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Abstract: Various papers have reported on the differential performance of virtual machine instances of the same type, 
and same supposed performance rating, in Public Infrastructure Clouds. It has been established that instance 
performance is determined in large part by the underlying hardware, and performance variation is due to the 
heterogeneous nature of large and growing Clouds. Currently, customers have limited ability to request 
performance levels, and can only identify the physical CPU backing an instance, and so associate CPU 
models with expected performance levels, once resources have been obtained. Little progress has been made 
to predict likely performance for instances on such Public Clouds. In this paper, we demonstrate how such 
performance predictions could be provided for, predicated on knowledge derived empirically from one 
common Public Infrastructure Cloud.  

1 INTRODUCTION 

Infrastructure as a Service (IaaS) Clouds offer 
resources such as object storage, attachable storage, 
configurable networks and virtual machines (VMs) 
to customers over the internet, and are available to 
anybody with an internet connection and a credit 
card. Resources are provided on-demand, meaning 
they are provisioned at the time of the request, and 
can be ‘terminated’ when no longer needed. 
Together with an ‘illusion of infinite capacity’ 
(Armbrust et al., 2009) publically available 
computing environments allow customers to grow 
and shrink their usage as required and when 
required, and customers can be charged, typically, 
on a per-hour basis for resources used. The 
provider’s ability to support this is referred to as 
elasticity; it is this that differentiates Clouds from 
dedicated hosting environments where servers can 
take up to a day to provision, are charged on a per-
month basis, and require customers to enter into 
contracts for a pre-specified period of time 
irrespective of usage. 

Infrastructure Clouds are the first successful 
attempt at public delivery of compute resources, and 
naturally there are concerns about migrating on-
premise systems to them. Such concerns include: 
security, availability, vendor lock-in and 
performance; this latter concern of performance, in 
particular compute performance, is the focus of this 
paper. 

As the largest, and arguably the de facto 
standard, of Infrastructure Clouds, performance of 
instances on EC2 has been widely studied, although 
mainly for its suitability for HPC and scientific 
computing. Consequently, differential performance 
of instances of the same type has been reported on 
by a number of authors, (Phillips, Engen, and Papay, 
2011, and Ou et al., 2012) and it is now established 
that performance variation is due to the 
heterogeneous nature of large and growing Clouds. 
Although EC2 acknowledges heterogeneity, 
claiming that instances of the same type should 
deliver a ‘consistent and predictable’ level of 
compute (Amazon EC2 FAQS, no date) – despite 
the published evidence to the contrary– is certainly 
not ideal. 

As users scale their infrastructure, knowing how 
many instances they should start in order to meet 
their needs requires an understanding of the 
deliverable performance. At present users are, 
potentially, in the unsatisfactory position of either 
(1) having to guess how many instances to start in 
order to obtain the desired number of satisfactory 
ones, with obvious cost implications, or (2) 
obtaining a number of instances that might not 
deliver the required performance. EC2 customers 
who are building services for their own customers 
on top of these instances may run the risk of failing 
any SLAs they provide unless they undertake 
rigorous performance evaluations themselves. 
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In this paper, we consider the problem of 
determining the expected performance of a set of 
instances before they are provisioned. The rest of 
this paper is structured as follows: Section 2 
provides background information on Cloud 
structure, and in section 3 we discuss CPU model 
distribution in a number of AZs as is relevant to the 
discussions in this paper. In section 4 we describe 
our AZ model, and Sections 5-7 discusses 
simulations of VM offerings. In section 8 we 
compare our simulated data with real data from 
Amazon’s “us-west-1c” zone. In section 9 we 
discuss assumptions made in our simulations and 
how this relates to other scheduling algorithms one 
could use. In section 10 we review related work, and 
section 11 concludes and discusses future work. 

2 CLOUD INFRASTRUCTURE 

EC2, Google Compute Engine (GCE), HP Public 
Cloud and Rackspace OpenCloud (AWS Global 
Infrastructure, no date, Google Cloud Platform, no 
date, HP Public Cloud, no date and Rackspace 
Global Infrastructure, no date) structure their Clouds 
into Regions and Zones; and all define these terms in 
essentially the same manner: Regions are dispersed 
into geographic areas consisting of Zones, and each 
Zone is presented as an isolated location. Zones have 
separate power and network connections and are tied 
together with high speed interconnects. 
Consequently, failure of one Zone should not, in 
theory, disrupt operations in another. EC2 refer to 
Zones as AZs and we will use these terms 
interchangeably. 

There exist some operational differences 
between Regions/Zones in different Clouds. For 
example, EC2 will not automatically replicate any 
resources placed in one Region into another, whilst 
GCE state that they make ‘no guarantee that project 
data at rest is kept only in that Region’. However, 
for the purposes of our present discussion these 
operational differences are not important. 

Clouds offer VMs in a range of sizes known as 
instance types, with similar types grouped into 
instance classes. Instances types within the same 
class typically have the same ratio of quantity of 
CPU cores to RAM.  

Providers give their instance types a performance 
rating, which expresses the compute power an 
instance’s vCPUs should deliver, with a vCPU 
rating multiplied by the number of vCPUs offered to 
provide an overall rating for the type. On Amazon’s 
Elastic Compute Cloud (EC2), this is called the EC2 

Compute Unit (ECU), whilst Google Compute 
Engine has the Google Compute Engine Unit 
(GCEU). Such ratings should guarantee, if not 
identical, then certainly very similar, levels of 
performance of instances of the same type. 

However, we have previously shown (Author1 
and Author2, 2013) that m1.small instances on EC2 
backed by a Xeon E5430 will run a bzip2 
compression benchmark on average in 445s, whilst 
instances backed by a Xeon E5507 will take on 
average 621s to run the same benchmark. This is a 
39% increase in time taken for instances backed by 
Xeon E5507 compared to the Xeon E5430. These 
instances are ‘rated’ the same and the user is charged 
the same price for each, but a performance-based 
pricing would clearly be expected to distinguish 
these.  

By a heterogeneous Cloud we mean one where 
instances of the same type may run a variety of 
underlying hardware (which we refer to as hosts). Of 
the providers considered, EC2 is the only one which 
acknowledges a heterogeneous infrastructure, 
stating: ‘EC2 is built on commodity hardware, over 
time there may be several different types of physical 
hardware underlying EC2 instances’ (Amazon EC2 
FAQs, no date). In such an environment 
performance variation is to be expected. As Amazon 
adds new Regions into EC2, and new Availability 
Zones (AZ) into existing Regions performs 
hardware refreshes, and as CPU models are retired 
by manufacturers, heterogeneity is seemingly 
inevitable. One would assume that, over time, any 
successful Cloud provider is will end up with a 
heterogeneous environment. 

We have however found a stable association 
between hardware, as identified by CPU model, and 
instance classes. That is, an instance of a given class 
only runs on particular set of hardware. For 
example, First Generation Standard (FGS) instances 
run on hardware with Intel Xeon E5430, E5-2650, 
E5645 and E5507 CPUs. Over the 6 month period, 
in which we have been running various performance 
experiments on EC2 (April to September 2013), 
these sets and associations have not changed.  

We would of course expect change over time, for 
the reasons discussed above. Indeed, in Ou, et al. 
(2012), the authors find Intel Xeon E5430, E5645, 
E5507 and AMD Opteron 270 backing FGS 
instances. They note that the AMD model is present 
less often in 2012 than compared to results they 
obtain in 2011. We also find that the hardware 
associated to different instance classes is distinct 
from each other. We would assume that hardware 
associated to different classes has either different 
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performance characteristics, or a different ratio of 
CPU cores to RAM. This allows instances from 
different classes to be differentiated along these 
lines. Thus, in addition to FGS instance class we 
have High CPU, High Memory and Second 
Generation Standard Instance classes. We may 
logically view AZs as being partitioned into 
hardware platforms associated with instance classes 
that are available there. 

Amazon is currently the only provider to publish 
specific CPU model information associated with 
certain instance types. Generally these are 
specialised high-performance instance types such as 
Cluster Compute with 10Gb networking, or GPU 
instances. These types are only available, at the time 
of writing, in a limited number of Regions. The 
recently introduced High Memory class (m3.xlarge 
and m3.2xlarge) is the only general purpose class of 
instances globally available on EC2 whereby the 
CPU model is provided as part of the instance 
description. Whether EC2 will continue this trend; 
and specify CPU model for all new, and possibly 
existing, types, or find that heterogeneity is also 
inevitable for these new instance types and remove 
specific information, remains to be seen. 

Dividing a Region into AZs, and encouraging 
their use for load balancing and high availability, 
tends to suggest that the resources available in the 
various AZs are likely to be broadly similar. 
However, we have experimentally determined that 
the proportions of CPU models backing instances 
are quite different in different AZs. Indeed, with 
heterogeneous hardware in the same Zone, even 
Zone-specific load balancing, and related scalability 
matters, may necessitate further thought. 

In the next section, we present some 
experimental results showing the distribution of 
CPU models found in a number of AZs. 

3 CPU PERFORMANCE AND 
DISTRIBUTION IN EC2 

In April 2013 (Author1 and Author2 2013), we 
benchmarked the compute capacity of close to 1300 
instances on EC2, across 14 AZs in 6 (out of the 8) 
Regions. We included 11 (non-specialised) instance 
types across 4 instance classes: First Generation 
Standard, High CPU, High Memory and Second 
Generation Standard. The image id backing the 
instances was ami-a73264ce which is a para-
virtualised image. As such the cpuid instruction 
(used by the Linux kernel to populate /proc/cpuinfo) 
does not trap to the hypervisor. Through cpuid we 

identify the CPU model underlying an instance. And 
so can determine CPU model to instance class 
associations, and also the proportions of CPU 
models found in a given AZ. 

We measure an instance’s compute capacity by 
timing the compression of an Ubuntu 10.04 desktop 
image ISO with bzip2, a compression tool found on 
Linux systems. Bzip2 is a compute bound 
application and forms part of the SPECint 2006 CPU 
benchmark suite.  In Table 1 below we record the 
benchmark times of 540 m1.small instance, broken 
down by CPU model backing them.  

Table 1: Bzip2 compression times on m1.small instances. 

Statistic E5430 E5-2650 E5645 E5507 
Mean(s) 445 470 510 621 

Sd(s) 14 13 11 28 
Min(s) 425 443 488 578 
Max(s) 482 519 543 716 

 
From Table 1 we see that, for this particular task, it 
is clearly preferable to obtain an E5430 than a 
E5507. These results concur with related work 
(reviewed in Section 9), which shows that an 
instance’s (compute) performance is primarily 
determined by the CPU model backing it, and that 
variation between instances backed by the same 
CPU is much smaller than the variation between 
instances backed by different CPUs. As such, 
determining the expected performance of a set of 
instances depends, in part, on being able to predict 
which CPU models will back them. Since, in this 
paper, we seek to elaborate a capability to undertake 
such predictions, we consider the following 
problem:  In a request for a number of instances of a 
given type (from a given AZ), what is the expected 
number of each CPU model backing the instances? 

We begin with the observation that it will depend 
(at a minimum) upon (1) the proportions of CPU 
models found in a given AZ, and (2) the scheduling 
algorithm being used to place instances onto hosts.   

In September 2013 an updated survey was 
conducted focusing on the AZs us-east-1a and us-
east-1c in the Region US East. We ran 150 instances 
of types m1.small, m1.medium and m1.large in both 
us-east-1a and us-east-1c, that is 900 instances in 
total. Table 2 shows the percentages of each model 
found backing our instances in the 2 AZs. We 
abbreviate us-east-1a and us-east-1c by 1a and 1c. 
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Table 2: Proportion of CPU models for FGS instances is 
us-east-1a and us-east-1c. 

Type AZ E5430 E5-2650 E5645 E5507

m1.small 1a 0 0 98%  2% 
m1.medium 1a 0 85% 15% 0 
m1.large 1a 0 67% 33% 0 
m1.small 1c 25% 0 26% 49% 
m1.medium 1c 24% 1% 39% 36% 
m1.large 1c 14% 0 7% 79% 

 
 We do not interpret the above percentages as an 
estimate for the actual proportions of hosts with a 
given CPU type in the Zone, rather as an estimate of 
the probability of obtaining a particular model. 
Clearly, one would assume the percentages found to 
be reflective of actual host proportions in the AZ. 
From Table 2 we see that in us-east-1a we have very 
high probability of an m1.small obtaining an E5645, 
whilst the m1.medium has a much smaller chance. 
However, we do expect probabilities to change over 
time, and perhaps even frequently. We discuss this 
further in section 7.  

We also note that without much further 
consideration a customer (given knowledge of Table 
2) may well choose us-east-1a over us-east-1c for 
certain instance types. However, we also note that 
us-east-1c may offer better price/performance 
compared to us-east-1a due to it having a larger 
proportion of the E5430 model.  

4 MODELLING AN AZ 

In this section we develop a simple model of an AZ 
that will allow us to simulate requests and responses.  
Public Clouds are generally opaque - few 
architectural details are made available. And so we 
are guided by knowledge derived from the 
OpenStack reference architectures (OpenStack, no 
date), experiments on EC2, and our experiences of 
running both Eucalyptus and OpenStack Private 
Clouds at our institution. 

To simplify matters we model requests only for 
FGS instances, the m1.small, m1.medium, m1.large 
and m1.xlarge instances. As discussed earlier, this 
class is backed by Intel Xeon E5430, E5-2650, 
E5645 and E5507 CPUs.  

By VM density we refer to the ratio of vCPUs to 
physical cores that a host presents. For example, a 
host with 8 cores and VM density = 1 presents 8 
vCPU. In this case the host could run, for example, 1 
m1.xlarge (requiring 4 vCPU) and 4 m1.small 
instances (1 vCPU each). However, if the VM 
density is increased to 1.5 we now have 12 vCPUs 

presented, and so the host may now run (for 
example) an additional 2 m1.large instances. Of 
course, running a Cloud at a higher VM Density will 
lead to greater resource contention amongst the 
VMs, resulting in larger performance variation. We 
set the VM Density = 1. 

The scheduler in our model (in common with the 
OpenStack scheduler) is capable of filtering 
instances types onto associated hardware. We 
therefore avoid considering hardware not associated 
with FGS instance class. 

In our model, a host for a given class can run a 
mix of its instance types. For example, a FGS host 
with sufficient vCPUs could have an m1.small, 
m1.medium, m1.large and an m1.xlarge running on 
it at the same time. There is no obvious reason why 
this should not also be true on EC2. 

We have chosen to use the chance scheduling 
algorithm. This chooses hosts at random and, if there 
are available resources, will allocate the VM to the 
host. 

Hence our AZ consists of: 
 A number of host machines running a 

hypervisor in order to host VM instances.  
 Heterogeneous hosts (hosts may have 

different hardware).  
 Each host presents a number of vCPUs which 

are allocated to instances running on it.  
 One scheduler, responsible for placement of 

VM instances onto hosts. 
o The scheduler can be configured to 

implement a number of scheduling 
algorithms. We use chance scheduling.  

o The scheduler also filters instance types 
onto hosts of a given type. 

 VM Density = 1. 

5 SIMULATING USER 
REQUESTS 

We restate the problem of interest: In a request for a 
number of instances of a given type, what is the 
expected number of each CPU model backing the 
instances? 

By state of the Zone, we mean the total number 
of available vCPUs and their arrangement over the 
host machines. Clearly, the state of the Zone will 
change over time, potentially for a number of 
different reasons including demand fluctuation, 
capacity management, short-term unplanned 
outages, planned maintenance and hardware 
replacement and refreshes. Some of these are merely 
transient, whilst other will change the composition 
of the Zone.  
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To generate a state, we need to make an 
assumption about data centre loading, which we 
consider to be the number of in use vCPUs. Whilst 
we have no reliable data for actual VM loadings in 
data centres, and providers do not release such 
information, it is generally claimed to be high. 
Indeed, one of the positive arguments for Cloud 
adoption is high utilisation. Further, providers claim 
they can maintain high rates and that whilst an 
individual customer’s demand fluctuates; aggregate 
demand (over all customers) remains fairly constant. 
This has been referred to as one of the ‘Laws’ of 
Cloudonomics (Weinman, 2008). From the 
discussion above, we believe that scenario 2 would 
be a reasonable assumption on data centre loading.  

Our algorithm for generating a Zone state 
depends on size of the Zone, the load and the 
instances we wish to run in it. Assuming 1000 hosts 
each with 8 cores (without load), so 8000 vCPUs in 
total, able to run m1.medium, m1.large and 
m1.xlarge instance, we do as follows:  

LOADING = randomint(0.7*8000,0.9*8000) 
while ( LOADING > 0 ) do 
 k = random-select(1, 2, 4) 
 schedule(20 instances of k vCPUs) 
 LOADING = LOADING - 20*k 
  
With all hosts, and so all vCPUs, free, we 

generate a random loading of 70% to 90% of the 
vCPU count. Next, we randomly select (random 
numbers drawn from the uniform distribution) a 
vCPU size (1, 2, 4 to reflect the vCPU requirement 
of m1.medium, m1.large and m1.large, respectively) 
and schedule 20 instances of this type into the Zone. 
This is repeated until we have the required load. 
This gives a mix of types running on hosts. In our 
code the schedule function ensures that a VM is only 
placed on a host which has a sufficient number of 
free vCPUs. The schedule function updates the host 
and VM state after allocation.  

We choose a static (Monte Carlo) simulation of 
user requests, proceeding as follows: We first 
generate a Zone State as described above, we then 
simulate a request (over this state) to the scheduler, 
which allocates the required number of instances 
onto hosts. We then count the number of CPU 
models in the hosts backing our instances. An 
example output of a request for 20 m1.small 
instances, in a Zone containing CPU models E5430, 
E5645 and E5507 would be: (5 E5430, 4 E5645, 11 
E5507).  

For each iteration in the simulation, the requested 
instance type is constant, the request size is 20 (the 
maximum on EC2), and Zone state is generated 
anew so if we are interested in m1.small types then 

the simulation asks for 20 m1.small instances 50,000 
times (each time over a new Zone state).  By 
repeatedly sampling over Zone states a sufficiently 
large number of times (50,000 in this case) we 
generate a distribution for the CPU models from 
which we calculate estimates of the expected 
number of CPU models per request. In practice there 
will be some request failures, however for simplicity 
we assume that all instances are successfully placed 
in each request.  

We investigate two scenarios: 
Scenario 1: Zero loading in the data centre. 
Scenario 2: 70% to 90% of the cores in the data 
centre already in use. 

To run a simulation, we need to specify the 
proportions of the CPUs in the Zone. Whilst we 
have data from our survey of us-east-1c, we are 
faced with 2 immediate problems. Firstly, as already 
discussed, the percentages are estimates of the 
probability of obtaining a model and not estimates of 
the actual host proportions. Clearly though they are 
likely to be indicative of them and as there is no 
obvious way to more accurately determine host 
proportions we take the percentages as estimates for 
our model. Next, instance types share common 
platforms, and yet from Table 2 are not being 
allocated to them in the same fashion. And so, if we 
wish to model m1.small requests should we use 49% 
as the percentage? Or should we average over 49%, 
36% and 79%, which would give 55%? When 
modelling a given type we take the percentage found 
for the type and not the average.  

6 SCENARIO 1 

We are requesting 20 FGS instances from the pool 
of all available hosts. We start by considering the 
m1.medium instance type which has 1 vCPUs, and 
so requires 1 physical core by our assumptions. We 
are using a chance scheduler, which chooses hosts 
randomly and allocates a VM to it, if it has sufficient 
resources (if not choose a new host). Thus we are 
sampling over the set of cores without replacement.  
In this case the joint probability density function is 
described by the multivariate hyper-geometric 
distribution. The marginal distributions are also 
hyper-geometric, however when the sample size is 
small compared to the population, as in this case, the 
hyper-geometric tends to binomial distribution. And, 
so we have, for example E5430 ~ B(n,p) where n = 
20 and p is proportion of E5430 cores expressed as a 
decimal for m1.medium instance. We also note that, 
whilst this request is for m1.medium instances, the 
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argument above, with slight modifications, applies 
to all FGS instance sizes.  

7 SCENARIO 2 

The AZ is assumed to have a loading such that 70% 
to 90% of the cores are already in use. That means 
the total available core count is between 800 and 
2400. The first simulation is with m1.small requests 
in us-east-1c with CPUs in the following 
proportions: 25% E5430, 26% E5645 and 49% 
E5507. We then simulate m1.medium and m1.large 
using data from Table 2. 
 We calculate the marginal distributions for our 
random variables by simply counting the number of 
times a particular output occurs. To calculate the 
marginal probability distributions we simply divide 
the number of occurrences by the 50,000, from this 
we calculate the expected number of each CPU. In 
Table 3 below we present the calculated 
expectations for all CPU models in each simulation, 
and in Figure 1 we present the frequency distribution 
for the discrete random variable defined by the 
number of E5430 models returned in response to a 
request for 20 m1.large instances.  

Table 3: Expected Value of CPU Returns. 

 E5430 E5645 E5507
m1.small 5.00 5.197 9.795
m1.medium 5.0114 5.195 9.793
m1.large 5.008 5.192 9.799
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Figure 1: E5430 for m1.large Instances. 

We suspect that the distributions are binomial. For 
the distribution depicted in Figure 1 we perform a 
Chi-Squared Goodness of Fit Test, where the null 
hypothesis is E5430 ~ B(20,0.25), and E5430 
denotes the discrete random variable as defined in 
the paragraph above. For the test we generate 
expected output from B(20,0.25) and then calculate 
the chi squared statistic as 17.99. With 20 degrees of 
freedom, at a 5% significance level, we fail to reject 

the null hypothesis. Similarly, our simulations for 
m1.small and m1.medium instance types also 
produce marginal distributions which are binomial.  

8 COMPARISONS WITH POST 
SIMULATION DATA FROM  
US-EAST-1C 

From the above simulation E5430 ~ B(20,0.25). 
By a direct calculation P(E5430 <=7) – P(E5430 
<=2) = 0.673. And so in 2 out of 3 samples of 20 
instances we would expect the number of E5430 
models obtained to be between 3 and 7.  

In a follow on experiment to the one described in 
section 3, paragraph 6, and with results in Table 2; 
we requested 3 samples of 20 m1.large instances, 
with a 10 minute interval between requests and no 
resources were released until we had concluded the 
experiment. In Table 4 below we record the results.  

Table 4: CPU models returned in request in us-east-1c for 
20 m1.large. 

Sample E5430 E5645 E5507 
1 3 0 17 
2 5 1 14 
3 2 0 18 

 
In a final experiment, we launched 100 m1.small 
instances. Assuming a binomial distribution, and 
using our data in Table 2 as an estimate for p, the 
expected numbers (100*p) of each CPU model 
would be (25,24,49). We obtained (21,29,50).  

It is not yet clear to us why instance types within 
the same class obtained the same CPUs in different 
proportions. It may well be the case that instances 
types within the same class do not run on the same 
host at the same time. That is, a host may run 2 
m1.xlarge machines, and if one is terminated will 
only host another m1.xlarge. However, if both 
m1.xlarge instances are terminated then the host is 
available again to all instance types in the class. 
Over time such a scheme may lead to the 
distributions we have seen. We intend to pursue this 
idea further.  

9 SCHEDULERS AND AZ STATE 

We chose the chance scheduler as our staring point 
as it is was previously the default scheduling 
algorithm in OpenStack. There are a number of 
algorithms that schedule more intelligently than 
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chance, and reflect the priorities of a site. As an 
example, minimise the number of hosts in use; 
whilst keeping the hosts not in use in a low energy 
state. Others algorithms attempt to make efficient 
use of resources; and these are generally variations 
on the bin packing problem, as described in Wilcox, 
et al. (2010), with the scheduler employing a 
heuristic to solve the problem.  The AZ states and 
the CPU distributions generated by this scheduler 
are potentially quite different from those that a 
chance scheduler would generate. Similarly, 
schedulers that seek to take advantage of co-locating 
VMs, for either deduplication of base images or 
page sharing amongst VMs may also generate AZ 
states different from both the chance scheduler and 
bin packing.  

10 RELATED WORK 

In Armbrust, et al. (2009), the authors describe EC2 
Cloud performance as unpredictable. Similarly, 
Osterman, et al. (2010), describe performance in the 
Cloud as unreliable. The Magellan Report on Cloud 
Computing for Science (Yelick, et al., 2011) found 
that ‘applications in the Cloud…experience 
significant performance variations’ and noted that 
this is in part caused by the heterogeneous nature of 
EC2. However, EC2 was the only Public Cloud they 
considered. Similarly, in Phillips, Engen, and Papay, 
(2011), also discovered differential performance in 
instances of the same type on EC2 when attempting 
to predict application performance.  

Iosup, et al. (2011), demonstrate that 
performance variation exists in a range of AWS 
services, including S3, SDB and SQS, and so 
performance variation of applications using these 
services is not solely dependent upon instance 
compute capability.   

Schad, et al. (2010), show that the compute 
performance of instances sampled from US East N. 
California and the EU West Dublin Region falls into 
two distinct performance bands. Upon further 
investigation they detect two different CPU models 
backing their instances and speculate that previous 
results are explained by differences in CPU model. 
They also found a difference in the amount 
performance variation in two out of the four AZs 
used (us-east-1c and us-east-1d).  

Ou, et al. (2012), suggest that the heterogeneous 
nature of Clouds can be exploited by estimating the 
probability of obtaining a particular CPU model 
backing an instance. Their method assumes that 
instances will be randomly sampled from all AZ 

available in US East N. California, which, as noted 
by the authors in Schad, et al. (2010) is not 
necessarily the case. To fully exploit heterogeneity, 
requests must be made per AZ, and this requires an 
analysis of the CPU distributions per AZ in the 
Region of interest. Additionally, they assume that 
the CPU model obtained in a particular request is 
independent of the one previously obtained. There is 
no guarantee of this; and VM placement algorithms 
need to be considered.  

There is a large literature base for VM 
scheduling; for example Bazarbayev, et al. (no date), 
consider scheduling of VMs with identical or similar 
base images onto the same hosts. Reig, Alonso and 
Guitart, (2010), add machine learning capabilities to 
the scheduler in order for it to be able to predict 
resources required for a given execution time. 
However, as far as we aware, there are no papers 
looking specifically at how scheduling may affect 
the probability of obtaining particular resources. 

11 CONCLUSIONS AND FUTURE 
WORK 

The compute performance of an instance is primarily 
determined by the CPU model backing it. Currently 
customers cannot request either a desired level of 
performance, or, failing that, a particular CPU 
model. Being able to predict the performance of a 
set of instances before provisioning them, is 
therefore an important issue for Cloud users. Being 
able predict the range of CPU models that may be 
obtained in response to a request will go someway 
towards answering this question.  
In this paper we therefore address the following 
problem: In a request for a number of instances of a 
given type, what is the expected number of each 
CPU model backing the instances? 

By create a simple AZ model  we showed that in 
the  case of an empty (but sufficiently large) AZ 
then the number of models of a given type in a 
request is binomially distributed B(20,p), where p is 
the proportion of CPU models in the zone.  

We then modelled an AZ and under a load of 
70% to 90% capacity used, this describes the 
number of vCPUs in use. We used the uniform 
distribution to generate the AZ state, and then used a 
chance scheduling algorithm to allocate FGS 
instances into our AZ. The simulation samples over 
the set of possible states, so we estimate a joint 
probability distribution for our random variables 
E5430, E5645 and E5507 (denoting the CPU models 
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found in AZ respectively). From this joint 
distribution we calculated the marginal distributions 
and using a chi-squared goodness of fit test we 
showed that these are drawn from a Binomial 
distribution.  

Therefore, in both scenarios the answer to our 
original question is this: the expected number of 
CPUs of a given type is the request size multiplied 
by the probability of obtaining a CPU (in a request 
for one instance). Comparing with a (small) set of 
samples drawn from us-east-1c we find that n*p 
appears to be reasonably good estimate of the 
number of models we may obtain.  

We intend to investigate commonly found 
scheduling algorithms and incorporate them into 
future models, and compare the distributions our 
models generate with instance sampled from 
providers.  

We recognise that the work involved in 
implementing such a model, and estimating possibly 
frequently changing probabilities, may make it 
impractical for certain users. However, we believe 
that this is feasible for Infrastructure Cloud brokers; 
and indeed they are ideally placed to do so.  

More generally, we believe this will enable 
brokers to make performance related pricing offers 
to customers of the following form:  Offer 1: We are 
95% sure that at least 15 of the 20 VMs will run the 
workload in less than or equal to T seconds. Our 
future work is aimed at advancing this.  
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