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Abstract: Optimization is a highly important area in chemical engineering, particularly for process design that is 
generally formulated as a mixed and non-linear problem with several competing objectives. A way to tackle 
the problem is to couple multiobjective optimization based on evolutionary algorithms with a process 
simulator. This situation may yet lead to prohibitive computational time as the number of objectives 
increases.  In this paper, the potential of multiobjective differential evolution (MODE) is tested with three 
different stopping criteria.  The performance of MODE is compared with the results obtained with a variant 
of NSGA II. The performance metric is based on the number of evaluations used to get the Pareto front. The 
results show that the combination of an efficient algorithm and the stopping criterion helps to reduce the 
optimization time but its choice may affect the results. As far as multiobjective is concerned, it must be 
emphasized that the final solution is the result of compromise that the decision maker must be aware. 

1 INTRODUCTION 

Process design is a key activity in the chemical 
engineering field for implementing new 
technologies, creating new facilities, or retrofitting 
existing processes. If the traditional design approach 
incorporates economic objectives, process systems 
design has come to include more performance 
measures, such as environment, safety, 
controllability, and flexibility. This kind of problems 
can be generally modelled as mixed integer 
nonlinear programming (MINLP) formulations, 
involving continuous and integer variables. This 
class of mathematical problems generally involves 
non-convexities, which are related to the problem 
formulation concerning both the objective 
function(s) and/or the set of constraints. The 
inherent combinatorial nature of the problem 
contributes to its complexity. In that context, 
evolutionary algorithms (EAs) have received a lot of 
attention for solving nonlinear multimodal problems 
(Angira and Babu, 2006). They are also particularly 
attractive to capture the multiobjective nature of the 
criteria. Among the methods that have reported in 
the dedicated literature, multiobjective optimization 
(MOO) (Rangaiah, 2009) and particularly 

evolutionary algorithms constitute a promising 
approach to tackle the problem. 

The early design stage implies the evaluation of 
the various alternatives that can be used to produce a 
chemical product involving several reaction routes 
with various types of equipment and their 
corresponding operating conditions. The importance 
of early design activities has been addressed in 
several recent studies. The problem is generally 
solved by use of a process simulator for flowsheet 
generation such Aspen (“Aspen One® - 
AspenTech,” 2013), Hysis (“Aspen HYSYS® - 
AspenTech,” 2013), Prosim (“PROSIM,” 2013). 

If the computational time required for simulation 
is quite acceptable (from several seconds to several 
minutes for large size problems), the situation may 
be quite different when performing optimization 
where the various objectives must be evaluated 
many times by successive use of the process 
simulator. It must be emphasized that multiobjective 
optimization does not lead to a single ideal solution 
but to a set of compromise solutions (Jones et al., 
2002) that are generally represented through a Pareto 
front as far as the objective functions are considered. 

Problems such as the optimization of the process 
of hydrodealkylation (HDA) of toluene, to produce 
benzene were investigated previously (Ouattara et 
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al., 2012) involving various objective functions 
based on economic and ecological criteria evaluated 
by coupling two simulators for chemical process and 
utility requirement. Every evaluation involves a call 
to the support software tools that makes the 
optimization task quite long. Another example is the 
selection of the synthesis strategy for a chemical 
plant described by Grossmann (Papoulias and 
Grossmann, 1983). The superstructure considers the 
chemical and utility plant as the heat recovery 
network. The objectives are to determine the 
configuration of the plant, the heat exchanger 
network and utility system that allows maximizing 
the annual profit. Other examples can be mentioned 
such as the supply chain management problem 
presented in (Kallrath, 2000) as a multi-site, multi-
product, multi-period production/distribution 
network planning system with the objective of 
finding the best production schedule satisfying a 
given demand.  

Among multiobjective evolutionary approaches, 
Genetic Algorithms (GAs) constitute a quite popular 
method used in engineering field, particularly in the 
chemical engineering community (Abbass et al., 
2001). One of the most efficient genetic algorithms 
is NSGA II Non-dominated Sorting Genetic 
Algorithm (Deb et al., 2002) an upgrade version of 
NSGA which estimates the density of solutions 
surrounding a particular one, in order to perform a 
scanning of the solution space.  

The design optimization time obviously depends 
on the number of the successive evaluations of the 
possible solutions by use of the process simulator.  
In that context, the formulation of an effective 
criterion is necessary in the case of the 
multiobjective optimization problem as judging the 
advance of the optimization. If the selection of an 
appropriate criterion has been identified as one of 
the fundamental topics, it must be highlighted that 
this issue has not been solved properly. 

The objective of this work is twofold: first, the 
potential of Differential Evolution (DE) is 
investigated since DE has been successful in the 
solution of a variety of continuous single-objective 
optimization problems in which it has shown great 
robustness and a very fast convergence. Recently, 
there have been successful proposals to extend DE 
to MOO (Robič and Filipič, 2005). A multi-
objective differential evolution algorithm was thus 
implemented. The second objective is to evaluate 
different stopping criteria for reducing the number of 
evaluations. For this purpose, some benchmark 
problems and a chemical engineering problem are 
tested. 

This paper is divided into 5 sections. Section 2 is 
devoted to main concepts of differential evolution.  
Section 3 describes the solution strategy. Section 4 
discusses the results obtained with test problems. 
Section 5 concerns the application to a small-size 
structural problem for process design. Finally, 
conclusions and perspectives are proposed.  

2 DIFFERENTIAL EVOLUTION 
(DE) 

Differential Evolution (DE) is an evolutionary 
algorithm proposed by Price (Price, 1996) using 
vectors to perturb the best solution found so far 
together with mutation and crossover. It needs three 
parameters, i.e., population size ܰܲ, scaling constant 
 .ܴܥ and crossover constant ܨ

The details on DE algorithm, various strategies 
of DE and wide range of applications in various 
engineering areas are well documented in literature 
(Angira and Babu, 2006)(Onwubolu and Babu, 
2004). Only the principles are presented here for the 
sake of brevity. 

The procedure is rather simple. The first step is 
to initialize the population ܲ݌݋ for every variable in 
the dimension ܦ and evaluate the fitness of each 
individual ݆ within the boundary constraints (upper 
and lower bounds ܪ and L, respectively), such as: 

௜௝݌݋ܲ ൌ ܮ ൅ ሺܪ െ ݅	,௜௝ሾ0,1ሻ݀݊ܽݎሻܮ ൌ
1,… , ;ܦ ݆ ൌ 1,… ,ܰܲ 

(1)

Each iteration consists in 4 steps. First, three 
individuals of the population are randomly selected 
 they must be mutually different and also ;(ଷݎ,ଶݎ,ଵݎ)
different of the current vector ݆. Secondly, a trial 
vector ݔ is created according to equation (2), where 
 ௜௝ሾ0,1ሿ is a randomly generated number and݀݊ܽݎ
ܴ݊݀ is a randomly selected variable. 

௜ݔ ൌ ቊ
௜,௥యݔ ൅ ௜,௥భݔ൫ܨ െ ௜,௥మ൯ݔ ݂݅ ൫݀݊ܽݎ௜௝ሾ0,1ሿ ൏ ൯⋁ሺܴ݊݀ݎܥ ൌ ݅ሻ

௜௝ݔ ݁ݏ݅ݓݎ݄݁ݐ݋
 (2)

Step 3 checks the boundary constraints; if a value is 
out of the boundary zone, it is calculated again 
according to: 

݂݅ ሺݔ௜ ∉ ሾܮ, ሿሻܪ ௜ݔ ൌ ܮ ൅ ሺܪ െ ௜ሾ0,1ሿ. (3)݀݊ܽݎሻܮ

Finally, if the trial vector is inferior or equal to the 
current one, the trial individual replaces the current 
individual. 

Some guidelines for the use of DE are proposed 
in (Storn, 1996): 

 At initialization step, the population should be 

Differential�Evolution�for�Multiobjective�Optimization�of�Process�Design�Problems

227



spread as much as possible over the objective 
function surface. 

 Most often, the crossover probability CR 
(∈ ሾ0, 1ሿሻ must be considerably lower than 1. If 
no convergence can be achieved, a value of CR 
within ሾ0.8, 1ሿ is yet recommended 

 For many applications, a size of the population 
corresponding to 10 times the size of the problem 
ܲܰ) ܦ ൌ  is a good choice. F is usually (ܦ10
chosen within the interval ሾ0.5, 1ሿ. 

Some differences between DE and GA (Abbass et 
al., 2001) can be highlighted: 

 In GAs, crossover is carried out between two 
parents and the child is a recombination of both 
of them, while in DE, three parents are selected 
and the child is only the perturbation of one of 
them. 

 The new child only replaces a randomly selected 
vector of the population when it is better. In GA, 
the children replace the parents with some 
probability regardless of their fitness. 

2.1 Stopping Criterion 

As mentioned in the motivation of this work, the 
stopping criterion is of major importance to 
guarantee that the solution (or the set of solutions) 
obtained so far is of acceptable quality regarding the 
numerical effort. Various scenarios can be used 
among others (Martí et al., 2007): 

 the solution yielded so far is satisfactory; 

 the method is able to produce a solution : it is yet 
not satisfactory but a better one will not be 
produced; 

 the method is unable to “converge” to any 
solution; 

 there is no progress in the search of a new 
solution. 

3 SOLUTION STRATEGY 

3.1 Principles 

The algorithm used is the one suggested by Price 
(Price, 1996) that was adapted for considering mixed 
variables and a multiobjective formulation. By lack 
of place, a major attention is only paid to the 
stopping criterion in what follows. 

The binary variables are taken into account using 
the strategy of Angira (Angira and Babu, 2006), that 
means that the variable is handled as a continuous 

one, within the interval (Feoktistov, 2006) with a 
rounded value (Feoktistov, 2006). Every variable 
that is modified during the optimization process 
must be within its definition domain; otherwise, it is 
initialized again.  

The violation of constraints is calculated and 
used in the adaptation comparison procedure 
according to Deb’s criterion, that means that a vector 
A dominates B if one of the next conditions is 
achieved (Deb et al., 2002): 

 A is feasible and B not; 

 A and B are not feasible but the violation of the 
constraints is lower in A than in B; 

 A and B are feasible but A dominates B. 

3.2 MGMB 

The MGMB criterion (from the initials of the 
authors (Martí et al., 2007)) is based on the 
comparison of the set of non-dominated solutions of 
two iterations. A progress indicator (ݏ௧) is to be 
calculated indicating or not an evolution of the 
population. For example, a value of ݏ௧ equal to 1 
means that the last population is better than the 
previous one. A value of ݏ௧ equal to 0, means that 
there is no progress and a value of ݏ௧ equal to -1 is 
the sign of deterioration of the population. A 
correction step ܭ௧ is considered to take into account 
the influence of the changes.  

3.3 Consolidation Ratio (CoR) 

This is a convergence metric that can be used as a 
stopping criterion. The consolidation ratio is the 
fraction of the population at the generation ݅ െ ∆ 
(∆	represents a kind of observation step) that has 
evolved up to the current generation ݅.  

This is calculated as the ratio of the number of 
non-dominated individuals (ܰܦ) in the generation 
݅ െ ∆ present in the generation ݅ and the non-
dominated of the last generation (݅), expressed as: 

ܴ݋ܥ ൌ ∆௜ିܦܰ
௜ܦܰ
ൗ  (4)

In the early stages of the algorithm, a large fraction 
of non-dominated will not remain in the last 
population that will result in a low value for CoR, 
while the quantity of non-dominated individuals 
after several generations that will remain in the 
population will be higher, leading to a CoR ratio 
close to 1 (no changes of non-dominated vectors). 

ICORES�2014�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

228



3.4 Improvement Ratio (IR) 

This ratio represents the proportion of the population 
݅ െ ∆ dominated by the population	݅ of size ݊௜, as 
expressed by: 

ܴܫ ൌ ∆௜ିܦ ݊௜ൗ  (5)

The initial value of this ratio is equal to unity, which 
means that every solution is dominated by the latest 
population, while when convergence is achieved this 
value is equal to zero.  

3.5 Final Selection with TOPSIS 

The final selection process is made using a 
multicriteria decision-making process that takes into 
account the optimal alternatives found in the Pareto 
front. These alternatives are found to be non-
dominated solutions near optimal value, and 
although the decision maker may use judgment to 
make the final selection from the alternatives, a 
formal method based on TOPSIS (Technique for 
Order of Preference by Similarity to Ideal Solution) 
was adopted  (Lai et al., 1994); (Ren et al., 2010). 
This method is based on the idea of choosing the 
best alternative solution from a set by analyzing the 
shortest geometric distance from the positive ideal 
solution and the longest distance from the negative 
ideal solution. It also requires weights to be assigned 
per criterion and normalizes the information, so that 
the various alternatives are ranked. Although other 
ranking and classification methods exist, TOPSIS 
has proven its efficiency in the final alternative 
selection process obtained through GA (Gomez et 
al., 2010) and is used here after MODE process. The 
same weight was allocated to each criterion in the 
experimental study. The approach for each stopping 
criterion will be tested based on the solution that 
obtained the top rank by TOPSIS. 

4 VALIDATION 

The test problems selected to evaluate the 
performance of the algorithm are the classical SRN 
and TNK problems used in previous works (Deb et 
al., 2002). The formulation of the two problems is 
presented in Table 2 as well as the Pareto fronts of 
SRN and TNK. First, to validate the algorithm, the 
classical DE algorithm was used without any 
specific stopping criterion (the algorithm stops when 
the maximum number of generation is reached) and 
the results were compared with the solutions 

obtained by previous researchers with other 
algorithms. The parameters used were CR=0.6, 
F=0.8, NP=200 and 100 generations They can be 
visualized in Fig. 1 and 2 and are in agreement with 
the results obtained with deterministic methods.  

Then, the three stopping criteria are considered 
for DE i.e., the so-called MGMB (Martí et al., 
2007), consolidation ratio (Goel and Stander, 2010) 
and improvement ratio (Goel and Stander, 2010) in 
combination with the maximum number of 
generations. 

The DE procedure is compared with a variant of 
NSGA II developed for mixed problems and 
implemented in the Multigen environment (Gomez 
et al., 2010). The stopping criterion proposed in 
Multigen (in addition to the maximum number of 
generations) consists in comparing the Pareto fronts 
associated with non-dominated solutions for 
populations ݊ and ݊	 ൅ 	݌ where the period ,݌	 ∈
	ሾ10, 20, 30, 40, 50ሿ for example. If the union of the 
two fronts provides a single non dominated front, the 
procedure stops; else the iterations continue.  

Table 1: Problem formulation for the test functions. 

SRN TKN 

݊݅ܯ ଵ݂ሺݔሻ ൌ ሺݔଵ െ 2ሻଶ ൅

ሺݔଶ െ 1ሻଶ ൅ 2

	݊݅ܯ ଶ݂ሺݔሻ ൌ ଵݔ9 െ

ሺݔଶ െ 1ሻଶ

ଵ݃ሺݔሻ ൌ ଵݔ
ଶ ൅ ଶݔ

ଶ ൑ 225

݃ଶ ൌ ଵݔ െ ଶݔ3 ൑ െ10

ݔ ∈ ሾെ20, 20ሿ 

	݊݅ܯ ଵ݂ሺݔሻ ൌ  ଵݔ

	݊݅ܯ ଶ݂ሺݔሻ ൌ  ଶݔ

ଵ݃ሺݔሻ ൌ െݔଵ
ଶ െ ଶݔ

ଶ ൅ 1 ൅

0.1 cosሺ16 tanିଵሺݔଵ ⁄ଶݔ ሻሻ ൑

0 

݃ଶሺݔሻ ൌ ሺݔଵ െ 0.5ሻଶ ൅

ሺݔଶ െ 0.5ሻଶ ൑ 0.5 

	ݔ ∈ 	 ሾ0,  ሿߨ

 

Figure 1: Pareto front of 
the test problem SRN. 

Figure 2: Pareto front of 
the test problem TNK. 

Three scenarios for DE and one for NSGA-II are 
tested as shown in Table 2. The period represents the 
time of observation and application of the stopping 
criterion. Every problem is analyzed relative to the 
number of evaluations performed for each stopping 
criterion and procedure. The solutions obtained after 
TOPSIS application are also analyzed which can be 
viewed as another validation. The solutions concern 
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both the values of the objective functions and the 
associated variables. 

Table 2: Scenarios for DE and NSGA-II. 

 
DE 

Test 1 
DE 

Test 2 
DE 

Test 3 
NSGA II 

Individuals 100 100 100 100 
Maximum number 

of generations 
200 200 200 200 

CR 1 0.6 0.4 0.9 

F 0.8 0.8 0.8 
0.5 

(mutation) 
Period 10 10 5 - 

 
By lack of place, the Pareto front obtained for 

each problem is not presented here.  All the fronts 
exhibit similar behaviors as previously seen in Fig. 1 
and 2. It must be said that the curves are overlaid in 
the domain with common intersection each other. 

For SRN problem(see Table 1), the solutions 
obtained by DE-TOPSIS exhibit a similar behavior 
both for criteria and variables. The order of 
magnitude of criteria and variables is quite different 
with NSGA-II. It must be emphasized that for 
NSGA II, the algorithm ends because the maximum 
number of generations is reached.  Regarding the 
objective functions, the stopping criteria IR and CoR 
require yet a higher number of evaluations  (Figure 
3) than MGMB. 

For TNK problem (see Table 1), the order of 
magnitude of the objective functions is quite similar, 
in fact all the selected solutions are non-dominated 
between them. Considering the number of 
evaluations, it is interesting to see that the MGMB 
requires around 9 times lower evaluations than the 
other criteria, which can be of practical importance 

in solving real problems (Figure 4). Considering the 
homogeneity of the selected solutions obtained after 
DE-TOPSIS, IR shows almost no difference, while 
CoR and MGMB have a larger deviation.  This can 
be attributed to scattered points in the Pareto front 
obtained for each test, thus giving different ranking 
after application of TOPSIS method. 

5 APPLICATION TO A 
STRUCTURAL DESIGN 
PROBLEM 

This problem is a bicriteria one proposed by 
Papalexandri and Dimkou (Papalexandri and 
Dimkou, 1998). It consists of 3 continuous variables, 
3 binary variables and two objective functions. The 
formulation can be expressed as follows: 

݊݅ܯ ଵ݂ሺݔ, ሻݕ ൌ ଵଶݔ െ ଶݔ ൅ ଷݔ ൅ ଵݕ3 ൅ ଶݕ2
൅ ଷ (6)ݕ

݊݅ܯ ଶ݂ሺݔ, ሻݕ ൌ ଵଶݔ2 ൅ ଷݔ
ଶ െ ଵݔ3 ൅ ଶݔ െ ଵݕ2

൅ ଶݕ െ  ଷݕ2
(7)

ଵ݃ሺݔ, ሻݕ ൌ െ3ݔଵ ൅ ଶݔ െ ଷݔ െ ଵݕ2 ൒ 0 (8)

݃ଶሺݔ, ሻݕ ൌ െ4ݔଵଶ െ ଵݔ2 െ ଶݔ െ ଷݔ ൅ 40 െ ଵݕ
െ ଶݕ7 ൒ 0 

(9)

݃ଷሺݔ, ሻݕ ൌ ଵݔ ൅ ଶݔ2 െ ଷݔ3 െ ଷݕ7 ൒ 0 (10)

݃ସሺݔ, ሻݕ ൌ ଵݔ ൅ 10 െ ଵݕ12 ൒ 0 (11)

݃ହሺݔ, ሻݕ ൌ െݔଵ ൅ 10 ൅ ଵݕ2 ൒ 0 (12)

 

Table 3: Selected solutions for SRN and TNK problem using DE-TOPSIS. 

  SRN TNK 

 ଶ ଵ݂ ଶ݂ݔ ଵݔ ଶ ଵ݂ ଶ݂ݔ ଵݔ  

NSGA-II 0,0282 18,4389 310,003 -303,861 0,043 1,039 0,043 1,039 

IR Test 1 -2,418 -11,666 181,939 -182,183 1,029 0,063 1,029 0,063 

IR Test 2 -2,539 -12,499 204,821 -205,07 1,006 0,088 1,006 0,088 

IR Test 3 -2,924 14,1161 198,274 -198,344 1,022 0,072 1,022 0,072 

CoR Test 1 -2,288 -8,6635 113,773 -113,978 1,006 0,088 1,006 0,088 

CoR Test 2 -2,165 -12,371 198,117 -198,254 0,957 0,138 0,957 0,138 

CoR Test 3 -2,351 -12,292 197,614 -197,842 0,089 1,004 0,089 1,004 

MGMB Test 1 -2,066 13,1749 166,762 -166,824 0,108 1,011 0,108 1,011 

MGMB Test 2 -2,287 14,1367 192,948 -193,152 0,068 1,026 0,068 1,026 

MGMB Test 3 -3,176 -12,307 205,862 -205,656 0,066 1,042 0,066 1,042 
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Figure 3: Number of 
evaluations for SRN 
problem. 

Figure 4: Number of 
evaluations for TNK 
problem. 

݃଺ሺݔ, ሻݕ ൌ ଶݔ ൅ 20 െ ଶݕ ൒ 0 (13)

݃଻ሺݔ, ሻݕ ൌ െݔଶ ൅ 40 ൅ ଶݕ ൒ 0 (14)

଼݃ሺݔ, ሻݕ ൌ ଷݔ ൅ 17 െ ଷݕ ൒ 0 (15)

݃ଽሺݔ, ሻݕ ൌ െݔଷ ൅ 25 ൅ ଷݕ ൒ 0 (16)

௜ݔ 	∈ ሾെ100,100ሿ (17)

௜ݕ 	∈ ሾ0,1ሿ (18)

For the three stopping criteria, the previous 
conditions were applied (see Table 2). A similar 
analysis as the one previously adopted for SRN and 
TNK is carried out. 

For the Improvement Ratio (Fig. 13) all the runs 
exhibit similar results and the slight discrepancy that 
is observed can be attributed to the different choice 
in parameter settings. 

For the MGMB criterion (Fig. 14) the behavior is 
quite similar for all tests, the best performance being 
obtained by test 3. 

For the Consolidation Ratio (Fig. 15) the 
performance of the three tests is quite similar, 
meaning that this criterion leads to quasi-identical 
results whatever the intrinsic parameters of the 
procedure. 

Regarding the number of evaluations of the 
objective functions (Fig. 16), the stopping criterion 
MGMB leads to the best performance once more. A 

slight difference is observed between IR and CoR, 
with a lower number of evaluations than NSGA-II. 

Figure 5: Pareto front 
with Improvement Ratio 
as stopping criterion. 

Figure 6: Pareto front 
with MGMB as stopping 
criterion. 

Figure 7: Front de Pareto 
using Consolidation Ratio 
as stopping criterion. 

Figure 8: Number of 
evaluations for every 
stopping criterion. 

Table 4) shows that significant differences in 
solutions are observed. For IR, CoR and MGMB 
Test 1 and 2, the results for function f_1 are better 
that those proposed by NSGA-II. Such a situation 
never occurs for f_2 since they are out-performed by 
the NSGA-II. Test 2 provides consistent results for 
all criteria, so the configuration CR=0.6 and F=0.8, 
with a period of 10 generations seems the more 
appropriate for this problem. As far as the number of 
evaluations is concerned, MGMB is more 
performing. Yet, if the evaluation functions lead to 
similar performances, the corresponding set of 
TOPSIS analysis variables is not the same. The final 
choice of the decision maker may also consider the 
difficulty of implementation of a solution over 
another one as an effective lever. 

 

Table 4: Selected solutions for SRN and TNK problem using DE-TOPSIS  for the small-design problem. 

࢞૚ ࢞૛ ࢞૜ ࢟૚ ࢟૛ ࢟૜  ૚ࢌ ૛ࢌ

NSGA-II 0,0919 39,9759 -1,7991 0 0 0 42,9538 -41,7666 

IR Test 1 0,1980 36,4077 -0,6076 0 0 1 34,2613 -35,9761 

IR Test 2 0,1969 37,6330 -0,0376 0 0 1 35,1213 -36,6318 

IR Test 3 0,4251 35,4294 -0,9154 0 0 0 35,3535 -36,1641 

CoR Test 1 -0,0011 40,1225 -1,2869 0 0 1 39,7819 -40,4093 

CoR Test 2 0,1405 36,7248 -0,3565 0 0 1 34,4699 -36,0615 

CoR Test 3 0,2955 36,8305 -0,4736 0 0 1 34,3429 -36,2167 

MGMB Test 1 0,2727 39,4125 -1,3556 0 0 1 38,5809 -39,6938 

MGMB Test 2 0,9297 35,2025 -2,7510 0 0 0 35,3495 -36,0356 

MGMB Test 3 -0,4732 10,8265 -0,8724 0 0 1 49,3434 -41,3825 
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6 CONCLUSIONS AND 
PERSPECTIVES 

A differential evolution algorithm with several 
stopping criteria was developed. Its performance 
was compared with the results obtained by a variant 
of NSGA II implemented in previous works. Results 
show that, every proposed stopping criterion 
obtained similar results as done by NSGA-II.  But, 
the use of the MGMB criterion implies a lower 
number of evaluations as compared with IR and 
CoR. Nevertheless, no stopping criterion is the 
panacea. Its choice must be a compromise between 
the required gain and the computational effort. This 
study will now be applied to a large size chemical 
engineering design problem which involves the 
evaluation of every proposed solution with a 
simulator. Even if MGMB appears to be a good 
candidate, its robustness must be now investigated 
as far as multiple variable-mapping is concerned. 
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