWS Global Infrastructure, no date. aws.amazon.com.
[Online]. Available:<http://aws.amazon.com/about-
aws/globalinfrastructure/> [Accessed: 30th September
2013].

Armbrust, M., et al, 2009. Above the clouds: a Berkely
view of cloud computing, Technical Report EECS-
2008-28, EECS Department, University of California,
Berkeley.

OpenStack Scheduling, no date. Docs.openstack.org
[Online]. Available at: < http://docs.openstack.org/
grizzly/openstack-compute/admin/content/ch_schedu
ling.html> [Accessed: 30th September]

Weinman, J., 07/09/2008, 10 laws of Cloudonmics.
Giga.com. [Online]. Available at http://gigaom.com
/2008/09/07/the-10-laws-of-cloudonomics/ [Accessed:
30th September

Bazarbayev et al., no date. Content based scheduling of
Virtual Machines in the Cloud. [Online]. Available at
https://www.perform.csl.illinois.edu/Papers/USAN_pa
pers/12BAZ01.pdf > [Accessed: 30th September]

Wilcox, D., McNabb, A., Seppi, K., & Flanagan, K., 2010.
Probabilistic Virtual Machine Assignment, Cloud
Computing 2010: First International Conference on
Cloud Computing, Grids and Virtualisation, Lisbon,
November 21-16, 2010.

S. Osterman et al, A performance analysis of EC2 cloud
computing services for scientific computing, Cloud
Computing, Lecture Notes of the Institute for
Computer Sciences, Social-Informatics and
Telecommunications Engineering, vol 34, 2010, pp
115-131.

Iosup, A., Nezih, Y., and Dick, E., 2011. On the
performance variability of production cloud services.
In Cluster, Cloud and Grid Computing (CCGrid), 2011

Yelick, K., et al, 2011. The Magellan Report on Cloud
Computing for Science. [Online]. Available at:
http://www/alcf.anl.gov/magellan [Accessed at: 2nd
January 2014].

OpenStack, no date. www.openstack.org [Online].
Available at: http://www.openstack.org [Accessed: 1st
January 2014].

Performance�Prediction�for�Unseen�Virtual�Machines

77

