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Abstract: In this paper a novel radio-interferometric object trajectory estimation method is proposed, which can be 
used to track moving objects. The system utilizes a low number of fixed infrastructure nodes equipped with 
radio transceivers, and the tracked object also carries a simple transceiver. Selected transmitter 
infrastructure nodes produce interference signals at the fixed infrastructure receivers and the tracked 
receiver. Transmitter and receiver roles are rotated, thus multiple interference signals are produced, which is 
measured by synchronized receiver pairs. Measurements are then compared to pre-computed phase maps 
while the object is moving. During object movement the system resolves position ambiguities and the exact 
object trajectory is determined. The performance of the proposed method is illustrated by simulation 
examples and real measurements.  

1 INTRODUCTION 

Object localization and object tracking is an 
important functionality in many applications and 
thus various approaches have been proposed, 
including image processing, acoustic, and RF-based 
solutions. 

Image- and video-based solutions extract 
significant visual information from the frames and 
thus can find and follow objects along a series of 
frames. This approach can be used for object 
detection, identification, localization, and tracking, 
see e.g. (Comaniciu, 2003). In acoustic ranging 
methods the time of flight of acoustic signals 
(mainly ultrasound) is measured, and the system 
determines pairwise distances between nodes with 
known and unknown locations, and from the 
pairwise distance set it calculates the unknown 
positions, see e.g. (Ajdler, 2004).  

Among the RF-based solutions GPS is the most 
widespread solution in applications where line of 
sight to satellite can be provided. In indoor 
applications, however, alternative methods are 
searched. Positioning based on signal strength is 
probably the simplest of RF-based methods, and can 
provide a few meters of accuracy, with sufficiently 
dense transmitter infrastructure and an a priori 
measured reference map (Au, 2012). Time of flight 
of RF signals can also be used for ranging, using a 
significantly more sophisticated system (Schwarzer, 

2008). To avoid high precision time of flight 
measurements, (Maroti, 2005) proposed radio 
interferometric measurements and a corresponding 
localization method, which can work with 
inexpensive hardware and software solutions.  

In this paper a novel object tracking method will 
be proposed, which utilizes radio-interferometric 
measurements. In contrast to the former localization 
method of (Maroti, 2005), the proposed solution is 
not suitable for localization but for tracking. The 
proposed solution is either able to determine the full 
track of a moving object if the object has covered a 
sufficiently large trajectory, or can follow the 
trajectory of an object if its original position is 
known. The proposed solution also has much lower 
requirement in terms of measurement precision, than 
the former method of (Maroti, 2005).  

In Section 2 radio interferometric positioning is 
reviewed, the basic elements of which will be 
heavily utilized in the proposed solution. In 
Section 3 the proposed solution is introduced. 
Section 4 present the evaluation of the proposed 
solution, using simulations and real measurements. 
Section 5 presents open questions, possible 
enhancements, and concludes the paper. 

2 RELATED WORK 

Radio Interferometric Positioning (RIPS) was
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 proposed by (Maroti, 2005), utilizing inexpensive 
off the shelf components and simple signal 
processing methods, allowing the creation of low 
cost positioning systems using sensor networks. 
Instead of high frequency signal processing, RIPS 
utilizes low frequency interference signals, produced 
by the interference of two radio signals, having 
approximately the same carrier frequency. The 
schematics of the radio interferometric measurement 
are shown in Figure 1. In the measurement process 
two transmitters (A and B) are used, which transmit 
only carrier signals (sine waves) with frequencies ஺݂ 
and ஻݂, respectively. The carrier frequencies are set 
to be close to each other, thus a low frequency 
interference signal is produced at two receivers, 
denoted by C and D in Figure 1. The frequency of 
the interference signal is ∆݂ ൌ | ஺݂ െ ஻݂| at both 
receivers, but its phase depends on the relative 
positions of the transmitters and the receivers. This 
phase difference is used to provide position 
estimates.  

 

Figure 1: Radio interferometric measurements. 

Note that the interference signal is actually the 
received signal strength (RSSI), which can be 
measured in most RF transceivers. By providing 
time synchronization between receivers C and D, the 
phase difference ߴ between the RSSI signals of the 
receivers can be measured. The phase difference ߴ 
can be expressed as a function of the relative 
positions of the transceivers and receivers, as 
follows:  

ሺ݂ሻߴ ൌ ߨ2
݀஺஻஼஽
ܿ/݂

ሺ݉݀݋	ߨ2ሻ (1)

where ݂ is the carrier frequency (݂ ൎ ஺݂ ൎ ஻݂), ܿ is 
the speed of light, the pairwise distances 
݀஺஼, ݀஺஽, ݀஻஼, and ݀஻஽	 are defined in Figure 1, and 
the quantity ݀஺஻஼஽	 is the following linear 
combination of the pairwise distances: 

݀஺஻஼஽ ൌ ݀஺஽ െ ݀஻஽ ൅ ݀஻஼ െ ݀஺஼. (2)

Note that in (1) the phase values are wrapped, 
(0 ൑ ߴ ൏  ሻ, thus the exact value of ݀஺஻஼஽ cannotߨ2
be expressed from a single phase measurement. In 
(Maroti, 2005) the phase ambiguity problem is 

addressed by using multiple carrier frequencies, 
providing multiple ߴሺ݂ሻ measurements. Solving 
Diophantine equations of ߴሺ݂ሻ values the exact 
value of ݀஺஻஼஽ can be calculated. The proposed 
method in (Maroti, 2005) works well if the error of 
 is small, thus RIPS required long measurements ߴ
(80 minutes of data collection time was reported in 
(Maroti, 2005)).  

In our proposed solution we do not try to resolve 
the phase ambiguity problem at one position, rather 
we use only the wrapped phase values and resolve 
the ambiguity problem with multiple measurements 
at different positions, as the object moves. Thus the 
proposed solution is suitable for tracking, but not for 
localization.  

3 PROPOSED SOLUTION 

The proposed solution offers two operation modes: 
Mode 1: on-line tracking of objects with known 

initial position. In this mode the movement of the 
object is tracked in real-time from the known initial 
position. 

Mode 2: off-line tracking of objects with 
unknown initial position. In this mode a sufficiently 
long data must be recorded, while the object moves; 
after sufficient amount of data is collected the full 
object track is determined (retroactively) and the 
tracking can be continued as in on-line Mode 1. 

Since Mode 1 is a subcase of Mode 2, we will 
discuss only the operation of Mode 2 in detail. 

3.1 Requirements 

The proposed solution has some realistic 
assumptions and requirements, as follows: 

R1: The exact positions of the infrastructure 
nodes are known.  

R2: The movement of the object is slow, 
compared to the sampling frequency. According to 
experiments, the object should not move more than a 
few tens of millimeters between two consecutive 
phase measurement rounds.  

R3: The object trajectory is long enough to allow 
the resolution of the ambiguity problems (Mode 2 
only). There is no explicit known formula yet on 
how long the trajectory should be; according to our 
experiments the more complex the movement 
(containing multiple directions) the shorter trajectory 
is enough. See the simulations and the measurement 
result is Section 4.  

R4: The initial object position must be known 
(Mode 1 only). In Mode 2 the initial position is
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 unknown and is determined by the algorithm.  

3.2 Tracking Infrastructure 

The tracking infrastructure contains transceivers at 
known positions, which can either play the role of 
transmitters to generate interference signals at the 
receivers, or receivers to allow phase difference 
measurements, as described in Section 2. The 
tracked node is always a receiver. Infrastructure 
nodes alter their roles, thus different interference 
signals can be generated.  

A simple measurement uses three infrastructure 
nodes (two transmitters and one receiver) and the 
tracked receiver node, in a measurement 
configuration. The four nodes in the configuration 
can measure a phase difference value ߴ, which 
depends on the positions of both the infrastructure 
nodes and the tracked node. Such simple 
measurements are carried out with different 
configurations, to provide a measurement round, 
containing ܥ simple measurements. The 
measurement results of a complete round will be 
used as inputs in each step of the tracking algorithm.  

Figure 2 illustrates a scenario with four fixed 
nodes A, B, C, D, and one tracked node X. In this 
case ܥ௠௔௫ ൌ 12 possible configuration exists, as 
shown in the table of Figure 2. 

3.3 Position Confidence Map 

In each configuration ܿ	ሺܿ ൌ 1, 2, … ,  ሻ the idealܥ

phase values ߴ௖
ሺ௜ௗሻሺ݌ሻ can be calculated for every 

possible object position ݌, using (1) and (2). For two 
dimensions, this gives a 2D phase map. Note that 
phase maps can be pre-computed and stored, to 
increase the speed of the algorithm. 

Measurement round ݇ produces ܥ phase 
measurements, each measurement corresponding to 
one measurement configuration, as follows:  

 

Figure 2: An example tracking infrastructure with for 
fixed nodes (A, B, C, D) and one tracked node (X). The 
possible configurations are listed in the table. 

 

௠௘௔௦ሺ݇ሻߴ ൌ ሾߴଵሺ݇ሻ, ,ଶሺ݇ሻߴ … , ஼ሺ݇ሻሿ (3)ߴ

Using the ideal phase maps and the measurements, a 
phase offset is calculated for each scenario ܿ, as 
follows: 

∆ ,݌௖ሺߴ ݇ሻ ൌ min
௜ୀିଵ,଴,ଵ

ห ௖ߴ
ሺ௜ௗሻሺ݌ሻ ൅ ߨ2݅ െ ௖ሺ݇ሻห (4)ߴ

Note that the phase offset values ∆  are between 0	௖ߴ
and ߨ. From the phase offsets an error map is 
calculated, as follows: 

,݌ሺߝ ݇ሻ ൌ
1
ଶߨܥ

෍൫∆ ,݌௖ሺߴ ݇ሻ൯

஼

௖ୀଵ

ଶ

 (5)

The error ߝ is zero if the measurements exactly 
correspond to the ideal values; and the maximum 
error is 1, indicating large difference between the 
ideal and measured phase values. Thus from the 
error map a confidence map can be defined, as 
follows: 

,݌ሺߚ ݇ሻ ൌ 1 െ ,݌ሺߝ ݇ሻ (6)

Confidence value ߚሺ݌, ݇ሻ close to one indicates 
that position ݌ can indeed be the real object position 
in time instant ݇, while low confidence values show 
that it is unlikely that the object is in position ݌ in 
time instant ݇. 

Figure 3 shows a confidence map computed for a 
scenario similar to the one shown in Figure 2. The 
true object position is at the center of the figure. 
Figure 3(a) shows the case when there is no 
measurement noise; in this case there are significant 
and sharp peaks in the confidence map. Note that in 
this case the confidence value is exactly 1 at the true 
object position, but there are several other 
significant peaks at phantom positions. This 
phenomenon is due to the phase wrapping in (1), and 
thus the true object position cannot be determined 
from one measurement. The noisy case is shown in 
Figure 3 (b), where the peaks are less high and 
somewhat blurred. The phantom positions are 
clearly observable here as well.  

An important observation, which is the basis of 
the proposed algorithm, is the following: the true 
object location has high confidence value all along 
the track of the object (exactly one in noiseless case, 
and close to one in noisy case). The phantom 
positions, however, change their confidence values, 
as the object moves along its trajectory. This 
phenomenon is quite salient when a series of 
confidence maps is observed: the peak, 
corresponding to the true object position, is moving 
along the object trajectory; at the same time the 
phantom peaks fade and new phantoms appear, only 
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Figure 3: Calculated confidence map for (a) noise free and 
(b) noisy measurements. Red colors show high confidence 
values, dark blue denotes low confidence values. The true 
position is at the center, the other peaks represent phantom 
positions. 

few phantoms living longer than a few meters.  
The phenomenon is illustrated in Figure 4, where 

the confidence values, corresponding to the true and 
a phantom position, are denoted by red and blue 
lines, respectively. Note that in noisy case the 
confidence value of a phantom position may be 
higher than that of the true position. The phantom’s 
confidence, however, will eventually decrease. Thus 
the tracking algorithm monitors the (true or 
phantom) trajectories, and keeps only those, which 
have steadily high confidence values. 

 

Figure 4: Illustration of phase confidence values at the real 
(red line) and a phantom (blue line) position of a moving 
object, as a function of time. (a) ideal, noise free case, (b) 
noisy case. 

3.4 Tracking Algorithm 

The input of the tracking algorithm in each time 
instant ݇ (݇ ൌ 1, 2, … , ܰ) is the measured phase 
vector ߴ௠௘௔௦ሺ݇ሻ, where the vector contains ܥ phase 
measurements, corresponding to the utilized 
configurations, see (3). The output of the algorithm 
is the actual track list (atrack), which ideally 
contains one and only one track. At the beginning of 
the algorithm several possible starting points are 
identified: the true one and many phantoms. As the 
object moves and new measurements are available, 
the algorithm checks whether the current tracks can 
be continued, according to the new measurements, 
or not. A track can be continued if a possible 

location (true or phantom) is close enough to the end 
of the track. The required maximum distance is 
defined in variable limit. Tracks which cannot be 
continued (thus proved to be phantom tracks) are 
removed from the actual track list and are stored in 
list phtrack. The list of the actual tracks is thus 
shrinking, as the moving object provides more and 
more information to resolve ambiguities, and finally 
contains only the true track alone. The pseudo-code 
of the algorithm is the following: 
 
input: ϑ_meas(k), k=1..N 
output: atrack, phtrack 
Initialization: 
atrack = {} 
phtrack = {} 
map = confidence_map(ϑ_meas(1)) 
points = possible_positions(map) 
for each p  points 

t= new Track 
t.add(p) 
atrack = atrack  t 
 

Tracking: 
for each ph  ϑ_meas(2..n) 

map = confidence_map(ph) 
points = possible_positions(map) 
for each t  atrack 

[d, p] = 
min_distance(t.last_point, points) 
if d < limit 

t.add(p) 
else 

atrack = atrack \ t 
phtrack = phtrack  t 
 

The helper functions in the algorithm are the 
following: 

confidence_map(phase_values): calculates 
the confidence map for a given phase measurement 
set, corresponding to one time instant. See Figure 3. 
for illustration of a confidence map.  

possible_positions(map): analyses the 
confidence map and determines possible positions. 
In the current implementation we use a hard 
threshold confmin to select the high peaks in the 
map, then a blob analysis is run to determine the 
connected areas, finally the center of each area is 
selected as possible position. 

min_distance(p, pv): from a vector of 
points pv selects the closest point to a point p. 
Returns both the closest point and the distance. 

Radio-Interferometric�Object�Trajectory�Estimation

271



4 EVALUATION 

In this section the proposed method will be 
evaluated using simulations and real measurements. 
In the simulations and the real measurements a 4-by-
4 meter area was used where the four infrastructure 
nodes were placed into the corners, i.e. the fixed 
nodes were placed at positions (0, 0), (0, 4), (4, 0), 
and (4, 4), respectively. In all the experiments six 
configurations were used, corresponding to 
configurations C1…C6 in Figure 2. 

First a simulated moving object will be tracked 
using various levels of phase measurement error. 
Then a proof-of-concept tracking test will be 
presented using real measurements. 

4.1 Tracking Simulations 

The proposed algorithm was tested with a simulated 
object trajectory, which started from position (1, 1), 
moved to (3, 3) and then moved to (3, 1). To the 
ideal phase values various amount of additive phase 
noise was added to simulate noisy measurements. In 
the two experiments zero-mean normal distribution 
noise was used with ߪ ൌ ߪ and ߨ0.1 ൌ  ,ߨ0.2
respectively. In both simulations parameters confmin 
and limit were set to 0.8 and 0.1m, respectively. 

The results of the tests can be seen in Figure 5, 
where red lines represent the identified true object 
track, while blue lines show the phantom 
trajectories. Blue dots show the starting track 
positions. 

As can be seen in Figure 5, from the initial 
tracking positions phantom tracks of various lengths 
were detected. Note that the directions of the real 
and phantom tracks were approximately the same. 
Also note that in the noisier simulation the phantom 
tracks are much shorter, because the same confmin 
threshold for lower confidence values (see Section 
4.1) results an earlier abortion of phantom tracks. 

The length of the true trajectory is ܰ ൌ 400. 
With ߪ ൌ  the five longest phantom tracks have ߨ0.1
285, 228, 116, 108, and 98 points, while with 
ߪ ൌ  ,their corresponding lengths are 35, 35, 25 ߨ0.2
19, and 19 points. The number of starting points 
somewhat decreased in the noisier experiment from 
164 to 143. This is again due to the fact that fewer 
initial points exceeded the same confidence limit. 

The accuracy of the position estimation was also 
evaluated in the simulations. In the ߪ ൌ  case ߨ0.1
the maximum, average and the standard deviation of 
the estimation error are 25.2mm, 8.3mm, and 
18.6mm, respectively. In the ߪ ൌ  case the ߨ0.2
maximum, average and the standard deviation of the 

estimation error increased to 59.9mm, 17.0mm, and 
19.1mm, respectively. 

4.2 Measurement Results 

To test the proposed method a real measurement was 
also performed. The used special dual-radio nodes 
are based on Atmel’s ATmega128RFA1 
microcontroller, equipped with an integrated 2.4GHz 
transceiver. The other radio chip is a Silicon Lab’s 
Si4432 transceiver, which was used for the radio 
interferometric measurements. During the 
measurements we used the 868 MHz ISM frequency 
band and fine-tuned the radios with the available 
312,5 Hz accuracy. The synchronized receivers 
performed phase difference measurement on the 
RSSI data, sampled with frequency of 62.5 kHz. 

 
(a) 

 
(b) 

Figure 5: Simulation result with various measurement  
phase noise. The standard deviation of the additive noise 
was (a) ߪ ൌ ߪ and (b) ߨ0.1 ൌ  Active and phantom .ߨ0.2
object trajectories are shown with red and blue lines, 
respectively. Blue dots present the initial starting positions 
of the tracks. 
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In the test, shown in Figure 6, four nodes and six 
configurations were used, as was described at the 
beginning of Section 4. Each of the devices were 
placed 1.25m above ground level and the tracked 
node was carried in hand by a person. The test took 
50 seconds while 271 rounds were measured 
(altogether 1626 phase measurements were 
performed). 

The tracking algorithm was executed with 
parameter values of limit = 0.1m, and confmin = 0.6. 
Initially 169 possible locations were found. 

The length of the actual track is 271, as shown in 
Figure 6, with red line. The longest five phantom 
tracks have lengths of 86, 71, 69, 69, and 69 steps. 

4 CONCLUSIONS 

In this paper a novel radio-interferometric object 
tracking method was proposed. In contrast to former 
radio-interferometric localization methods, the 
proposed solution resolves the location ambiguity 
while the object is moving and provides more and 
more measurements. 

The proposed solution is able to determine the 
full track of a moving object, after the object has 
covered a sufficiently large trajectory. Alternatively 
it can follow the trajectory of an object in real time, 
if the original position of the object is known. 

The performance of the algorithm was tested in 
simulations and real measurements. The proposed 
method, according to simulation experiments, is 
robust when the measurement noise is moderate. 
The algorithm performed also well in a measurement 
using prototype equipment. 

Although the preliminary results are very 
promising there are several open questions. It is not 
known yet how long trajectory the object should 
cover before all ambiguities can be resolved. The 
dependence of the minimal trajectory length on 
various system parameters is also unknown. The 
current measurement rate (approximately 5 rounds 
per second) should also be improved to allow 
tracking of faster objects. 

Possible improvements include acceleration of 
confidence map generation with GPU based parallel 
computing. Currently a simple image processing 
algorithm is used to identify the possible locations; 
with a tailor-made adaptive algorithm the 
performance of the algorithm possibly can be 
improved. The robustness of the tracking can also be 
increased using model based approaches e.g. 
Kalman-filtering. 

 

 

Figure 6: Output of the tracking algorithm based on a real 
measurement. The computed real object track is shown by 
red line, while the phantom tracks are shorter blue lines. 
The initial track positions are denoted by blue dots. 
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